mirror of
https://github.com/postgres/postgres.git
synced 2025-06-14 18:42:34 +03:00
Remove now-dead code for !HAVE_INT64_TIMESTAMP.
This is a basically mechanical removal of #ifdef HAVE_INT64_TIMESTAMP tests and the negative-case controlled code. Discussion: https://postgr.es/m/26788.1487455319@sss.pgh.pa.us
This commit is contained in:
@ -234,9 +234,6 @@ timestamp_out(PG_FUNCTION_ARGS)
|
||||
|
||||
/*
|
||||
* timestamp_recv - converts external binary format to timestamp
|
||||
*
|
||||
* We make no attempt to provide compatibility between int and float
|
||||
* timestamp representations ...
|
||||
*/
|
||||
Datum
|
||||
timestamp_recv(PG_FUNCTION_ARGS)
|
||||
@ -252,16 +249,7 @@ timestamp_recv(PG_FUNCTION_ARGS)
|
||||
*tm = &tt;
|
||||
fsec_t fsec;
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
timestamp = (Timestamp) pq_getmsgint64(buf);
|
||||
#else
|
||||
timestamp = (Timestamp) pq_getmsgfloat8(buf);
|
||||
|
||||
if (isnan(timestamp))
|
||||
ereport(ERROR,
|
||||
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
|
||||
errmsg("timestamp cannot be NaN")));
|
||||
#endif
|
||||
|
||||
/* range check: see if timestamp_out would like it */
|
||||
if (TIMESTAMP_NOT_FINITE(timestamp))
|
||||
@ -287,11 +275,7 @@ timestamp_send(PG_FUNCTION_ARGS)
|
||||
StringInfoData buf;
|
||||
|
||||
pq_begintypsend(&buf);
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
pq_sendint64(&buf, timestamp);
|
||||
#else
|
||||
pq_sendfloat8(&buf, timestamp);
|
||||
#endif
|
||||
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
||||
}
|
||||
|
||||
@ -348,7 +332,6 @@ timestamp_scale(PG_FUNCTION_ARGS)
|
||||
static void
|
||||
AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
static const int64 TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = {
|
||||
INT64CONST(1000000),
|
||||
INT64CONST(100000),
|
||||
@ -368,17 +351,6 @@ AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
|
||||
INT64CONST(5),
|
||||
INT64CONST(0)
|
||||
};
|
||||
#else
|
||||
static const double TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = {
|
||||
1,
|
||||
10,
|
||||
100,
|
||||
1000,
|
||||
10000,
|
||||
100000,
|
||||
1000000
|
||||
};
|
||||
#endif
|
||||
|
||||
if (!TIMESTAMP_NOT_FINITE(*time)
|
||||
&& (typmod != -1) && (typmod != MAX_TIMESTAMP_PRECISION))
|
||||
@ -389,14 +361,6 @@ AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
|
||||
errmsg("timestamp(%d) precision must be between %d and %d",
|
||||
typmod, 0, MAX_TIMESTAMP_PRECISION)));
|
||||
|
||||
/*
|
||||
* Note: this round-to-nearest code is not completely consistent about
|
||||
* rounding values that are exactly halfway between integral values.
|
||||
* On most platforms, rint() will implement round-to-nearest-even, but
|
||||
* the integer code always rounds up (away from zero). Is it worth
|
||||
* trying to be consistent?
|
||||
*/
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
if (*time >= INT64CONST(0))
|
||||
{
|
||||
*time = ((*time + TimestampOffsets[typmod]) / TimestampScales[typmod]) *
|
||||
@ -407,9 +371,6 @@ AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
|
||||
*time = -((((-*time) + TimestampOffsets[typmod]) / TimestampScales[typmod])
|
||||
* TimestampScales[typmod]);
|
||||
}
|
||||
#else
|
||||
*time = rint((double) *time * TimestampScales[typmod]) / TimestampScales[typmod];
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
@ -628,7 +589,6 @@ make_timestamp_internal(int year, int month, int day,
|
||||
hour, min, sec)));
|
||||
|
||||
/* This should match tm2time */
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
time = (((hour * MINS_PER_HOUR + min) * SECS_PER_MINUTE)
|
||||
* USECS_PER_SEC) + rint(sec * USECS_PER_SEC);
|
||||
|
||||
@ -650,10 +610,6 @@ make_timestamp_internal(int year, int month, int day,
|
||||
errmsg("timestamp out of range: %d-%02d-%02d %d:%02d:%02g",
|
||||
year, month, day,
|
||||
hour, min, sec)));
|
||||
#else
|
||||
time = ((hour * MINS_PER_HOUR + min) * SECS_PER_MINUTE) + sec;
|
||||
result = date * SECS_PER_DAY + time;
|
||||
#endif
|
||||
|
||||
/* final range check catches just-out-of-range timestamps */
|
||||
if (!IS_VALID_TIMESTAMP(result))
|
||||
@ -783,12 +739,8 @@ float8_timestamptz(PG_FUNCTION_ARGS)
|
||||
/* Convert UNIX epoch to Postgres epoch */
|
||||
seconds -= ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
seconds = rint(seconds * USECS_PER_SEC);
|
||||
result = (int64) seconds;
|
||||
#else
|
||||
result = seconds;
|
||||
#endif
|
||||
|
||||
/* Recheck in case roundoff produces something just out of range */
|
||||
if (!IS_VALID_TIMESTAMP(result))
|
||||
@ -831,9 +783,6 @@ timestamptz_out(PG_FUNCTION_ARGS)
|
||||
|
||||
/*
|
||||
* timestamptz_recv - converts external binary format to timestamptz
|
||||
*
|
||||
* We make no attempt to provide compatibility between int and float
|
||||
* timestamp representations ...
