1
0
mirror of https://github.com/postgres/postgres.git synced 2025-06-14 18:42:34 +03:00

Remove now-dead code for !HAVE_INT64_TIMESTAMP.

This is a basically mechanical removal of #ifdef HAVE_INT64_TIMESTAMP
tests and the negative-case controlled code.

Discussion: https://postgr.es/m/26788.1487455319@sss.pgh.pa.us
This commit is contained in:
Tom Lane
2017-02-23 14:04:43 -05:00
parent d28aafb6dd
commit b9d092c962
26 changed files with 28 additions and 1298 deletions

View File

@ -234,9 +234,6 @@ timestamp_out(PG_FUNCTION_ARGS)
/*
* timestamp_recv - converts external binary format to timestamp
*
* We make no attempt to provide compatibility between int and float
* timestamp representations ...
*/
Datum
timestamp_recv(PG_FUNCTION_ARGS)
@ -252,16 +249,7 @@ timestamp_recv(PG_FUNCTION_ARGS)
*tm = &tt;
fsec_t fsec;
#ifdef HAVE_INT64_TIMESTAMP
timestamp = (Timestamp) pq_getmsgint64(buf);
#else
timestamp = (Timestamp) pq_getmsgfloat8(buf);
if (isnan(timestamp))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp cannot be NaN")));
#endif
/* range check: see if timestamp_out would like it */
if (TIMESTAMP_NOT_FINITE(timestamp))
@ -287,11 +275,7 @@ timestamp_send(PG_FUNCTION_ARGS)
StringInfoData buf;
pq_begintypsend(&buf);
#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, timestamp);
#else
pq_sendfloat8(&buf, timestamp);
#endif
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
@ -348,7 +332,6 @@ timestamp_scale(PG_FUNCTION_ARGS)
static void
AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
{
#ifdef HAVE_INT64_TIMESTAMP
static const int64 TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = {
INT64CONST(1000000),
INT64CONST(100000),
@ -368,17 +351,6 @@ AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
INT64CONST(5),
INT64CONST(0)
};
#else
static const double TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = {
1,
10,
100,
1000,
10000,
100000,
1000000
};
#endif
if (!TIMESTAMP_NOT_FINITE(*time)
&& (typmod != -1) && (typmod != MAX_TIMESTAMP_PRECISION))
@ -389,14 +361,6 @@ AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
errmsg("timestamp(%d) precision must be between %d and %d",
typmod, 0, MAX_TIMESTAMP_PRECISION)));
/*
* Note: this round-to-nearest code is not completely consistent about
* rounding values that are exactly halfway between integral values.
* On most platforms, rint() will implement round-to-nearest-even, but
* the integer code always rounds up (away from zero). Is it worth
* trying to be consistent?
*/
#ifdef HAVE_INT64_TIMESTAMP
if (*time >= INT64CONST(0))
{
*time = ((*time + TimestampOffsets[typmod]) / TimestampScales[typmod]) *
@ -407,9 +371,6 @@ AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
*time = -((((-*time) + TimestampOffsets[typmod]) / TimestampScales[typmod])
* TimestampScales[typmod]);
}
#else
*time = rint((double) *time * TimestampScales[typmod]) / TimestampScales[typmod];
#endif
}
}
@ -628,7 +589,6 @@ make_timestamp_internal(int year, int month, int day,
hour, min, sec)));
/* This should match tm2time */
#ifdef HAVE_INT64_TIMESTAMP
time = (((hour * MINS_PER_HOUR + min) * SECS_PER_MINUTE)
* USECS_PER_SEC) + rint(sec * USECS_PER_SEC);
@ -650,10 +610,6 @@ make_timestamp_internal(int year, int month, int day,
errmsg("timestamp out of range: %d-%02d-%02d %d:%02d:%02g",
year, month, day,
hour, min, sec)));
#else
time = ((hour * MINS_PER_HOUR + min) * SECS_PER_MINUTE) + sec;
result = date * SECS_PER_DAY + time;
#endif
/* final range check catches just-out-of-range timestamps */
if (!IS_VALID_TIMESTAMP(result))
@ -783,12 +739,8 @@ float8_timestamptz(PG_FUNCTION_ARGS)
/* Convert UNIX epoch to Postgres epoch */
seconds -= ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
#ifdef HAVE_INT64_TIMESTAMP
seconds = rint(seconds * USECS_PER_SEC);
result = (int64) seconds;
#else
result = seconds;
#endif
/* Recheck in case roundoff produces something just out of range */
if (!IS_VALID_TIMESTAMP(result))
@ -831,9 +783,6 @@ timestamptz_out(PG_FUNCTION_ARGS)
/*
* timestamptz_recv - converts external binary format to timestamptz
*
* We make no attempt to provide compatibility between int and float
* timestamp representations ...
