mirror of
https://github.com/postgres/postgres.git
synced 2025-07-20 05:03:10 +03:00
pgindent run on all C files. Java run to follow. initdb/regression
tests pass.
This commit is contained in:
@ -8,7 +8,7 @@
|
||||
*
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $Id: hio.c,v 1.42 2001/07/13 22:52:58 tgl Exp $
|
||||
* $Id: hio.c,v 1.43 2001/10/25 05:49:21 momjian Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -83,7 +83,7 @@ RelationPutHeapTuple(Relation relation,
|
||||
* NOTE: it is unlikely, but not quite impossible, for otherBuffer to be the
|
||||
* same buffer we select for insertion of the new tuple (this could only
|
||||
* happen if space is freed in that page after heap_update finds there's not
|
||||
* enough there). In that case, the page will be pinned and locked only once.
|
||||
* enough there). In that case, the page will be pinned and locked only once.
|
||||
*
|
||||
* Note that we use LockPage(rel, 0) to lock relation for extension.
|
||||
* We can do this as long as in all other places we use page-level locking
|
||||
@ -115,17 +115,19 @@ RelationGetBufferForTuple(Relation relation, Size len,
|
||||
if (otherBuffer != InvalidBuffer)
|
||||
otherBlock = BufferGetBlockNumber(otherBuffer);
|
||||
else
|
||||
otherBlock = InvalidBlockNumber; /* just to keep compiler quiet */
|
||||
otherBlock = InvalidBlockNumber; /* just to keep compiler
|
||||
* quiet */
|
||||
|
||||
/*
|
||||
* We first try to put the tuple on the same page we last inserted a
|
||||
* tuple on, as cached in the relcache entry. If that doesn't work,
|
||||
* we ask the shared Free Space Map to locate a suitable page. Since
|
||||
* we ask the shared Free Space Map to locate a suitable page. Since
|
||||
* the FSM's info might be out of date, we have to be prepared to loop
|
||||
* around and retry multiple times. (To insure this isn't an infinite
|
||||
* loop, we must update the FSM with the correct amount of free space on
|
||||
* each page that proves not to be suitable.) If the FSM has no record of
|
||||
* a page with enough free space, we give up and extend the relation.
|
||||
* loop, we must update the FSM with the correct amount of free space
|
||||
* on each page that proves not to be suitable.) If the FSM has no
|
||||
* record of a page with enough free space, we give up and extend the
|
||||
* relation.
|
||||
*/
|
||||
|
||||
targetBlock = relation->rd_targblock;
|
||||
@ -137,6 +139,7 @@ RelationGetBufferForTuple(Relation relation, Size len,
|
||||
* target.
|
||||
*/
|
||||
targetBlock = GetPageWithFreeSpace(&relation->rd_node, len);
|
||||
|
||||
/*
|
||||
* If the FSM knows nothing of the rel, try the last page before
|
||||
* we give up and extend. This avoids one-tuple-per-page syndrome
|
||||
@ -144,7 +147,7 @@ RelationGetBufferForTuple(Relation relation, Size len,
|
||||
*/
|
||||
if (targetBlock == InvalidBlockNumber)
|
||||
{
|
||||
BlockNumber nblocks = RelationGetNumberOfBlocks(relation);
|
||||
BlockNumber nblocks = RelationGetNumberOfBlocks(relation);
|
||||
|
||||
if (nblocks > 0)
|
||||
targetBlock = nblocks - 1;
|
||||
@ -154,9 +157,9 @@ RelationGetBufferForTuple(Relation relation, Size len,
|
||||
while (targetBlock != InvalidBlockNumber)
|
||||
{
|
||||
/*
|
||||
* Read and exclusive-lock the target block, as well as the
|
||||
* other block if one was given, taking suitable care with
|
||||
* lock ordering and the possibility they are the same block.
|
||||
* Read and exclusive-lock the target block, as well as the other
|
||||
* block if one was given, taking suitable care with lock ordering
|
||||
* and the possibility they are the same block.
|
||||
*/
|
||||
if (otherBuffer == InvalidBuffer)
|
||||
{
|
||||
@ -184,9 +187,10 @@ RelationGetBufferForTuple(Relation relation, Size len,
|
||||
LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
|
||||
LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Now we can check to see if there's enough free space here.