|
||||
*/
|
||||
Datum
|
||||
timestamptz_recv(PG_FUNCTION_ARGS)
|
||||
@ -850,11 +799,7 @@ timestamptz_recv(PG_FUNCTION_ARGS)
|
||||
*tm = &tt;
|
||||
fsec_t fsec;
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
timestamp = (TimestampTz) pq_getmsgint64(buf);
|
||||
#else
|
||||
timestamp = (TimestampTz) pq_getmsgfloat8(buf);
|
||||
#endif
|
||||
|
||||
/* range check: see if timestamptz_out would like it */
|
||||
if (TIMESTAMP_NOT_FINITE(timestamp))
|
||||
@ -880,11 +825,7 @@ timestamptz_send(PG_FUNCTION_ARGS)
|
||||
StringInfoData buf;
|
||||
|
||||
pq_begintypsend(&buf);
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
pq_sendint64(&buf, timestamp);
|
||||
#else
|
||||
pq_sendfloat8(&buf, timestamp);
|
||||
#endif
|
||||
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
||||
}
|
||||
|
||||
@ -1047,11 +988,7 @@ interval_recv(PG_FUNCTION_ARGS)
|
||||
|
||||
interval = (Interval *) palloc(sizeof(Interval));
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
interval->time = pq_getmsgint64(buf);
|
||||
#else
|
||||
interval->time = pq_getmsgfloat8(buf);
|
||||
#endif
|
||||
interval->day = pq_getmsgint(buf, sizeof(interval->day));
|
||||
interval->month = pq_getmsgint(buf, sizeof(interval->month));
|
||||
|
||||
@ -1070,11 +1007,7 @@ interval_send(PG_FUNCTION_ARGS)
|
||||
StringInfoData buf;
|
||||
|
||||
pq_begintypsend(&buf);
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
pq_sendint64(&buf, interval->time);
|
||||
#else
|
||||
pq_sendfloat8(&buf, interval->time);
|
||||
#endif
|
||||
pq_sendint(&buf, interval->day, sizeof(interval->day));
|
||||
pq_sendint(&buf, interval->month, sizeof(interval->month));
|
||||
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
||||
@ -1385,7 +1318,6 @@ interval_scale(PG_FUNCTION_ARGS)
|
||||
static void
|
||||
AdjustIntervalForTypmod(Interval *interval, int32 typmod)
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
static const int64 IntervalScales[MAX_INTERVAL_PRECISION + 1] = {
|
||||
INT64CONST(1000000),
|
||||
INT64CONST(100000),
|
||||
@ -1405,17 +1337,6 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
|
||||
INT64CONST(5),
|
||||
INT64CONST(0)
|
||||
};
|
||||
#else
|
||||
static const double IntervalScales[MAX_INTERVAL_PRECISION + 1] = {
|
||||
1,
|
||||
10,
|
||||
100,
|
||||
1000,
|
||||
10000,
|
||||
100000,
|
||||
1000000
|
||||
};
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Unspecified range and precision? Then not necessary to adjust. Setting
|
||||
@ -1473,21 +1394,13 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
|
||||
}
|
||||
else if (range == INTERVAL_MASK(HOUR))
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
interval->time = (interval->time / USECS_PER_HOUR) *
|
||||
USECS_PER_HOUR;
|
||||
#else
|
||||
interval->time = ((int) (interval->time / SECS_PER_HOUR)) * (double) SECS_PER_HOUR;
|
||||
#endif
|
||||
}
|
||||
else if (range == INTERVAL_MASK(MINUTE))
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
interval->time = (interval->time / USECS_PER_MINUTE) *
|
||||
USECS_PER_MINUTE;
|
||||
#else
|
||||
interval->time = ((int) (interval->time / SECS_PER_MINUTE)) * (double) SECS_PER_MINUTE;
|
||||
#endif
|
||||
}
|
||||
else if (range == INTERVAL_MASK(SECOND))
|
||||
{
|
||||
@ -1497,24 +1410,16 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
|
||||
else if (range == (INTERVAL_MASK(DAY) |
|
||||
INTERVAL_MASK(HOUR)))
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
interval->time = (interval->time / USECS_PER_HOUR) *
|
||||
USECS_PER_HOUR;
|
||||
#else
|
||||
interval->time = ((int) (interval->time / SECS_PER_HOUR)) * (double) SECS_PER_HOUR;
|
||||
#endif
|
||||
}
|
||||
/* DAY TO MINUTE */
|
||||
else if (range == (INTERVAL_MASK(DAY) |
|
||||
INTERVAL_MASK(HOUR) |
|
||||