*/
Datum
timestamptz_recv(PG_FUNCTION_ARGS)
@ -850,11 +799,7 @@ timestamptz_recv(PG_FUNCTION_ARGS)
*tm = &tt;
fsec_t fsec;
#ifdef HAVE_INT64_TIMESTAMP
timestamp = (TimestampTz) pq_getmsgint64(buf);
#else
timestamp = (TimestampTz) pq_getmsgfloat8(buf);
#endif
/* range check: see if timestamptz_out would like it */
if (TIMESTAMP_NOT_FINITE(timestamp))
@ -880,11 +825,7 @@ timestamptz_send(PG_FUNCTION_ARGS)
StringInfoData buf;
pq_begintypsend(&buf);
#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, timestamp);
#else
pq_sendfloat8(&buf, timestamp);
#endif
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
@ -1047,11 +988,7 @@ interval_recv(PG_FUNCTION_ARGS)
interval = (Interval *) palloc(sizeof(Interval));
#ifdef HAVE_INT64_TIMESTAMP
interval->time = pq_getmsgint64(buf);
#else
interval->time = pq_getmsgfloat8(buf);
#endif
interval->day = pq_getmsgint(buf, sizeof(interval->day));
interval->month = pq_getmsgint(buf, sizeof(interval->month));
@ -1070,11 +1007,7 @@ interval_send(PG_FUNCTION_ARGS)
StringInfoData buf;
pq_begintypsend(&buf);
#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, interval->time);
#else
pq_sendfloat8(&buf, interval->time);
#endif
pq_sendint(&buf, interval->day, sizeof(interval->day));
pq_sendint(&buf, interval->month, sizeof(interval->month));
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
@ -1385,7 +1318,6 @@ interval_scale(PG_FUNCTION_ARGS)
static void
AdjustIntervalForTypmod(Interval *interval, int32 typmod)
{
#ifdef HAVE_INT64_TIMESTAMP
static const int64 IntervalScales[MAX_INTERVAL_PRECISION + 1] = {
INT64CONST(1000000),
INT64CONST(100000),
@ -1405,17 +1337,6 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
INT64CONST(5),
INT64CONST(0)
};
#else
static const double IntervalScales[MAX_INTERVAL_PRECISION + 1] = {
1,
10,
100,
1000,
10000,
100000,
1000000
};
#endif
/*
* Unspecified range and precision? Then not necessary to adjust. Setting
@ -1473,21 +1394,13 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
}
else if (range == INTERVAL_MASK(HOUR))
{
#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_HOUR) *
USECS_PER_HOUR;
#else
interval->time = ((int) (interval->time / SECS_PER_HOUR)) * (double) SECS_PER_HOUR;
#endif
}
else if (range == INTERVAL_MASK(MINUTE))
{
#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_MINUTE) *
USECS_PER_MINUTE;
#else
interval->time = ((int) (interval->time / SECS_PER_MINUTE)) * (double) SECS_PER_MINUTE;
#endif
}
else if (range == INTERVAL_MASK(SECOND))
{
@ -1497,24 +1410,16 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
else if (range == (INTERVAL_MASK(DAY) |
INTERVAL_MASK(HOUR)))
{
#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_HOUR) *
USECS_PER_HOUR;
#else
interval->time = ((int) (interval->time / SECS_PER_HOUR)) * (double) SECS_PER_HOUR;
#endif
}
/* DAY TO MINUTE */
else if (range == (INTERVAL_MASK(DAY) |
INTERVAL_MASK(HOUR) |
INTERVAL_MASK(MINUTE)))
{
