mirror of
https://github.com/postgres/postgres.git
synced 2025-04-27 22:56:53 +03:00
Be a little smarter about deciding how many most-common values to save.
This commit is contained in:
parent
bf9e01d950
commit
b67fc0079c
@ -1,14 +1,14 @@
|
|||||||
/*-------------------------------------------------------------------------
|
/*-------------------------------------------------------------------------
|
||||||
*
|
*
|
||||||
* analyze.c
|
* analyze.c
|
||||||
* the postgres optimizer analyzer
|
* the postgres statistics generator
|
||||||
*
|
*
|
||||||
* Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
|
* Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
|
||||||
* Portions Copyright (c) 1994, Regents of the University of California
|
* Portions Copyright (c) 1994, Regents of the University of California
|
||||||
*
|
*
|
||||||
*
|
*
|
||||||
* IDENTIFICATION
|
* IDENTIFICATION
|
||||||
* $Header: /cvsroot/pgsql/src/backend/commands/analyze.c,v 1.18 2001/06/02 19:01:53 tgl Exp $
|
* $Header: /cvsroot/pgsql/src/backend/commands/analyze.c,v 1.19 2001/06/06 21:29:17 tgl Exp $
|
||||||
*
|
*
|
||||||
*-------------------------------------------------------------------------
|
*-------------------------------------------------------------------------
|
||||||
*/
|
*/
|
||||||
@ -63,7 +63,7 @@ typedef struct
|
|||||||
/* These fields are set up by examine_attribute */
|
/* These fields are set up by examine_attribute */
|
||||||
int attnum; /* attribute number */
|
int attnum; /* attribute number */
|
||||||
AlgCode algcode; /* Which algorithm to use for this column */
|
AlgCode algcode; /* Which algorithm to use for this column */
|
||||||
int minrows; /* Minimum # of rows needed for stats */
|
int minrows; /* Minimum # of rows wanted for stats */
|
||||||
Form_pg_attribute attr; /* copy of pg_attribute row for column */
|
Form_pg_attribute attr; /* copy of pg_attribute row for column */
|
||||||
Form_pg_type attrtype; /* copy of pg_type row for column */
|
Form_pg_type attrtype; /* copy of pg_type row for column */
|
||||||
Oid eqopr; /* '=' operator for datatype, if any */
|
Oid eqopr; /* '=' operator for datatype, if any */
|
||||||
@ -990,7 +990,9 @@ compute_minimal_stats(VacAttrStats *stats,
|
|||||||
* exactly k times in our sample of r rows (from a total of n).
|
* exactly k times in our sample of r rows (from a total of n).
|
||||||
* We assume (not very reliably!) that all the multiply-occurring
|
* We assume (not very reliably!) that all the multiply-occurring
|
||||||
* values are reflected in the final track[] list, and the other
|
* values are reflected in the final track[] list, and the other
|
||||||
* nonnull values all appeared but once.
|
* nonnull values all appeared but once. (XXX this usually
|
||||||
|
* results in a drastic overestimate of ndistinct. Can we do
|
||||||
|
* any better?)
|
||||||
*----------
|
*----------
|
||||||
*/
|
*/
|
||||||
int f1 = nonnull_cnt - summultiple;
|
int f1 = nonnull_cnt - summultiple;
|
||||||
@ -1011,9 +1013,49 @@ compute_minimal_stats(VacAttrStats *stats,
|
|||||||
if (stats->stadistinct > 0.1 * totalrows)
|
if (stats->stadistinct > 0.1 * totalrows)
|
||||||
stats->stadistinct = - (stats->stadistinct / totalrows);
|
stats->stadistinct = - (stats->stadistinct / totalrows);
|
||||||
|
|
||||||
/* Generate an MCV slot entry, only if we found multiples */
|
/*
|
||||||
if (nmultiple < num_mcv)
|
* Decide how many values are worth storing as most-common values.
|
||||||
num_mcv = nmultiple;
|
* If we are able to generate a complete MCV list (all the values
|
||||||
|
* in the sample will fit, and we think these are all the ones in
|
||||||
|
* the table), then do so. Otherwise, store only those values
|
||||||
|
* that are significantly more common than the (estimated) average.
|
||||||
|
* We set the threshold rather arbitrarily at 25% more than average,
|
||||||
|
* with at least 2 instances in the sample.