INTERVAL_MASK(MINUTE)))
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
interval->time = (interval->time / USECS_PER_MINUTE) *
|
||||
USECS_PER_MINUTE;
|
||||
#else
|
||||
interval->time = ((int) (interval->time / SECS_PER_MINUTE)) * (double) SECS_PER_MINUTE;
|
||||
#endif
|
||||
}
|
||||
/* DAY TO SECOND */
|
||||
else if (range == (INTERVAL_MASK(DAY) |
|
||||
@ -1528,12 +1433,8 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
|
||||
else if (range == (INTERVAL_MASK(HOUR) |
|
||||
INTERVAL_MASK(MINUTE)))
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
interval->time = (interval->time / USECS_PER_MINUTE) *
|
||||
USECS_PER_MINUTE;
|
||||
#else
|
||||
interval->time = ((int) (interval->time / SECS_PER_MINUTE)) * (double) SECS_PER_MINUTE;
|
||||
#endif
|
||||
}
|
||||
/* HOUR TO SECOND */
|
||||
else if (range == (INTERVAL_MASK(HOUR) |
|
||||
@ -1560,14 +1461,6 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
|
||||
errmsg("interval(%d) precision must be between %d and %d",
|
||||
precision, 0, MAX_INTERVAL_PRECISION)));
|
||||
|
||||
/*
|
||||
* Note: this round-to-nearest code is not completely consistent
|
||||
* about rounding values that are exactly halfway between integral
|
||||
* values. On most platforms, rint() will implement
|
||||
* round-to-nearest-even, but the integer code always rounds up
|
||||
* (away from zero). Is it worth trying to be consistent?
|
||||
*/
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
if (interval->time >= INT64CONST(0))
|
||||
{
|
||||
interval->time = ((interval->time +
|
||||
@ -1582,11 +1475,6 @@ AdjustIntervalForTypmod(Interval *interval, int32 typmod)
|
||||
IntervalScales[precision]) *
|
||||
IntervalScales[precision]);
|
||||
}
|
||||
#else
|
||||
interval->time = rint(((double) interval->time) *
|
||||
IntervalScales[precision]) /
|
||||
IntervalScales[precision];
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1619,16 +1507,10 @@ make_interval(PG_FUNCTION_ARGS)
|
||||
result->month = years * MONTHS_PER_YEAR + months;
|
||||
result->day = weeks * 7 + days;
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
secs = rint(secs * USECS_PER_SEC);
|
||||
result->time = hours * ((int64) SECS_PER_HOUR * USECS_PER_SEC) +
|
||||
mins * ((int64) SECS_PER_MINUTE * USECS_PER_SEC) +
|
||||
(int64) secs;
|
||||
#else
|
||||
result->time = hours * (double) SECS_PER_HOUR +
|
||||
mins * (double) SECS_PER_MINUTE +
|
||||
secs;
|
||||
#endif
|
||||
|
||||
PG_RETURN_INTERVAL_P(result);
|
||||
}
|
||||
@ -1693,59 +1575,10 @@ GetCurrentTimestamp(void)
|
||||
|
||||
result = (TimestampTz) tp.tv_sec -
|
||||
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result = (result * USECS_PER_SEC) + tp.tv_usec;
|
||||
#else
|
||||
result = result + (tp.tv_usec / 1000000.0);
|
||||
#endif
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
* GetCurrentIntegerTimestamp -- get the current operating system time as int64
|
||||
*
|
||||
* Result is the number of microseconds since the Postgres epoch. If compiled
|
||||
* with --enable-integer-datetimes, this is identical to GetCurrentTimestamp(),
|
||||
* and is implemented as a macro.
|
||||
*/
|
||||
#ifndef HAVE_INT64_TIMESTAMP
|
||||
int64
|
||||
GetCurrentIntegerTimestamp(void)
|
||||
{
|
||||
int64 result;
|
||||
struct timeval tp;
|
||||
|
||||
gettimeofday(&tp, NULL);
|
||||
|
||||
result = (int64) tp.tv_sec -
|
||||
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
|
||||
|
||||
result = (result * USECS_PER_SEC) + tp.tv_usec;
|
||||
|
||||
return result;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* IntegerTimestampToTimestampTz -- convert an int64 timestamp to native format
|
||||
*
|
||||
* When compiled with --enable-integer-datetimes, this is implemented as a
|
||||
* no-op macro.