|
||||
* If so, we're done.
|
||||
* Now we can check to see if there's enough free space here. If
|
||||
* so, we're done.
|
||||
*/
|
||||
pageHeader = (Page) BufferGetPage(buffer);
|
||||
pageFreeSpace = PageGetFreeSpace(pageHeader);
|
||||
@ -196,22 +200,22 @@ RelationGetBufferForTuple(Relation relation, Size len,
|
||||
relation->rd_targblock = targetBlock;
|
||||
return buffer;
|
||||
}
|
||||
|
||||
/*
|
||||
* Not enough space, so we must give up our page locks and
|
||||
* pin (if any) and prepare to look elsewhere. We don't care
|
||||
* which order we unlock the two buffers in, so this can be
|
||||
* slightly simpler than the code above.
|
||||
* Not enough space, so we must give up our page locks and pin (if
|
||||
* any) and prepare to look elsewhere. We don't care which order
|
||||
* we unlock the two buffers in, so this can be slightly simpler
|
||||
* than the code above.
|
||||
*/
|
||||
LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
|
||||
if (otherBuffer == InvalidBuffer)
|
||||
{
|
||||
ReleaseBuffer(buffer);
|
||||
}
|
||||
else if (otherBlock != targetBlock)
|
||||
{
|
||||
LockBuffer(otherBuffer, BUFFER_LOCK_UNLOCK);
|
||||
ReleaseBuffer(buffer);
|
||||
}
|
||||
|
||||
/*
|
||||
* Update FSM as to condition of this page, and ask for another
|
||||
* page to try.
|
||||
@ -225,9 +229,9 @@ RelationGetBufferForTuple(Relation relation, Size len,
|
||||
/*
|
||||
* Have to extend the relation.
|
||||
*
|
||||
* We have to use a lock to ensure no one else is extending the
|
||||
* rel at the same time, else we will both try to initialize the
|
||||
* same new page.
|
||||
* We have to use a lock to ensure no one else is extending the rel at
|
||||
* the same time, else we will both try to initialize the same new
|
||||
* page.
|
||||
*/
|
||||
if (!relation->rd_myxactonly)
|
||||
LockPage(relation, 0, ExclusiveLock);
|
||||
@ -236,20 +240,21 @@ RelationGetBufferForTuple(Relation relation, Size len,
|
||||
* XXX This does an lseek - rather expensive - but at the moment it is
|
||||
* the only way to accurately determine how many blocks are in a
|
||||
* relation. Is it worth keeping an accurate file length in shared
|
||||
* memory someplace, rather than relying on the kernel to do it for us?
|
||||
* memory someplace, rather than relying on the kernel to do it for
|
||||
* us?
|
||||
*/
|
||||
buffer = ReadBuffer(relation, P_NEW);
|
||||
|
||||
/*
|
||||
* Release the file-extension lock; it's now OK for someone else
|
||||
* to extend the relation some more.
|
||||
* Release the file-extension lock; it's now OK for someone else to
|
||||
* extend the relation some more.
|
||||
*/
|
||||
if (!relation->rd_myxactonly)
|
||||
UnlockPage(relation, 0, ExclusiveLock);
|
||||
|
||||
/*
|
||||
* We can be certain that locking the otherBuffer first is OK,
|
||||
* since it must have a lower page number.
|
||||
* We can be certain that locking the otherBuffer first is OK, since
|
||||
* it must have a lower page number.
|
||||
*/
|
||||
if (otherBuffer != InvalidBuffer)
|
||||
LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
|
||||
@ -273,7 +278,7 @@ RelationGetBufferForTuple(Relation relation, Size len,
|
||||
*
|
||||
* XXX should we enter the new page into the free space map immediately,
|
||||
* or just keep it for this backend's exclusive use in the short run
|
||||
* (until VACUUM sees it)? Seems to depend on whether you expect the
|
||||
* (until VACUUM sees it)? Seems to depend on whether you expect the
|
||||
* current backend to make more insertions or not, which is probably a
|
||||
* good bet most of the time. So for now, don't add it to FSM yet.
|
||||
*/
|
||||
|
Reference in New Issue
Block a user