|
||||||
|
*/
|
||||||
|
if (track_cnt < track_max && toowide_cnt == 0 &&
|
||||||
|
stats->stadistinct > 0 &&
|
||||||
|
track_cnt <= num_mcv)
|
||||||
|
{
|
||||||
|
/* Track list includes all values seen, and all will fit */
|
||||||
|
num_mcv = track_cnt;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
double ndistinct = stats->stadistinct;
|
||||||
|
double avgcount,
|
||||||
|
mincount;
|
||||||
|
|
||||||
|
if (ndistinct < 0)
|
||||||
|
ndistinct = - ndistinct * totalrows;
|
||||||
|
/* estimate # of occurrences in sample of a typical value */
|
||||||
|
avgcount = (double) numrows / ndistinct;
|
||||||
|
/* set minimum threshold count to store a value */
|
||||||
|
mincount = avgcount * 1.25;
|
||||||
|
if (mincount < 2)
|
||||||
|
mincount = 2;
|
||||||
|
if (num_mcv > track_cnt)
|
||||||
|
num_mcv = track_cnt;
|
||||||
|
for (i = 0; i < num_mcv; i++)
|
||||||
|
{
|
||||||
|
if (track[i].count < mincount)
|
||||||
|
{
|
||||||
|
num_mcv = i;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Generate MCV slot entry */
|
||||||
if (num_mcv > 0)
|
if (num_mcv > 0)
|
||||||
{
|
{
|
||||||
MemoryContext old_context;
|
MemoryContext old_context;
|
||||||
@ -1080,6 +1122,7 @@ compute_scalar_stats(VacAttrStats *stats,
|
|||||||
ScalarMCVItem *track;
|
ScalarMCVItem *track;
|
||||||
int track_cnt = 0;
|
int track_cnt = 0;
|
||||||
int num_mcv = stats->attr->attstattarget;
|
int num_mcv = stats->attr->attstattarget;
|
||||||
|
int num_bins = stats->attr->attstattarget;
|
||||||
|
|
||||||
values = (ScalarItem *) palloc(numrows * sizeof(ScalarItem));
|
values = (ScalarItem *) palloc(numrows * sizeof(ScalarItem));
|
||||||
tupnoLink = (int *) palloc(numrows * sizeof(int));
|
tupnoLink = (int *) palloc(numrows * sizeof(int));
|
||||||
@ -1266,10 +1309,57 @@ compute_scalar_stats(VacAttrStats *stats,
|
|||||||
if (stats->stadistinct > 0.1 * totalrows)
|
if (stats->stadistinct > 0.1 * totalrows)
|
||||||
stats->stadistinct = - (stats->stadistinct / totalrows);
|
stats->stadistinct = - (stats->stadistinct / totalrows);
|
||||||
|
|
||||||
/* Generate an MCV slot entry, only if we found multiples */
|
/*
|
||||||
if (nmultiple < num_mcv)
|
* Decide how many values are worth storing as most-common values.
|
||||||
num_mcv = nmultiple;
|
* If we are able to generate a complete MCV list (all the values
|
||||||
Assert(track_cnt >= num_mcv);
|
* in the sample will fit, and we think these are all the ones in
|
||||||
|
* the table), then do so. Otherwise, store only those values
|
||||||
|
* that are significantly more common than the (estimated) average.
|
||||||
|
* We set the threshold rather arbitrarily at 25% more than average,
|
||||||
|
* with at least 2 instances in the sample. Also, we won't suppress
|
||||||
|
* values that have a frequency of at least 1/K where K is the
|
||||||
|
* intended number of histogram bins; such values might otherwise
|
||||||
|
* cause us to emit duplicate histogram bin boundaries.
|
||||||
|
*/
|
||||||
|
if (track_cnt == ndistinct && toowide_cnt == 0 &&
|
||||||
|
stats->stadistinct > 0 &&
|
||||||
|
track_cnt <= num_mcv)
|
||||||
|
{
|
||||||
|
/* Track list includes all values seen, and all will fit */
|
||||||
|
num_mcv = track_cnt;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
double ndistinct = stats->stadistinct;
|
||||||
|
double avgcount,
|
||||||
|
mincount,
|
||||||
|
maxmincount;
|
||||||
|
|
||||||
|
if (ndistinct < 0)
|
||||||
|
ndistinct = - ndistinct * totalrows;
|
||||||
|
/* estimate # of occurrences in sample of a typical value */
|
||||||
|
avgcount = (double) numrows / ndistinct;
|
||||||
|
/* set minimum threshold count to store a value */
|
||||||
|
mincount = avgcount * 1.25;
|
||||||
|
if (mincount < 2)
|
||||||
|
mincount = 2;
|
||||||
|
/* don't let threshold exceed 1/K, however */
|
||||||
|
maxmincount = (double) numrows / (double) num_bins;
|
||||||
|
if (mincount > maxmincount)
|
||||||
|
mincount = maxmincount;
|
||||||
|
if (num_mcv > track_cnt)
|
||||||
|
num_mcv = track_cnt;
|
||||||
|
for (i = 0; i < num_mcv; i++)
|
||||||
|
{
|
||||||
|
if (track[i].count < mincount)
|
||||||
|
{
|
||||||
|
num_mcv = i;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Generate MCV slot entry */
|
||||||
if (num_mcv > 0)
|
if (num_mcv > 0)
|
||||||
{
|
{
|
||||||
MemoryContext old_context;
|
MemoryContext old_context;
|
||||||
@ -1304,8 +1394,8 @@ compute_scalar_stats(VacAttrStats *stats,
|
|||||||
* ensures the histogram won't collapse to empty or a singleton.)
|
* ensures the histogram won't collapse to empty or a singleton.)
|
||||||
*/
|
*/
|
||||||
num_hist = ndistinct - num_mcv;
|
num_hist = ndistinct - num_mcv;
|
||||||
if (num_hist > stats->attr->attstattarget)
|
if (num_hist > num_bins)
|
||||||
num_hist = stats->attr->attstattarget + 1;
|
num_hist = num_bins + 1;
|
||||||
if (num_hist >= 2)
|
if (num_hist >= 2)
|
||||||
{
|
{
|
||||||
MemoryContext old_context;
|
MemoryContext old_context;
|
||||||
@ -1321,6 +1411,7 @@ compute_scalar_stats(VacAttrStats *stats,
|
|||||||
*
|
*
|
||||||
* Note we destroy the values[] array here... but we don't need
|
* Note we destroy the values[] array here... but we don't need
|
||||||
* it for anything more. We do, however, still need values_cnt.
|
* it for anything more. We do, however, still need values_cnt.
|
||||||
|
* nvals will be the number of remaining entries in values[].
|
||||||
*/
|
*/
|
||||||
if (num_mcv > 0)
|
if (num_mcv > 0)
|
||||||
{
|
{
|
||||||
|
Loading…
x
Reference in New Issue
Block a user