|
||||
*/
|
||||
#ifndef HAVE_INT64_TIMESTAMP
|
||||
TimestampTz
|
||||
IntegerTimestampToTimestampTz(int64 timestamp)
|
||||
{
|
||||
TimestampTz result;
|
||||
|
||||
result = timestamp / USECS_PER_SEC;
|
||||
result += (timestamp % USECS_PER_SEC) / 1000000.0;
|
||||
|
||||
return result;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* GetSQLCurrentTimestamp -- implements CURRENT_TIMESTAMP, CURRENT_TIMESTAMP(n)
|
||||
@ -1799,13 +1632,8 @@ TimestampDifference(TimestampTz start_time, TimestampTz stop_time,
|
||||
}
|
||||
else
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
*secs = (long) (diff / USECS_PER_SEC);
|
||||
*microsecs = (int) (diff % USECS_PER_SEC);
|
||||
#else
|
||||
*secs = (long) diff;
|
||||
*microsecs = (int) ((diff - *secs) * 1000000.0);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
@ -1823,11 +1651,7 @@ TimestampDifferenceExceeds(TimestampTz start_time,
|
||||
{
|
||||
TimestampTz diff = stop_time - start_time;
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
return (diff >= msec * INT64CONST(1000));
|
||||
#else
|
||||
return (diff * 1000.0 >= msec);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
@ -1848,10 +1672,7 @@ time_t_to_timestamptz(pg_time_t tm)
|
||||
|
||||
result = (TimestampTz) tm -
|
||||
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result *= USECS_PER_SEC;
|
||||
#endif
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -1871,13 +1692,8 @@ timestamptz_to_time_t(TimestampTz t)
|
||||
{
|
||||
pg_time_t result;
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result = (pg_time_t) (t / USECS_PER_SEC +
|
||||
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY));
|
||||
#else
|
||||
result = (pg_time_t) (t +
|
||||
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY));
|
||||
#endif
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -1917,21 +1733,12 @@ dt2time(Timestamp jd, int *hour, int *min, int *sec, fsec_t *fsec)
|
||||
|
||||
time = jd;
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
*hour = time / USECS_PER_HOUR;
|
||||
time -= (*hour) * USECS_PER_HOUR;
|
||||
*min = time / USECS_PER_MINUTE;
|
||||
time -= (*min) * USECS_PER_MINUTE;
|
||||
*sec = time / USECS_PER_SEC;
|
||||
*fsec = time - (*sec * USECS_PER_SEC);
|
||||
#else
|
||||
*hour = time / SECS_PER_HOUR;
|
||||
time -= (*hour) * SECS_PER_HOUR;
|
||||
*min = time / SECS_PER_MINUTE;
|
||||
time -= (*min) * SECS_PER_MINUTE;
|
||||
*sec = time;
|
||||
*fsec = time - *sec;
|
||||
#endif
|
||||
} /* dt2time() */
|
||||
|
||||
|
||||
@ -1957,7 +1764,6 @@ timestamp2tm(Timestamp dt, int *tzp, struct pg_tm * tm, fsec_t *fsec, const char
|
||||
if (attimezone == NULL)
|
||||
attimezone = session_timezone;
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
time = dt;
|
||||
TMODULO(time, date, USECS_PER_DAY);
|
||||
|
||||
@ -1976,42 +1782,6 @@ timestamp2tm(Timestamp dt, int *tzp, struct pg_tm * tm, fsec_t *fsec, const char
|
||||
|
||||
j2date((int) date, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
|
||||
dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
|
||||
#else
|
||||
time = dt;
|
||||
TMODULO(time, date, (double) SECS_PER_DAY);
|
||||
|
||||
if (time < 0)
|
||||
{
|
||||
time += SECS_PER_DAY;
|
||||
date -= 1;
|
||||
}
|
||||
|
||||
/* add offset to go from J2000 back to standard Julian date */
|
||||
date += POSTGRES_EPOCH_JDATE;
|
||||
|
||||
recalc_d:
|
||||
/* Julian day routine does not work for negative Julian days */
|
||||
if (date < 0 || date > (Timestamp) INT_MAX)
|
||||
return -1;
|
||||
|
||||
j2date((int) date, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
|
||||
recalc_t:
|
||||
dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
|
||||
|
||||
*fsec = TSROUND(*fsec);
|
||||
/* roundoff may need to propagate to higher-order fields */
|
||||
if (*fsec >= 1.0)
|
||||
{
|
||||
time = ceil(time);
|
||||
if (time >= (double) SECS_PER_DAY)
|
||||
{
|
||||
time = 0;
|
||||
date += 1;
|
||||
goto recalc_d;
|
||||
}
|
||||
goto recalc_t;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Done if no TZ conversion wanted */
|
||||
if (tzp == NULL)
|
||||
@ -2034,13 +1804,8 @@ recalc_t:
|
||||
* coding avoids hardwiring any assumptions about the width of pg_time_t,
|
||||
* so it should behave sanely on machines without int64.
