mirror of
https://github.com/postgres/postgres.git
synced 2025-07-27 12:41:57 +03:00
Move the guts of our Levenshtein implementation into core.
The hope is that we can use this to produce better diagnostics in some cases. Peter Geoghegan, reviewed by Michael Paquier, with some further changes by me.
This commit is contained in:
@ -17,6 +17,3 @@ top_builddir = ../..
|
||||
include $(top_builddir)/src/Makefile.global
|
||||
include $(top_srcdir)/contrib/contrib-global.mk
|
||||
endif
|
||||
|
||||
# levenshtein.c is #included by fuzzystrmatch.c
|
||||
fuzzystrmatch.o: fuzzystrmatch.c levenshtein.c
|
||||
|
@ -154,23 +154,6 @@ getcode(char c)
|
||||
/* These prevent GH from becoming F */
|
||||
#define NOGHTOF(c) (getcode(c) & 16) /* BDH */
|
||||
|
||||
/* Faster than memcmp(), for this use case. */
|
||||
static inline bool
|
||||
rest_of_char_same(const char *s1, const char *s2, int len)
|
||||
{
|
||||
while (len > 0)
|
||||
{
|
||||
len--;
|
||||
if (s1[len] != s2[len])
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
#include "levenshtein.c"
|
||||
#define LEVENSHTEIN_LESS_EQUAL
|
||||
#include "levenshtein.c"
|
||||
|
||||
PG_FUNCTION_INFO_V1(levenshtein_with_costs);
|
||||
Datum
|
||||
levenshtein_with_costs(PG_FUNCTION_ARGS)
|
||||
@ -180,8 +163,20 @@ levenshtein_with_costs(PG_FUNCTION_ARGS)
|
||||
int ins_c = PG_GETARG_INT32(2);
|
||||
int del_c = PG_GETARG_INT32(3);
|
||||
int sub_c = PG_GETARG_INT32(4);
|
||||
const char *s_data;
|
||||
const char *t_data;
|
||||
int s_bytes,
|
||||
t_bytes;
|
||||
|
||||
PG_RETURN_INT32(levenshtein_internal(src, dst, ins_c, del_c, sub_c));
|
||||
/* Extract a pointer to the actual character data */
|
||||
s_data = VARDATA_ANY(src);
|
||||
t_data = VARDATA_ANY(dst);
|
||||
/* Determine length of each string in bytes and characters */
|
||||
s_bytes = VARSIZE_ANY_EXHDR(src);
|
||||
t_bytes = VARSIZE_ANY_EXHDR(dst);
|
||||
|
||||
PG_RETURN_INT32(varstr_levenshtein(s_data, s_bytes, t_data, t_bytes, ins_c,
|
||||
del_c, sub_c));
|
||||
}
|
||||
|
||||
|
||||
@ -191,8 +186,20 @@ levenshtein(PG_FUNCTION_ARGS)
|
||||
{
|
||||
text *src = PG_GETARG_TEXT_PP(0);
|
||||
text *dst = PG_GETARG_TEXT_PP(1);
|
||||
const char *s_data;
|
||||
const char *t_data;
|
||||
int s_bytes,
|
||||
t_bytes;
|
||||
|
||||
PG_RETURN_INT32(levenshtein_internal(src, dst, 1, 1, 1));
|
||||
/* Extract a pointer to the actual character data */
|
||||
s_data = VARDATA_ANY(src);
|
||||
t_data = VARDATA_ANY(dst);
|
||||
/* Determine length of each string in bytes and characters */
|
||||
s_bytes = VARSIZE_ANY_EXHDR(src);
|
||||
t_bytes = VARSIZE_ANY_EXHDR(dst);
|
||||
|
||||
PG_RETURN_INT32(varstr_levenshtein(s_data, s_bytes, t_data, t_bytes, 1, 1,
|
||||
1));
|
||||
}
|
||||
|
||||
|
||||
@ -206,8 +213,21 @@ levenshtein_less_equal_with_costs(PG_FUNCTION_ARGS)
|
||||
int del_c = PG_GETARG_INT32(3);
|
||||
int sub_c = PG_GETARG_INT32(4);
|
||||
int max_d = PG_GETARG_INT32(5);
|
||||
const char *s_data;
|
||||
const char *t_data;
|
||||
int s_bytes,
|
||||
t_bytes;
|
||||
|
||||
PG_RETURN_INT32(levenshtein_less_equal_internal(src, dst, ins_c, del_c, sub_c, max_d));
|
||||
/* Extract a pointer to the actual character data */
|
||||
s_data = VARDATA_ANY(src);
|
||||
t_data = VARDATA_ANY(dst);
|
||||
/* Determine length of each string in bytes and characters */
|
||||
s_bytes = VARSIZE_ANY_EXHDR(src);
|
||||
t_bytes = VARSIZE_ANY_EXHDR(dst);
|
||||
|
||||
PG_RETURN_INT32(varstr_levenshtein_less_equal(s_data, s_bytes, t_data,
|
||||
t_bytes, ins_c, del_c,
|
||||
sub_c, max_d));
|
||||
}
|
||||
|
||||
|
||||
@ -218,8 +238,20 @@ levenshtein_less_equal(PG_FUNCTION_ARGS)
|
||||
text *src = PG_GETARG_TEXT_PP(0);
|
||||