#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_MINUTE) *
USECS_PER_MINUTE;
#else
interval->time = ((int) (interval->time / SECS_PER_MINUTE)) * (double) SECS_PER_MINUTE;
#endif
}
/* DAY TO SECOND */
else if (range == (INTERVAL_MASK(DAY) |
@ -1528,12 +1433,8 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
else if (range == (INTERVAL_MASK(HOUR) |
INTERVAL_MASK(MINUTE)))
{
#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_MINUTE) *
USECS_PER_MINUTE;
#else
interval->time = ((int) (interval->time / SECS_PER_MINUTE)) * (double) SECS_PER_MINUTE;
#endif
}
/* HOUR TO SECOND */
else if (range == (INTERVAL_MASK(HOUR) |
@ -1560,14 +1461,6 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
errmsg("interval(%d) precision must be between %d and %d",
precision, 0, MAX_INTERVAL_PRECISION)));
/*
* Note: this round-to-nearest code is not completely consistent
* about rounding values that are exactly halfway between integral
* values. On most platforms, rint() will implement
* round-to-nearest-even, but the integer code always rounds up
* (away from zero). Is it worth trying to be consistent?
*/
#ifdef HAVE_INT64_TIMESTAMP
if (interval->time >= INT64CONST(0))
{
interval->time = ((interval->time +
@ -1582,11 +1475,6 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
IntervalScales[precision]) *
IntervalScales[precision]);
}
#else
interval->time = rint(((double) interval->time) *
IntervalScales[precision]) /
IntervalScales[precision];
#endif
}
}
}
@ -1619,16 +1507,10 @@ make_interval(PG_FUNCTION_ARGS)
result->month = years * MONTHS_PER_YEAR + months;
result->day = weeks * 7 + days;
#ifdef HAVE_INT64_TIMESTAMP
secs = rint(secs * USECS_PER_SEC);
result->time = hours * ((int64) SECS_PER_HOUR * USECS_PER_SEC) +
mins * ((int64) SECS_PER_MINUTE * USECS_PER_SEC) +
(int64) secs;
#else
result->time = hours * (double) SECS_PER_HOUR +
mins * (double) SECS_PER_MINUTE +
secs;
#endif
PG_RETURN_INTERVAL_P(result);
}
@ -1693,59 +1575,10 @@ GetCurrentTimestamp(void)
result = (TimestampTz) tp.tv_sec -
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
#ifdef HAVE_INT64_TIMESTAMP
result = (result * USECS_PER_SEC) + tp.tv_usec;
#else
result = result + (tp.tv_usec / 1000000.0);
#endif
return result;
}
/*
* GetCurrentIntegerTimestamp -- get the current operating system time as int64
*
* Result is the number of microseconds since the Postgres epoch. If compiled
* with --enable-integer-datetimes, this is identical to GetCurrentTimestamp(),
* and is implemented as a macro.
*/
#ifndef HAVE_INT64_TIMESTAMP
int64
GetCurrentIntegerTimestamp(void)
{
int64 result;
struct timeval tp;
gettimeofday(&tp, NULL);
result = (int64) tp.tv_sec -
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
result = (result * USECS_PER_SEC) + tp.tv_usec;
return result;
}
#endif
/*
* IntegerTimestampToTimestampTz -- convert an int64 timestamp to native format
*
* When compiled with --enable-integer-datetimes, this is implemented as a
* no-op macro.
