1
0
mirror of https://github.com/postgres/postgres.git synced 2025-09-03 15:22:11 +03:00

Post-feature-freeze pgindent run.

Discussion: https://postgr.es/m/15719.1523984266@sss.pgh.pa.us
This commit is contained in:
Tom Lane
2018-04-26 14:47:16 -04:00
parent f83bf385c1
commit bdf46af748
167 changed files with 1174 additions and 1061 deletions

View File

@@ -132,31 +132,31 @@ _bt_doinsert(Relation rel, IndexTuple itup,
* rightmost leaf, has enough free space to accommodate a new entry and
* the insertion key is strictly greater than the first key in this page,
* then we can safely conclude that the new key will be inserted in the
* cached block. So we simply search within the cached block and insert the
* key at the appropriate location. We call it a fastpath.
* cached block. So we simply search within the cached block and insert
* the key at the appropriate location. We call it a fastpath.
*
* Testing has revealed, though, that the fastpath can result in increased
* contention on the exclusive-lock on the rightmost leaf page. So we
* conditionally check if the lock is available. If it's not available then
* we simply abandon the fastpath and take the regular path. This makes
* sense because unavailability of the lock also signals that some other
* backend might be concurrently inserting into the page, thus reducing our
* chances to finding an insertion place in this page.
* conditionally check if the lock is available. If it's not available
* then we simply abandon the fastpath and take the regular path. This
* makes sense because unavailability of the lock also signals that some
* other backend might be concurrently inserting into the page, thus
* reducing our chances to finding an insertion place in this page.
*/
top:
fastpath = false;
offset = InvalidOffsetNumber;
if (RelationGetTargetBlock(rel) != InvalidBlockNumber)
{
Size itemsz;
Page page;
BTPageOpaque lpageop;
Size itemsz;
Page page;
BTPageOpaque lpageop;
/*
* Conditionally acquire exclusive lock on the buffer before doing any
* checks. If we don't get the lock, we simply follow slowpath. If we
* do get the lock, this ensures that the index state cannot change, as
* far as the rightmost part of the index is concerned.
* do get the lock, this ensures that the index state cannot change,
* as far as the rightmost part of the index is concerned.
*/
buf = ReadBuffer(rel, RelationGetTargetBlock(rel));
@@ -173,8 +173,8 @@ top:
/*
* Check if the page is still the rightmost leaf page, has enough
* free space to accommodate the new tuple, and the insertion
* scan key is strictly greater than the first key on the page.
* free space to accommodate the new tuple, and the insertion scan
* key is strictly greater than the first key on the page.
*/
if (P_ISLEAF(lpageop) && P_RIGHTMOST(lpageop) &&
!P_IGNORE(lpageop) &&
@@ -207,8 +207,8 @@ top:
ReleaseBuffer(buf);
/*
* If someone's holding a lock, it's likely to change anyway,
* so don't try again until we get an updated rightmost leaf.
* If someone's holding a lock, it's likely to change anyway, so
* don't try again until we get an updated rightmost leaf.
*/
RelationSetTargetBlock(rel, InvalidBlockNumber);
}
@@ -882,22 +882,22 @@ _bt_insertonpg(Relation rel,
Buffer rbuf;
/*
* If we're here then a pagesplit is needed. We should never reach here
* if we're using the fastpath since we should have checked for all the
* required conditions, including the fact that this page has enough
* freespace. Note that this routine can in theory deal with the
* situation where a NULL stack pointer is passed (that's what would
* happen if the fastpath is taken), like it does during crash
* If we're here then a pagesplit is needed. We should never reach
* here if we're using the fastpath since we should have checked for
* all the required conditions, including the fact that this page has
* enough freespace. Note that this routine can in theory deal with
* the situation where a NULL stack pointer is passed (that's what
* would happen if the fastpath is taken), like it does during crash
* recovery. But that path is much slower, defeating the very purpose
* of the optimization. The following assertion should protect us from
* any future code changes that invalidate those assumptions.
* of the optimization. The following assertion should protect us
* from any future code changes that invalidate those assumptions.
*
* Note that whenever we fail to take the fastpath, we clear the
* cached block. Checking for a valid cached block at this point is
* enough to decide whether we're in a fastpath or not.
*/
Assert(!(P_ISLEAF(lpageop) &&
BlockNumberIsValid(RelationGetTargetBlock(rel))));
BlockNumberIsValid(RelationGetTargetBlock(rel))));
/* Choose the split point */
firstright = _bt_findsplitloc(rel, page,
@@ -936,7 +936,7 @@ _bt_insertonpg(Relation rel,
BTMetaPageData *metad = NULL;
OffsetNumber itup_off;
BlockNumber itup_blkno;
BlockNumber cachedBlock = InvalidBlockNumber;
BlockNumber cachedBlock = InvalidBlockNumber;
itup_off = newitemoff;
itup_blkno = BufferGetBlockNumber(buf);
@@ -1093,7 +1093,8 @@ _bt_insertonpg(Relation rel,
* We do this after dropping locks on all buffers. So the information
* about whether the insertion block is still the rightmost block or
* not may have changed in between. But we will deal with that during
* next insert operation. No special care is required while setting it.
* next insert operation. No special care is required while setting
* it.
*/
if (BlockNumberIsValid(cachedBlock) &&
_bt_getrootheight(rel) >= BTREE_FASTPATH_MIN_LEVEL)