text *dst = PG_GETARG_TEXT_PP(1);
|
||||
int max_d = PG_GETARG_INT32(2);
|
||||
const char *s_data;
|
||||
const char *t_data;
|
||||
int s_bytes,
|
||||
t_bytes;
|
||||
|
||||
PG_RETURN_INT32(levenshtein_less_equal_internal(src, dst, 1, 1, 1, max_d));
|
||||
/* Extract a pointer to the actual character data */
|
||||
s_data = VARDATA_ANY(src);
|
||||
t_data = VARDATA_ANY(dst);
|
||||
/* Determine length of each string in bytes and characters */
|
||||
s_bytes = VARSIZE_ANY_EXHDR(src);
|
||||
t_bytes = VARSIZE_ANY_EXHDR(dst);
|
||||
|
||||
PG_RETURN_INT32(varstr_levenshtein_less_equal(s_data, s_bytes, t_data,
|
||||
t_bytes, 1, 1, 1, max_d));
|
||||
}
|
||||
|
||||
|
||||
|
@ -1,403 +0,0 @@
|
||||
/*
|
||||
* levenshtein.c
|
||||
*
|
||||
* Functions for "fuzzy" comparison of strings
|
||||
*
|
||||
* Joe Conway <mail@joeconway.com>
|
||||
*
|
||||
* Copyright (c) 2001-2014, PostgreSQL Global Development Group
|
||||
* ALL RIGHTS RESERVED;
|
||||
*
|
||||
* levenshtein()
|
||||
* -------------
|
||||
* Written based on a description of the algorithm by Michael Gilleland
|
||||
* found at http://www.merriampark.com/ld.htm
|
||||
* Also looked at levenshtein.c in the PHP 4.0.6 distribution for
|
||||
* inspiration.
|
||||
* Configurable penalty costs extension is introduced by Volkan
|
||||
* YAZICI <volkan.yazici@gmail.com>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* External declarations for exported functions
|
||||
*/
|
||||
#ifdef LEVENSHTEIN_LESS_EQUAL
|
||||
static int levenshtein_less_equal_internal(text *s, text *t,
|
||||
int ins_c, int del_c, int sub_c, int max_d);
|
||||
#else
|
||||
static int levenshtein_internal(text *s, text *t,
|
||||
int ins_c, int del_c, int sub_c);
|
||||
#endif
|
||||
|
||||
#define MAX_LEVENSHTEIN_STRLEN 255
|
||||
|
||||
|
||||
/*
|
||||
* Calculates Levenshtein distance metric between supplied strings. Generally
|
||||
* (1, 1, 1) penalty costs suffices for common cases, but your mileage may
|
||||
* vary.
|
||||
*
|
||||
* One way to compute Levenshtein distance is to incrementally construct
|
||||
* an (m+1)x(n+1) matrix where cell (i, j) represents the minimum number
|
||||
* of operations required to transform the first i characters of s into
|
||||
* the first j characters of t. The last column of the final row is the
|
||||
* answer.
|
||||
*
|
||||
* We use that algorithm here with some modification. In lieu of holding
|
||||
* the entire array in memory at once, we'll just use two arrays of size
|
||||
* m+1 for storing accumulated values. At each step one array represents
|
||||
* the "previous" row and one is the "current" row of the notional large
|
||||
* array.
|
||||
*
|
||||
* If max_d >= 0, we only need to provide an accurate answer when that answer
|
||||
* is less than or equal to the bound. From any cell in the matrix, there is
|
||||
* theoretical "minimum residual distance" from that cell to the last column
|
||||
* of the final row. This minimum residual distance is zero when the
|
||||
* untransformed portions of the strings are of equal length (because we might
|
||||
* get lucky and find all the remaining characters matching) and is otherwise
|
||||
* based on the minimum number of insertions or deletions needed to make them
|
||||
* equal length. The residual distance grows as we move toward the upper
|
||||
* right or lower left corners of the matrix. When the max_d bound is
|
||||
* usefully tight, we can use this property to avoid computing the entirety
|
||||
* of each row; instead, we maintain a start_column and stop_column that
|
||||
* identify the portion of the matrix close to the diagonal which can still
|
||||
* affect the final answer.