*/
#ifndef HAVE_INT64_TIMESTAMP
TimestampTz
IntegerTimestampToTimestampTz(int64 timestamp)
{
TimestampTz result;
result = timestamp / USECS_PER_SEC;
result += (timestamp % USECS_PER_SEC) / 1000000.0;
return result;
}
#endif
/*
* GetSQLCurrentTimestamp -- implements CURRENT_TIMESTAMP, CURRENT_TIMESTAMP(n)
@ -1799,13 +1632,8 @@ TimestampDifference(TimestampTz start_time, TimestampTz stop_time,
}
else
{
#ifdef HAVE_INT64_TIMESTAMP
*secs = (long) (diff / USECS_PER_SEC);
*microsecs = (int) (diff % USECS_PER_SEC);
#else
*secs = (long) diff;
*microsecs = (int) ((diff - *secs) * 1000000.0);
#endif
}
}
@ -1823,11 +1651,7 @@ TimestampDifferenceExceeds(TimestampTz start_time,
{
TimestampTz diff = stop_time - start_time;
#ifdef HAVE_INT64_TIMESTAMP
return (diff >= msec * INT64CONST(1000));
#else
return (diff * 1000.0 >= msec);
#endif
}
/*
@ -1848,10 +1672,7 @@ time_t_to_timestamptz(pg_time_t tm)
result = (TimestampTz) tm -
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
#ifdef HAVE_INT64_TIMESTAMP
result *= USECS_PER_SEC;
#endif
return result;
}
@ -1871,13 +1692,8 @@ timestamptz_to_time_t(TimestampTz t)
{
pg_time_t result;
#ifdef HAVE_INT64_TIMESTAMP
result = (pg_time_t) (t / USECS_PER_SEC +
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY));
#else
result = (pg_time_t) (t +
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY));
#endif
return result;
}
@ -1917,21 +1733,12 @@ dt2time(Timestamp jd, int *hour, int *min, int *sec, fsec_t *fsec)
time = jd;
#ifdef HAVE_INT64_TIMESTAMP
*hour = time / USECS_PER_HOUR;
time -= (*hour) * USECS_PER_HOUR;
*min = time / USECS_PER_MINUTE;
time -= (*min) * USECS_PER_MINUTE;
*sec = time / USECS_PER_SEC;
*fsec = time - (*sec * USECS_PER_SEC);
#else
*hour = time / SECS_PER_HOUR;
time -= (*hour) * SECS_PER_HOUR;
*min = time / SECS_PER_MINUTE;
time -= (*min) * SECS_PER_MINUTE;
*sec = time;
*fsec = time - *sec;
#endif
} /* dt2time() */
@ -1957,7 +1764,6 @@ timestamp2tm(Timestamp dt, int *tzp, struct pg_tm * tm, fsec_t *fsec, const char
if (attimezone == NULL)
attimezone = session_timezone;
#ifdef HAVE_INT64_TIMESTAMP
time = dt;
TMODULO(time, date, USECS_PER_DAY);
@ -1976,42 +1782,6 @@ timestamp2tm(Timestamp dt, int *tzp, struct pg_tm * tm, fsec_t *fsec, const char
j2date((int) date, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
#else
time = dt;
TMODULO(time, date, (double) SECS_PER_DAY);
if (time < 0)
{
time += SECS_PER_DAY;
date -= 1;
}
/* add offset to go from J2000 back to standard Julian date */
date += POSTGRES_EPOCH_JDATE;
recalc_d:
/* Julian day routine does not work for negative Julian days */
if (date < 0 || date > (Timestamp) INT_MAX)
return -1;
j2date((int) date, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
recalc_t:
dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
*fsec = TSROUND(*fsec);
/* roundoff may need to propagate to higher-order fields */
if (*fsec >= 1.0)
{
time = ceil(time);
if (time >= (double) SECS_PER_DAY)
{
time = 0;
date += 1;
goto recalc_d;
}
goto recalc_t;
}
#endif
/* Done if no TZ conversion wanted */
if (tzp == NULL)
@ -2034,13 +1804,8 @@ recalc_t:
* coding avoids hardwiring any assumptions about the width of pg_time_t,
* so it should behave sanely on machines without int64.