|
||||
*/
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
dt = (dt - *fsec) / USECS_PER_SEC +
|
||||
(POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY;
|
||||
#else
|
||||
dt = rint(dt - *fsec +
|
||||
(POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
|
||||
#endif
|
||||
utime = (pg_time_t) dt;
|
||||
if ((Timestamp) utime == dt)
|
||||
{
|
||||
@ -2100,7 +1865,6 @@ tm2timestamp(struct pg_tm * tm, fsec_t fsec, int *tzp, Timestamp *result)
|
||||
date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - POSTGRES_EPOCH_JDATE;
|
||||
time = time2t(tm->tm_hour, tm->tm_min, tm->tm_sec, fsec);
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
*result = date * USECS_PER_DAY + time;
|
||||
/* check for major overflow */
|
||||
if ((*result - time) / USECS_PER_DAY != date)
|
||||
@ -2116,9 +1880,6 @@ tm2timestamp(struct pg_tm * tm, fsec_t fsec, int *tzp, Timestamp *result)
|
||||
*result = 0; /* keep compiler quiet */
|
||||
return -1;
|
||||
}
|
||||
#else
|
||||
*result = date * SECS_PER_DAY + time;
|
||||
#endif
|
||||
if (tzp != NULL)
|
||||
*result = dt2local(*result, -(*tzp));
|
||||
|
||||
@ -2147,7 +1908,6 @@ interval2tm(Interval span, struct pg_tm * tm, fsec_t *fsec)
|
||||
tm->tm_mday = span.day;
|
||||
time = span.time;
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
tfrac = time / USECS_PER_HOUR;
|
||||
time -= tfrac * USECS_PER_HOUR;
|
||||
tm->tm_hour = tfrac;
|
||||
@ -2161,23 +1921,6 @@ interval2tm(Interval span, struct pg_tm * tm, fsec_t *fsec)
|
||||
tfrac = time / USECS_PER_SEC;
|
||||
*fsec = time - (tfrac * USECS_PER_SEC);
|
||||
tm->tm_sec = tfrac;
|
||||
#else
|
||||
recalc:
|
||||
TMODULO(time, tfrac, (double) SECS_PER_HOUR);
|
||||
tm->tm_hour = tfrac; /* could overflow ... */
|
||||
TMODULO(time, tfrac, (double) SECS_PER_MINUTE);
|
||||
tm->tm_min = tfrac;
|
||||
TMODULO(time, tfrac, 1.0);
|
||||
tm->tm_sec = tfrac;
|
||||
time = TSROUND(time);
|
||||
/* roundoff may need to propagate to higher-order fields */
|
||||
if (time >= 1.0)
|
||||
{
|
||||
time = ceil(span.time);
|
||||
goto recalc;
|
||||
}
|
||||
*fsec = time;
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -2191,15 +1934,9 @@ tm2interval(struct pg_tm * tm, fsec_t fsec, Interval *span)
|
||||
return -1;
|
||||
span->month = total_months;
|
||||
span->day = tm->tm_mday;
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
span->time = (((((tm->tm_hour * INT64CONST(60)) +
|
||||
tm->tm_min) * INT64CONST(60)) +
|
||||
tm->tm_sec) * USECS_PER_SEC) + fsec;
|
||||
#else
|
||||
span->time = (((tm->tm_hour * (double) MINS_PER_HOUR) +
|
||||
tm->tm_min) * (double) SECS_PER_MINUTE) +
|
||||
tm->tm_sec + fsec;
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -2207,21 +1944,13 @@ tm2interval(struct pg_tm * tm, fsec_t fsec, Interval *span)
|
||||
static TimeOffset
|
||||
time2t(const int hour, const int min, const int sec, const fsec_t fsec)
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
return (((((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec) * USECS_PER_SEC) + fsec;
|
||||
#else
|
||||
return (((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec + fsec;
|
||||
#endif
|
||||
}
|
||||
|
||||
static Timestamp
|
||||
dt2local(Timestamp dt, int tz)
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
dt -= (tz * USECS_PER_SEC);
|
||||
#else
|
||||
dt -= tz;
|
||||
#endif
|
||||
return dt;
|
||||
}
|
||||
|
||||
@ -2288,44 +2017,11 @@ SetEpochTimestamp(void)
|
||||
* The comparison functions are among them. - thomas 2001-09-25
|
||||
*
|
||||
* timestamp_relop - is timestamp1 relop timestamp2
|
||||
*
|
||||
* collate invalid timestamp at the end
|
||||
*/
|
||||
int
|
||||
timestamp_cmp_internal(Timestamp dt1, Timestamp dt2)
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
return (dt1 < dt2) ? -1 : ((dt1 > dt2) ? 1 : 0);
|
||||
#else
|
||||
|
||||
/*
|
||||
* When using float representation, we have to be wary of NaNs.
|
||||
*
|
||||
* We consider all NANs to be equal and larger than any non-NAN. This is
|
||||
* somewhat arbitrary; the important thing is to have a consistent sort
|
||||
* order.