|
||||
*/
|
||||
static int
|
||||
#ifdef LEVENSHTEIN_LESS_EQUAL
|
||||
levenshtein_less_equal_internal(text *s, text *t,
|
||||
int ins_c, int del_c, int sub_c, int max_d)
|
||||
#else
|
||||
levenshtein_internal(text *s, text *t,
|
||||
int ins_c, int del_c, int sub_c)
|
||||
#endif
|
||||
{
|
||||
int m,
|
||||
n,
|
||||
s_bytes,
|
||||
t_bytes;
|
||||
int *prev;
|
||||
int *curr;
|
||||
int *s_char_len = NULL;
|
||||
int i,
|
||||
j;
|
||||
const char *s_data;
|
||||
const char *t_data;
|
||||
const char *y;
|
||||
|
||||
/*
|
||||
* For levenshtein_less_equal_internal, we have real variables called
|
||||
* start_column and stop_column; otherwise it's just short-hand for 0 and
|
||||
* m.
|
||||
*/
|
||||
#ifdef LEVENSHTEIN_LESS_EQUAL
|
||||
int start_column,
|
||||
stop_column;
|
||||
|
||||
#undef START_COLUMN
|
||||
#undef STOP_COLUMN
|
||||
#define START_COLUMN start_column
|
||||
#define STOP_COLUMN stop_column
|
||||
#else
|
||||
#undef START_COLUMN
|
||||
#undef STOP_COLUMN
|
||||
#define START_COLUMN 0
|
||||
#define STOP_COLUMN m
|
||||
#endif
|
||||
|
||||
/* Extract a pointer to the actual character data. */
|
||||
s_data = VARDATA_ANY(s);
|
||||
t_data = VARDATA_ANY(t);
|
||||
|
||||
/* Determine length of each string in bytes and characters. */
|
||||
s_bytes = VARSIZE_ANY_EXHDR(s);
|
||||
t_bytes = VARSIZE_ANY_EXHDR(t);
|
||||
m = pg_mbstrlen_with_len(s_data, s_bytes);
|
||||
n = pg_mbstrlen_with_len(t_data, t_bytes);
|
||||
|
||||
/*
|
||||
* We can transform an empty s into t with n insertions, or a non-empty t
|
||||
* into an empty s with m deletions.
|
||||
*/
|
||||
if (!m)
|
||||
return n * ins_c;
|
||||
if (!n)
|
||||
return m * del_c;
|
||||
|
||||
/*
|
||||
* For security concerns, restrict excessive CPU+RAM usage. (This
|
||||
* implementation uses O(m) memory and has O(mn) complexity.)
|
||||
*/
|
||||
if (m > MAX_LEVENSHTEIN_STRLEN ||
|
||||
n > MAX_LEVENSHTEIN_STRLEN)
|
||||
ereport(ERROR,
|
||||
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
||||
errmsg("argument exceeds the maximum length of %d bytes",
|
||||
MAX_LEVENSHTEIN_STRLEN)));
|
||||
|
||||
#ifdef LEVENSHTEIN_LESS_EQUAL
|
||||
/* Initialize start and stop columns. */
|
||||
start_column = 0;
|
||||
stop_column = m + 1;
|
||||
|
||||
/*
|
||||
* If max_d >= 0, determine whether the bound is impossibly tight. If so,
|
||||
* return max_d + 1 immediately. Otherwise, determine whether it's tight
|
||||
* enough to limit the computation we must perform. If so, figure out
|
||||
* initial stop column.
|
||||
*/
|
||||
if (max_d >= 0)
|
||||
{
|
||||
int min_theo_d; /* Theoretical minimum distance. */
|
||||
int max_theo_d; /* Theoretical maximum distance. */
|
||||
int net_inserts = n - m;
|
||||
|
||||
min_theo_d = net_inserts < 0 ?