*/
#ifdef HAVE_INT64_TIMESTAMP
dt = (dt - *fsec) / USECS_PER_SEC +
(POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY;
#else
dt = rint(dt - *fsec +
(POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
#endif
utime = (pg_time_t) dt;
if ((Timestamp) utime == dt)
{
@ -2100,7 +1865,6 @@ tm2timestamp(struct pg_tm * tm, fsec_t fsec, int *tzp, Timestamp *result)
date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - POSTGRES_EPOCH_JDATE;
time = time2t(tm->tm_hour, tm->tm_min, tm->tm_sec, fsec);
#ifdef HAVE_INT64_TIMESTAMP
*result = date * USECS_PER_DAY + time;
/* check for major overflow */
if ((*result - time) / USECS_PER_DAY != date)
@ -2116,9 +1880,6 @@ tm2timestamp(struct pg_tm * tm, fsec_t fsec, int *tzp, Timestamp *result)
*result = 0; /* keep compiler quiet */
return -1;
}
#else
*result = date * SECS_PER_DAY + time;
#endif
if (tzp != NULL)
*result = dt2local(*result, -(*tzp));
@ -2147,7 +1908,6 @@ interval2tm(Interval span, struct pg_tm * tm, fsec_t *fsec)
tm->tm_mday = span.day;
time = span.time;
#ifdef HAVE_INT64_TIMESTAMP
tfrac = time / USECS_PER_HOUR;
time -= tfrac * USECS_PER_HOUR;
tm->tm_hour = tfrac;
@ -2161,23 +1921,6 @@ interval2tm(Interval span, struct pg_tm * tm, fsec_t *fsec)
tfrac = time / USECS_PER_SEC;
*fsec = time - (tfrac * USECS_PER_SEC);
tm->tm_sec = tfrac;
#else
recalc:
TMODULO(time, tfrac, (double) SECS_PER_HOUR);
tm->tm_hour = tfrac; /* could overflow ... */
TMODULO(time, tfrac, (double) SECS_PER_MINUTE);
tm->tm_min = tfrac;
TMODULO(time, tfrac, 1.0);
tm->tm_sec = tfrac;
time = TSROUND(time);
/* roundoff may need to propagate to higher-order fields */
if (time >= 1.0)
{
time = ceil(span.time);
goto recalc;
}
*fsec = time;
#endif
return 0;
}
@ -2191,15 +1934,9 @@ tm2interval(struct pg_tm * tm, fsec_t fsec, Interval *span)
return -1;
span->month = total_months;
span->day = tm->tm_mday;
#ifdef HAVE_INT64_TIMESTAMP
span->time = (((((tm->tm_hour * INT64CONST(60)) +
tm->tm_min) * INT64CONST(60)) +
tm->tm_sec) * USECS_PER_SEC) + fsec;
#else
span->time = (((tm->tm_hour * (double) MINS_PER_HOUR) +
tm->tm_min) * (double) SECS_PER_MINUTE) +
tm->tm_sec + fsec;
#endif
return 0;
}
@ -2207,21 +1944,13 @@ tm2interval(struct pg_tm * tm, fsec_t fsec, Interval *span)
static TimeOffset
time2t(const int hour, const int min, const int sec, const fsec_t fsec)
{
#ifdef HAVE_INT64_TIMESTAMP
return (((((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec) * USECS_PER_SEC) + fsec;
#else
return (((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec + fsec;
#endif
}
static Timestamp
dt2local(Timestamp dt, int tz)
{
#ifdef HAVE_INT64_TIMESTAMP
dt -= (tz * USECS_PER_SEC);
#else
dt -= tz;
#endif
return dt;
}
@ -2288,44 +2017,11 @@ SetEpochTimestamp(void)
* The comparison functions are among them. - thomas 2001-09-25
*
* timestamp_relop - is timestamp1 relop timestamp2
*
* collate invalid timestamp at the end
*/
int
timestamp_cmp_internal(Timestamp dt1, Timestamp dt2)
{
#ifdef HAVE_INT64_TIMESTAMP
return (dt1 < dt2) ? -1 : ((dt1 > dt2) ? 1 : 0);
#else
/*
* When using float representation, we have to be wary of NaNs.
*
* We consider all NANs to be equal and larger than any non-NAN. This is
* somewhat arbitrary; the important thing is to have a consistent sort
* order.