|
||||
*/
|
||||
if (isnan(dt1))
|
||||
{
|
||||
if (isnan(dt2))
|
||||
return 0; /* NAN = NAN */
|
||||
else
|
||||
return 1; /* NAN > non-NAN */
|
||||
}
|
||||
else if (isnan(dt2))
|
||||
{
|
||||
return -1; /* non-NAN < NAN */
|
||||
}
|
||||
else
|
||||
{
|
||||
if (dt1 > dt2)
|
||||
return 1;
|
||||
else if (dt1 < dt2)
|
||||
return -1;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
Datum
|
||||
@ -2413,12 +2109,7 @@ timestamp_sortsupport(PG_FUNCTION_ARGS)
|
||||
Datum
|
||||
timestamp_hash(PG_FUNCTION_ARGS)
|
||||
{
|
||||
/* We can use either hashint8 or hashfloat8 directly */
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
return hashint8(fcinfo);
|
||||
#else
|
||||
return hashfloat8(fcinfo);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@ -2597,8 +2288,6 @@ timestamptz_cmp_timestamp(PG_FUNCTION_ARGS)
|
||||
|
||||
/*
|
||||
* interval_relop - is interval1 relop interval2
|
||||
*
|
||||
* collate invalid interval at the end
|
||||
*/
|
||||
static inline TimeOffset
|
||||
interval_cmp_value(const Interval *interval)
|
||||
@ -2606,14 +2295,8 @@ interval_cmp_value(const Interval *interval)
|
||||
TimeOffset span;
|
||||
|
||||
span = interval->time;
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
span += interval->month * INT64CONST(30) * USECS_PER_DAY;
|
||||
span += interval->day * INT64CONST(24) * USECS_PER_HOUR;
|
||||
#else
|
||||
span += interval->month * ((double) DAYS_PER_MONTH * SECS_PER_DAY);
|
||||
span += interval->day * ((double) HOURS_PER_DAY * SECS_PER_HOUR);
|
||||
#endif
|
||||
|
||||
return span;
|
||||
}
|
||||
@ -2695,7 +2378,7 @@ interval_cmp(PG_FUNCTION_ARGS)
|
||||
*
|
||||
* We must produce equal hashvals for values that interval_cmp_internal()
|
||||
* considers equal. So, compute the net span the same way it does,
|
||||
* and then hash that, using either int64 or float8 hashing.
|
||||
* and then hash that.
|
||||
*/
|
||||
Datum
|
||||
interval_hash(PG_FUNCTION_ARGS)
|
||||
@ -2703,11 +2386,7 @@ interval_hash(PG_FUNCTION_ARGS)
|
||||
Interval *interval = PG_GETARG_INTERVAL_P(0);
|
||||
TimeOffset span = interval_cmp_value(interval);
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
return DirectFunctionCall1(hashint8, Int64GetDatumFast(span));
|
||||
#else
|
||||
return DirectFunctionCall1(hashfloat8, Float8GetDatumFast(span));
|
||||
#endif
|
||||
}
|
||||
|
||||
/* overlaps_timestamp() --- implements the SQL OVERLAPS operator.
|
||||
@ -2946,11 +2625,7 @@ interval_justify_interval(PG_FUNCTION_ARGS)
|
||||
result->day = span->day;
|
||||
result->time = span->time;
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
TMODULO(result->time, wholeday, USECS_PER_DAY);
|
||||
#else
|
||||
TMODULO(result->time, wholeday, (double) SECS_PER_DAY);
|
||||
#endif
|
||||
result->day += wholeday; /* could overflow... */
|
||||
|
||||
wholemonth = result->day / DAYS_PER_MONTH;
|
||||
@ -2972,20 +2647,12 @@ interval_justify_interval(PG_FUNCTION_ARGS)
|
||||
|
||||
if (result->day > 0 && result->time < 0)
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result->time += USECS_PER_DAY;
|
||||
#else
|
||||
result->time += (double) SECS_PER_DAY;
|
||||
#endif
|
||||
result->day--;
|
||||
}
|
||||
else if (result->day < 0 && result->time > 0)
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result->time -= USECS_PER_DAY;
|
||||
#else
|
||||
result->time -= (double) SECS_PER_DAY;
|
||||
#endif
|
||||
result->day++;
|
||||
}
|
||||
|
||||
@ -3012,29 +2679,17 @@ interval_justify_hours(PG_FUNCTION_ARGS)
|
||||
result->day = span->day;
|
||||
result->time = span->time;
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
TMODULO(result->time, wholeday, USECS_PER_DAY);
|
||||
#else
|
||||
TMODULO(result->time, wholeday, (double) SECS_PER_DAY);
|
||||
#endif
|
||||
result->day += wholeday; /* could overflow... */
|
||||
|
||||
if (result->day > 0 && result->time < 0)
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result->time += USECS_PER_DAY;
|
||||
#else
|
||||
result->time += (double) SECS_PER_DAY;
|
||||
#endif
|
||||
result->day--;
|
||||
}
|
||||
else if (result->day < 0 && result->time > 0)
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result->time -= USECS_PER_DAY;
|
||||
#else
|
||||
result->time -= (double) SECS_PER_DAY;
|
||||
#endif
|
||||
result->day++;
|
||||
}
|
||||
|
||||
@ -3492,16 +3147,12 @@ interval_mul(PG_FUNCTION_ARGS)
|
||||
|
||||
/* cascade units down */
|
||||
result->day += (int32) month_remainder_days;
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result_double = rint(span->time * factor + sec_remainder * USECS_PER_SEC);
|
||||
if (result_double > PG_INT64_MAX || result_double < PG_INT64_MIN)
|
||||
ereport(ERROR,
|
||||
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
|
||||
errmsg("interval out of range")));
|
||||
result->time = (int64) result_double;
|
||||
#else
|
||||
result->time = span->time * factor + sec_remainder;
|
||||
#endif
|
||||
|
||||
PG_RETURN_INTERVAL_P(result);
|
||||
}
|
||||
@ -3553,12 +3204,7 @@ interval_div(PG_FUNCTION_ARGS)
|
||||
|
||||
/* cascade units down */
|
||||
result->day += (int32) month_remainder_days;
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result->time = rint(span->time / factor + sec_remainder * USECS_PER_SEC);
|
||||
#else
|
||||
/* See TSROUND comment in interval_mul(). */
|
||||
result->time = span->time / factor + sec_remainder;
|
||||
#endif
|
||||
|
||||
PG_RETURN_INTERVAL_P(result);
|
||||
}
|
||||
@ -3571,11 +3217,6 @@ interval_div(PG_FUNCTION_ARGS)
|
||||
* intervals, where the first is the running sum and the second contains
|
||||
* the number of values so far in its 'time' field. This is a bit ugly
|
||||
* but it beats inventing a specialized datatype for the purpose.