|
||||
-net_inserts * del_c : net_inserts * ins_c;
|
||||
if (min_theo_d > max_d)
|
||||
return max_d + 1;
|
||||
if (ins_c + del_c < sub_c)
|
||||
sub_c = ins_c + del_c;
|
||||
max_theo_d = min_theo_d + sub_c * Min(m, n);
|
||||
if (max_d >= max_theo_d)
|
||||
max_d = -1;
|
||||
else if (ins_c + del_c > 0)
|
||||
{
|
||||
/*
|
||||
* Figure out how much of the first row of the notional matrix we
|
||||
* need to fill in. If the string is growing, the theoretical
|
||||
* minimum distance already incorporates the cost of deleting the
|
||||
* number of characters necessary to make the two strings equal in
|
||||
* length. Each additional deletion forces another insertion, so
|
||||
* the best-case total cost increases by ins_c + del_c. If the
|
||||
* string is shrinking, the minimum theoretical cost assumes no
|
||||
* excess deletions; that is, we're starting no further right than
|
||||
* column n - m. If we do start further right, the best-case
|
||||
* total cost increases by ins_c + del_c for each move right.
|
||||
*/
|
||||
int slack_d = max_d - min_theo_d;
|
||||
int best_column = net_inserts < 0 ? -net_inserts : 0;
|
||||
|
||||
stop_column = best_column + (slack_d / (ins_c + del_c)) + 1;
|
||||
if (stop_column > m)
|
||||
stop_column = m + 1;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* In order to avoid calling pg_mblen() repeatedly on each character in s,
|
||||
* we cache all the lengths before starting the main loop -- but if all
|
||||
* the characters in both strings are single byte, then we skip this and
|
||||
* use a fast-path in the main loop. If only one string contains
|
||||
* multi-byte characters, we still build the array, so that the fast-path
|
||||
* needn't deal with the case where the array hasn't been initialized.
|
||||
*/
|
||||
if (m != s_bytes || n != t_bytes)
|
||||
{
|
||||
int i;
|
||||
const char *cp = s_data;
|
||||
|
||||
s_char_len = (int *) palloc((m + 1) * sizeof(int));
|
||||
for (i = 0; i < m; ++i)
|
||||
{
|
||||
s_char_len[i] = pg_mblen(cp);
|
||||
cp += s_char_len[i];
|
||||
}
|
||||
s_char_len[i] = 0;
|
||||
}
|
||||
|
||||
/* One more cell for initialization column and row. */
|
||||
++m;
|
||||
++n;
|
||||
|
||||
/* Previous and current rows of notional array. */
|
||||
prev = (int *) palloc(2 * m * sizeof(int));
|
||||
curr = prev + m;
|
||||
|
||||
/*
|
||||
* To transform the first i characters of s into the first 0 characters of
|
||||
* t, we must perform i deletions.
|
||||
*/
|
||||
for (i = START_COLUMN; i < STOP_COLUMN; i++)
|
||||
prev[i] = i * del_c;
|
||||
|
||||
/* Loop through rows of the notional array */
|
||||
for (y = t_data, j = 1; j < n; j++)
|
||||
{
|
||||
int *temp;
|
||||
const char *x = s_data;
|
||||
int y_char_len = n != t_bytes + 1 ? pg_mblen(y) : 1;
|
||||
|
||||
#ifdef LEVENSHTEIN_LESS_EQUAL
|
||||
|
||||
/*
|
||||
* In the best case, values percolate down the diagonal unchanged, so
|
||||
* we must increment stop_column unless it's already on the right end
|
||||
* of the array. The inner loop will read prev[stop_column], so we
|
||||
* have to initialize it even though it shouldn't affect the result.
|
||||
*/
|
||||
if (stop_column < m)
|
||||
{
|
||||
prev[stop_column] = max_d + 1;
|
||||
++stop_column;
|
||||
}
|
||||
|
||||
/*
|
||||
* The main loop fills in curr, but curr[0] needs a special case: to
|
||||
* transform the first 0 characters of s into the first j characters
|
||||
* of t, we must perform j insertions. However, if start_column > 0,
|
||||
* this special case does not apply.
|
||||
*/
|
||||
if (start_column == 0)
|
||||
{
|
||||
curr[0] = j * ins_c;
|
||||
i = 1;
|
||||
}
|
||||
else
|
||||
i = start_column;
|
||||
#else
|
||||
curr[0] = j * ins_c;
|
||||
i = 1;
|
||||
#endif
|
||||
|
||||
/*
|
||||
* This inner loop is critical to performance, so we include a
|
||||
* fast-path to handle the (fairly common) case where no multibyte
|
||||
* characters are in the mix. The fast-path is entitled to assume
|
||||
* that if s_char_len is not initialized then BOTH strings contain
|
||||
* only single-byte characters.
|
||||
*/
|
||||
if (s_char_len != NULL)
|
||||
{
|
||||
for (; i < STOP_COLUMN; i++)
|
||||
{
|
||||
int ins;
|
||||
int del;
|
||||
int sub;
|
||||
int x_char_len = s_char_len[i - 1];
|
||||
|
||||
/*
|
||||
* Calculate costs for insertion, deletion, and substitution.