*/
if (isnan(dt1))
{
if (isnan(dt2))
return 0; /* NAN = NAN */
else
return 1; /* NAN > non-NAN */
}
else if (isnan(dt2))
{
return -1; /* non-NAN < NAN */
}
else
{
if (dt1 > dt2)
return 1;
else if (dt1 < dt2)
return -1;
else
return 0;
}
#endif
}
Datum
@ -2413,12 +2109,7 @@ timestamp_sortsupport(PG_FUNCTION_ARGS)
Datum
timestamp_hash(PG_FUNCTION_ARGS)
{
/* We can use either hashint8 or hashfloat8 directly */
#ifdef HAVE_INT64_TIMESTAMP
return hashint8(fcinfo);
#else
return hashfloat8(fcinfo);
#endif
}
@ -2597,8 +2288,6 @@ timestamptz_cmp_timestamp(PG_FUNCTION_ARGS)
/*
* interval_relop - is interval1 relop interval2
*
* collate invalid interval at the end
*/
static inline TimeOffset
interval_cmp_value(const Interval *interval)
@ -2606,14 +2295,8 @@ interval_cmp_value(const Interval *interval)
TimeOffset span;
span = interval->time;
#ifdef HAVE_INT64_TIMESTAMP
span += interval->month * INT64CONST(30) * USECS_PER_DAY;
span += interval->day * INT64CONST(24) * USECS_PER_HOUR;
#else
span += interval->month * ((double) DAYS_PER_MONTH * SECS_PER_DAY);
span += interval->day * ((double) HOURS_PER_DAY * SECS_PER_HOUR);
#endif
return span;
}
@ -2695,7 +2378,7 @@ interval_cmp(PG_FUNCTION_ARGS)
*
* We must produce equal hashvals for values that interval_cmp_internal()
* considers equal. So, compute the net span the same way it does,
* and then hash that, using either int64 or float8 hashing.
* and then hash that.
*/
Datum
interval_hash(PG_FUNCTION_ARGS)
@ -2703,11 +2386,7 @@ interval_hash(PG_FUNCTION_ARGS)
Interval *interval = PG_GETARG_INTERVAL_P(0);
TimeOffset span = interval_cmp_value(interval);
#ifdef HAVE_INT64_TIMESTAMP
return DirectFunctionCall1(hashint8, Int64GetDatumFast(span));
#else
return DirectFunctionCall1(hashfloat8, Float8GetDatumFast(span));
#endif
}
/* overlaps_timestamp() --- implements the SQL OVERLAPS operator.
@ -2946,11 +2625,7 @@ interval_justify_interval(PG_FUNCTION_ARGS)
result->day = span->day;
result->time = span->time;
#ifdef HAVE_INT64_TIMESTAMP
TMODULO(result->time, wholeday, USECS_PER_DAY);
#else
TMODULO(result->time, wholeday, (double) SECS_PER_DAY);
#endif
result->day += wholeday; /* could overflow... */
wholemonth = result->day / DAYS_PER_MONTH;
@ -2972,20 +2647,12 @@ interval_justify_interval(PG_FUNCTION_ARGS)
if (result->day > 0 && result->time < 0)
{
#ifdef HAVE_INT64_TIMESTAMP
result->time += USECS_PER_DAY;
#else
result->time += (double) SECS_PER_DAY;
#endif
result->day--;
}
else if (result->day < 0 && result->time > 0)
{
#ifdef HAVE_INT64_TIMESTAMP
result->time -= USECS_PER_DAY;
#else
result->time -= (double) SECS_PER_DAY;
#endif
result->day++;
}
@ -3012,29 +2679,17 @@ interval_justify_hours(PG_FUNCTION_ARGS)
result->day = span->day;
result->time = span->time;
#ifdef HAVE_INT64_TIMESTAMP
TMODULO(result->time, wholeday, USECS_PER_DAY);
#else
TMODULO(result->time, wholeday, (double) SECS_PER_DAY);
#endif
result->day += wholeday; /* could overflow... */
if (result->day > 0 && result->time < 0)
{
#ifdef HAVE_INT64_TIMESTAMP
result->time += USECS_PER_DAY;
#else
result->time += (double) SECS_PER_DAY;
#endif
result->day--;
}
else if (result->day < 0 && result->time > 0)
{
#ifdef HAVE_INT64_TIMESTAMP
result->time -= USECS_PER_DAY;
#else
result->time -= (double) SECS_PER_DAY;
#endif
result->day++;
}
@ -3492,16 +3147,12 @@ interval_mul(PG_FUNCTION_ARGS)