|
||||
*
|
||||
* NOTE: The inverse transition function cannot guarantee exact results
|
||||
* when using float8 timestamps. However, int8 timestamps are now the
|
||||
* norm, and the probable range of values is not so wide that disastrous
|
||||
* cancellation is likely even with float8, so we'll ignore the risk.
|
||||
*/
|
||||
|
||||
Datum
|
||||
@ -3776,11 +3417,7 @@ timestamp_age(PG_FUNCTION_ARGS)
|
||||
/* propagate any negative fields into the next higher field */
|
||||
while (fsec < 0)
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
fsec += USECS_PER_SEC;
|
||||
#else
|
||||
fsec += 1.0;
|
||||
#endif
|
||||
tm->tm_sec--;
|
||||
}
|
||||
|
||||
@ -3901,11 +3538,7 @@ timestamptz_age(PG_FUNCTION_ARGS)
|
||||
/* propagate any negative fields into the next higher field */
|
||||
while (fsec < 0)
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
fsec += USECS_PER_SEC;
|
||||
#else
|
||||
fsec += 1.0;
|
||||
#endif
|
||||
tm->tm_sec--;
|
||||
}
|
||||
|
||||
@ -4076,17 +3709,10 @@ timestamp_trunc(PG_FUNCTION_ARGS)
|
||||
break;
|
||||
|
||||
case DTK_MILLISEC:
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
fsec = (fsec / 1000) * 1000;
|
||||
#else
|
||||
fsec = floor(fsec * 1000) / 1000;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case DTK_MICROSEC:
|
||||
#ifndef HAVE_INT64_TIMESTAMP
|
||||
fsec = floor(fsec * 1000000) / 1000000;
|
||||
#endif
|
||||
break;
|
||||
|
||||
default:
|
||||
@ -4229,18 +3855,10 @@ timestamptz_trunc(PG_FUNCTION_ARGS)
|
||||
case DTK_SECOND:
|
||||
fsec = 0;
|
||||
break;
|
||||
|
||||
case DTK_MILLISEC:
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
fsec = (fsec / 1000) * 1000;
|
||||
#else
|
||||
fsec = floor(fsec * 1000) / 1000;
|
||||
#endif
|
||||
break;
|
||||
case DTK_MICROSEC:
|
||||
#ifndef HAVE_INT64_TIMESTAMP
|
||||
fsec = floor(fsec * 1000000) / 1000000;
|
||||
#endif
|
||||
break;
|
||||
|
||||
default:
|
||||
@ -4326,18 +3944,10 @@ interval_trunc(PG_FUNCTION_ARGS)
|
||||
case DTK_SECOND:
|
||||
fsec = 0;
|
||||
break;
|
||||
|
||||
case DTK_MILLISEC:
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
fsec = (fsec / 1000) * 1000;
|
||||
#else
|
||||
fsec = floor(fsec * 1000) / 1000;
|
||||
#endif
|
||||
break;
|
||||
case DTK_MICROSEC:
|
||||
#ifndef HAVE_INT64_TIMESTAMP
|
||||
fsec = floor(fsec * 1000000) / 1000000;
|
||||
#endif
|
||||
break;
|
||||
|
||||
default:
|
||||
@ -4669,27 +4279,15 @@ timestamp_part(PG_FUNCTION_ARGS)
|
||||
switch (val)
|
||||
{
|
||||
case DTK_MICROSEC:
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result = tm->tm_sec * 1000000.0 + fsec;
|
||||
#else
|
||||
result = (tm->tm_sec + fsec) * 1000000;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case DTK_MILLISEC:
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
|
||||
#else
|
||||
result = (tm->tm_sec + fsec) * 1000;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case DTK_SECOND:
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result = tm->tm_sec + fsec / 1000000.0;
|
||||
#else
|
||||
result = tm->tm_sec + fsec;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case DTK_MINUTE:
|
||||
@ -4762,13 +4360,8 @@ timestamp_part(PG_FUNCTION_ARGS)
|
||||
|
||||
case DTK_JULIAN:
|
||||
result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
|
||||
tm->tm_sec + (fsec / 1000000.0)) / (double) SECS_PER_DAY;
|
||||
#else
|
||||
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
|
||||
tm->tm_sec + fsec) / (double) SECS_PER_DAY;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case DTK_ISOYEAR:
|
||||
@ -4812,15 +4405,11 @@ timestamp_part(PG_FUNCTION_ARGS)
|
||||
{
|
||||
case DTK_EPOCH:
|
||||
epoch = SetEpochTimestamp();
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
/* try to avoid precision loss in subtraction */
|
||||
if (timestamp < (PG_INT64_MAX + epoch))
|
||||