|
||||
*
|
||||
* When calculating cost for substitution, we compare the last
|
||||
* character of each possibly-multibyte character first,
|
||||
* because that's enough to rule out most mis-matches. If we
|
||||
* get past that test, then we compare the lengths and the
|
||||
* remaining bytes.
|
||||
*/
|
||||
ins = prev[i] + ins_c;
|
||||
del = curr[i - 1] + del_c;
|
||||
if (x[x_char_len - 1] == y[y_char_len - 1]
|
||||
&& x_char_len == y_char_len &&
|
||||
(x_char_len == 1 || rest_of_char_same(x, y, x_char_len)))
|
||||
sub = prev[i - 1];
|
||||
else
|
||||
sub = prev[i - 1] + sub_c;
|
||||
|
||||
/* Take the one with minimum cost. */
|
||||
curr[i] = Min(ins, del);
|
||||
curr[i] = Min(curr[i], sub);
|
||||
|
||||
/* Point to next character. */
|
||||
x += x_char_len;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (; i < STOP_COLUMN; i++)
|
||||
{
|
||||
int ins;
|
||||
int del;
|
||||
int sub;
|
||||
|
||||
/* Calculate costs for insertion, deletion, and substitution. */
|
||||
ins = prev[i] + ins_c;
|
||||
del = curr[i - 1] + del_c;
|
||||
sub = prev[i - 1] + ((*x == *y) ? 0 : sub_c);
|
||||
|
||||
/* Take the one with minimum cost. */
|
||||
curr[i] = Min(ins, del);
|
||||
curr[i] = Min(curr[i], sub);
|
||||
|
||||
/* Point to next character. */
|
||||
x++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Swap current row with previous row. */
|
||||
temp = curr;
|
||||
curr = prev;
|
||||
prev = temp;
|
||||
|
||||
/* Point to next character. */
|
||||
y += y_char_len;
|
||||
|
||||
#ifdef LEVENSHTEIN_LESS_EQUAL
|
||||
|
||||
/*
|
||||
* This chunk of code represents a significant performance hit if used
|
||||
* in the case where there is no max_d bound. This is probably not
|
||||
* because the max_d >= 0 test itself is expensive, but rather because
|
||||
* the possibility of needing to execute this code prevents tight
|
||||
* optimization of the loop as a whole.
|
||||
*/
|
||||
if (max_d >= 0)
|
||||
{
|
||||
/*
|
||||
* The "zero point" is the column of the current row where the
|
||||
* remaining portions of the strings are of equal length. There
|
||||
* are (n - 1) characters in the target string, of which j have
|
||||
* been transformed. There are (m - 1) characters in the source
|
||||
* string, so we want to find the value for zp where (n - 1) - j =
|
||||
* (m - 1) - zp.
|
||||
*/
|
||||
int zp = j - (n - m);
|
||||
|
||||
/* Check whether the stop column can slide left. */
|
||||
while (stop_column > 0)
|
||||
{
|
||||
int ii = stop_column - 1;
|
||||
int net_inserts = ii - zp;
|
||||
|
||||
if (prev[ii] + (net_inserts > 0 ? net_inserts * ins_c :
|
||||
-net_inserts * del_c) <= max_d)
|
||||
break;
|
||||
stop_column--;
|
||||
}
|
||||
|
||||
/* Check whether the start column can slide right. */
|
||||
while (start_column < stop_column)
|
||||
{
|
||||
int net_inserts = start_column - zp;
|
||||
|
||||
if (prev[start_column] +
|
||||
(net_inserts > 0 ? net_inserts * ins_c :
|
||||
-net_inserts * del_c) <= max_d)
|
||||
break;
|
||||
|
||||
/*
|
||||
* We'll never again update these values, so we must make sure
|
||||
* there's nothing here that could confuse any future
|
||||
* iteration of the outer loop.
|
||||
*/
|
||||
prev[start_column] = max_d + 1;
|
||||
curr[start_column] = max_d + 1;
|
||||
if (start_column != 0)
|
||||
s_data += (s_char_len != NULL) ? s_char_len[start_column - 1] : 1;
|
||||
start_column++;
|
||||
}
|
||||
|
||||
/* If they cross, we're going to exceed the bound. */
|
||||
if (start_column >= stop_column)
|
||||
return max_d + 1;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* Because the final value was swapped from the previous row to the
|
||||
* current row, that's where we'll find it.
|
||||
*/
|
||||
return prev[m - 1];
|
||||
}
|
Reference in New Issue
Block a user