/* cascade units down */
result->day += (int32) month_remainder_days;
#ifdef HAVE_INT64_TIMESTAMP
result_double = rint(span->time * factor + sec_remainder * USECS_PER_SEC);
if (result_double > PG_INT64_MAX || result_double < PG_INT64_MIN)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
result->time = (int64) result_double;
#else
result->time = span->time * factor + sec_remainder;
#endif
PG_RETURN_INTERVAL_P(result);
}
@ -3553,12 +3204,7 @@ interval_div(PG_FUNCTION_ARGS)
/* cascade units down */
result->day += (int32) month_remainder_days;
#ifdef HAVE_INT64_TIMESTAMP
result->time = rint(span->time / factor + sec_remainder * USECS_PER_SEC);
#else
/* See TSROUND comment in interval_mul(). */
result->time = span->time / factor + sec_remainder;
#endif
PG_RETURN_INTERVAL_P(result);
}
@ -3571,11 +3217,6 @@ interval_div(PG_FUNCTION_ARGS)
* intervals, where the first is the running sum and the second contains
* the number of values so far in its 'time' field. This is a bit ugly
* but it beats inventing a specialized datatype for the purpose.
*
* NOTE: The inverse transition function cannot guarantee exact results
* when using float8 timestamps. However, int8 timestamps are now the
* norm, and the probable range of values is not so wide that disastrous
* cancellation is likely even with float8, so we'll ignore the risk.
*/
Datum
@ -3776,11 +3417,7 @@ timestamp_age(PG_FUNCTION_ARGS)
/* propagate any negative fields into the next higher field */
while (fsec < 0)
{
#ifdef HAVE_INT64_TIMESTAMP
fsec += USECS_PER_SEC;
#else
fsec += 1.0;
#endif
tm->tm_sec--;
}
@ -3901,11 +3538,7 @@ timestamptz_age(PG_FUNCTION_ARGS)
/* propagate any negative fields into the next higher field */
while (fsec < 0)
{
#ifdef HAVE_INT64_TIMESTAMP
fsec += USECS_PER_SEC;
#else
fsec += 1.0;
#endif
tm->tm_sec--;
}
@ -4076,17 +3709,10 @@ timestamp_trunc(PG_FUNCTION_ARGS)
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
fsec = (fsec / 1000) * 1000;
#else
fsec = floor(fsec * 1000) / 1000;
#endif
break;
case DTK_MICROSEC:
#ifndef HAVE_INT64_TIMESTAMP
fsec = floor(fsec * 1000000) / 1000000;
#endif
break;
default:
@ -4229,18 +3855,10 @@ timestamptz_trunc(PG_FUNCTION_ARGS)
case DTK_SECOND:
fsec = 0;
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
fsec = (fsec / 1000) * 1000;
#else
fsec = floor(fsec * 1000) / 1000;
#endif
break;
case DTK_MICROSEC:
#ifndef HAVE_INT64_TIMESTAMP
fsec = floor(fsec * 1000000) / 1000000;
#endif
break;
default:
@ -4326,18 +3944,10 @@ interval_trunc(PG_FUNCTION_ARGS)
case DTK_SECOND:
fsec = 0;
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
fsec = (fsec / 1000) * 1000;
#else
fsec = floor(fsec * 1000) / 1000;
#endif
break;
case DTK_MICROSEC:
#ifndef HAVE_INT64_TIMESTAMP
fsec = floor(fsec * 1000000) / 1000000;
#endif
break;
default:
@ -4669,27 +4279,15 @@ timestamp_part(PG_FUNCTION_ARGS)
switch (val)
{
case DTK_MICROSEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
#else
result = (tm->tm_sec + fsec) * 1000000;
#endif
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
#else
result = (tm->tm_sec + fsec) * 1000;
#endif
break;
case DTK_SECOND:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
#else
result = tm->tm_sec + fsec;
#endif
break;
case DTK_MINUTE:
@ -4762,13 +4360,8 @@ timestamp_part(PG_FUNCTION_ARGS)
case DTK_JULIAN:
result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
#ifdef HAVE_INT64_TIMESTAMP
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
tm->tm_sec + (fsec / 1000000.0)) / (double) SECS_PER_DAY;
#else
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
tm->tm_sec + fsec) / (double) SECS_PER_DAY;
#endif
break;
case DTK_ISOYEAR:
@ -4812,15 +4405,11 @@ timestamp_part(PG_FUNCTION_ARGS)
{
case DTK_EPOCH:
epoch = SetEpochTimestamp();
#ifdef HAVE_INT64_TIMESTAMP
/* try to avoid precision loss in subtraction */
if (timestamp < (PG_INT64_MAX + epoch))
result = (timestamp - epoch) / 1000000.0;
else
result = ((float8) timestamp - epoch) / 1000000.0;
#else
result = timestamp - epoch;
#endif
break;
default:
@ -4906,27 +4495,15 @@ timestamptz_part(PG_FUNCTION_ARGS)
break;
case DTK_MICROSEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
#else
result = (tm->tm_sec + fsec) * 1000000;
#endif
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
#else
result = (tm->tm_sec + fsec) * 1000;
#endif
break;
case DTK_SECOND:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
#else
result = tm->tm_sec + fsec;
#endif
break;
case DTK_MINUTE:
@ -4987,13 +4564,8 @@ timestamptz_part(PG_FUNCTION_ARGS)
case DTK_JULIAN:
result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
#ifdef HAVE_INT64_TIMESTAMP
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
tm->tm_sec + (fsec / 1000000.0)) / (double) SECS_PER_DAY;
#else
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
tm->tm_sec + fsec) / (double) SECS_PER_DAY;
#endif
break;
case DTK_ISOYEAR:
@ -5035,15 +4607,11 @@ timestamptz_part(PG_FUNCTION_ARGS)
{
case DTK_EPOCH:
epoch = SetEpochTimestamp();
#ifdef HAVE_INT64_TIMESTAMP
/* try to avoid precision loss in subtraction */
if (timestamp < (PG_INT64_MAX + epoch))
result = (timestamp - epoch) / 1000000.0;
else
result = ((float8) timestamp - epoch) / 1000000.0;
#else
result = timestamp - epoch;
#endif
break;
default:
@ -5099,27 +4667,15 @@ interval_part(PG_FUNCTION_ARGS)
switch (val)
{
case DTK_MICROSEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
#else
result = (tm->tm_sec + fsec) * 1000000;
#endif
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
#else
result = (tm->tm_sec + fsec) * 1000;
#endif
break;
case DTK_SECOND:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
#else
result = tm->tm_sec + fsec;
#endif
break;
case DTK_MINUTE:
@ -5178,11 +4734,7 @@ interval_part(PG_FUNCTION_ARGS)
}
else if (type == RESERV && val == DTK_EPOCH)
{
#ifdef HAVE_INT64_TIMESTAMP
result = interval->time / 1000000.0;
#else
result = interval->time;
#endif
result += ((double) DAYS_PER_YEAR * SECS_PER_DAY) * (interval->month / MONTHS_PER_YEAR);
result += ((double) DAYS_PER_MONTH * SECS_PER_DAY) * (interval->month % MONTHS_PER_YEAR);
result += ((double) SECS_PER_DAY) * interval->day;
@ -5338,11 +4890,7 @@ timestamp_izone(PG_FUNCTION_ARGS)
DatumGetCString(DirectFunctionCall1(interval_out,
PointerGetDatum(zone))))));
#ifdef HAVE_INT64_TIMESTAMP
tz = zone->time / USECS_PER_SEC;
#else
tz = zone->time;
#endif
result = dt2local(timestamp, tz);
@ -5539,11 +5087,7 @@ timestamptz_izone(PG_FUNCTION_ARGS)
DatumGetCString(DirectFunctionCall1(interval_out,
PointerGetDatum(zone))))));
#ifdef HAVE_INT64_TIMESTAMP
tz = -(zone->time / USECS_PER_SEC);
#else
tz = -zone->time;
#endif
result = dt2local(timestamp, tz);