result = (timestamp - epoch) / 1000000.0;
|
||||
else
|
||||
result = ((float8) timestamp - epoch) / 1000000.0;
|
||||
#else
|
||||
result = timestamp - epoch;
|
||||
#endif
|
||||
break;
|
||||
|
||||
default:
|
||||
@ -4906,27 +4495,15 @@ timestamptz_part(PG_FUNCTION_ARGS)
|
||||
break;
|
||||
|
||||
case DTK_MICROSEC:
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result = tm->tm_sec * 1000000.0 + fsec;
|
||||
#else
|
||||
result = (tm->tm_sec + fsec) * 1000000;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case DTK_MILLISEC:
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
|
||||
#else
|
||||
result = (tm->tm_sec + fsec) * 1000;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case DTK_SECOND:
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result = tm->tm_sec + fsec / 1000000.0;
|
||||
#else
|
||||
result = tm->tm_sec + fsec;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case DTK_MINUTE:
|
||||
@ -4987,13 +4564,8 @@ timestamptz_part(PG_FUNCTION_ARGS)
|
||||
|
||||
case DTK_JULIAN:
|
||||
result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
|
||||
tm->tm_sec + (fsec / 1000000.0)) / (double) SECS_PER_DAY;
|
||||
#else
|
||||
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
|
||||
tm->tm_sec + fsec) / (double) SECS_PER_DAY;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case DTK_ISOYEAR:
|
||||
@ -5035,15 +4607,11 @@ timestamptz_part(PG_FUNCTION_ARGS)
|
||||
{
|
||||
case DTK_EPOCH:
|
||||
epoch = SetEpochTimestamp();
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
/* try to avoid precision loss in subtraction */
|
||||
if (timestamp < (PG_INT64_MAX + epoch))
|
||||
result = (timestamp - epoch) / 1000000.0;
|
||||
else
|
||||
result = ((float8) timestamp - epoch) / 1000000.0;
|
||||
#else
|
||||
result = timestamp - epoch;
|
||||
#endif
|
||||
break;
|
||||
|
||||
default:
|
||||
@ -5099,27 +4667,15 @@ interval_part(PG_FUNCTION_ARGS)
|
||||
switch (val)
|
||||
{
|
||||
case DTK_MICROSEC:
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result = tm->tm_sec * 1000000.0 + fsec;
|
||||
#else
|
||||
result = (tm->tm_sec + fsec) * 1000000;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case DTK_MILLISEC:
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
|
||||
#else
|
||||
result = (tm->tm_sec + fsec) * 1000;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case DTK_SECOND:
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result = tm->tm_sec + fsec / 1000000.0;
|
||||
#else
|
||||
result = tm->tm_sec + fsec;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case DTK_MINUTE:
|
||||
@ -5178,11 +4734,7 @@ interval_part(PG_FUNCTION_ARGS)
|
||||
}
|
||||
else if (type == RESERV && val == DTK_EPOCH)
|
||||
{
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
result = interval->time / 1000000.0;
|
||||
#else
|
||||
result = interval->time;
|
||||
#endif
|
||||
result += ((double) DAYS_PER_YEAR * SECS_PER_DAY) * (interval->month / MONTHS_PER_YEAR);
|
||||
result += ((double) DAYS_PER_MONTH * SECS_PER_DAY) * (interval->month % MONTHS_PER_YEAR);
|
||||
result += ((double) SECS_PER_DAY) * interval->day;
|
||||
@ -5338,11 +4890,7 @@ timestamp_izone(PG_FUNCTION_ARGS)
|
||||
DatumGetCString(DirectFunctionCall1(interval_out,
|
||||
PointerGetDatum(zone))))));
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
tz = zone->time / USECS_PER_SEC;
|
||||
#else
|
||||
tz = zone->time;
|
||||
#endif
|
||||
|
||||
result = dt2local(timestamp, tz);
|
||||
|
||||
@ -5539,11 +5087,7 @@ timestamptz_izone(PG_FUNCTION_ARGS)
|
||||
DatumGetCString(DirectFunctionCall1(interval_out,
|
||||
PointerGetDatum(zone))))));
|
||||
|
||||
#ifdef HAVE_INT64_TIMESTAMP
|
||||
tz = -(zone->time / USECS_PER_SEC);
|
||||
#else
|
||||
tz = -zone->time;
|
||||
#endif
|
||||
|
||||
result = dt2local(timestamp, tz);
|
||||
|
||||
|
Reference in New Issue
Block a user