1
0
mirror of https://github.com/postgres/postgres.git synced 2025-11-07 19:06:32 +03:00

Add an at-least-marginally-plausible method of estimating the number

of groups produced by GROUP BY.  This improves the accuracy of planning
estimates for grouped subselects, and is needed to check whether a
hashed aggregation plan risks memory overflow.
This commit is contained in:
Tom Lane
2002-11-19 23:22:00 +00:00
parent 54cb1db6cf
commit b60be3f2f8
11 changed files with 454 additions and 75 deletions

View File

@@ -10,7 +10,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/createplan.c,v 1.122 2002/11/15 02:36:53 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/createplan.c,v 1.123 2002/11/19 23:21:58 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@@ -1684,7 +1684,8 @@ make_material(List *tlist, Plan *lefttree)
Agg *
make_agg(List *tlist, List *qual, AggStrategy aggstrategy,
int ngrp, AttrNumber *grpColIdx, Plan *lefttree)
int ngrp, AttrNumber *grpColIdx, long numGroups, int numAggs,
Plan *lefttree)
{
Agg *node = makeNode(Agg);
Plan *plan = &node->plan;
@@ -1692,6 +1693,7 @@ make_agg(List *tlist, List *qual, AggStrategy aggstrategy,
node->aggstrategy = aggstrategy;
node->numCols = ngrp;
node->grpColIdx = grpColIdx;
node->numGroups = numGroups;
copy_plan_costsize(plan, lefttree);
@@ -1699,15 +1701,11 @@ make_agg(List *tlist, List *qual, AggStrategy aggstrategy,
* Charge one cpu_operator_cost per aggregate function per input
* tuple.
*/
plan->total_cost += cpu_operator_cost * plan->plan_rows *
(length(pull_agg_clause((Node *) tlist)) +
length(pull_agg_clause((Node *) qual)));
plan->total_cost += cpu_operator_cost * plan->plan_rows * numAggs;
/*
* We will produce a single output tuple if not grouping,
* and a tuple per group otherwise. For now, estimate the number of
* groups as 10% of the number of tuples --- bogus, but how to do
* better?
* and a tuple per group otherwise.
*/
if (aggstrategy == AGG_PLAIN)
{
@@ -1716,10 +1714,7 @@ make_agg(List *tlist, List *qual, AggStrategy aggstrategy,
}
else
{
plan->plan_rows *= 0.1;
if (plan->plan_rows < 1)
plan->plan_rows = 1;
node->numGroups = (long) plan->plan_rows;
plan->plan_rows = numGroups;
}
plan->state = (EState *) NULL;
@@ -1735,6 +1730,7 @@ Group *
make_group(List *tlist,
int ngrp,
AttrNumber *grpColIdx,
double numGroups,
Plan *lefttree)
{
Group *node = makeNode(Group);
@@ -1748,13 +1744,8 @@ make_group(List *tlist,
*/
plan->total_cost += cpu_operator_cost * plan->plan_rows * ngrp;
/*
* Estimate the number of groups as 10% of the number of tuples
* --- bogus, but how to do better?
*/
plan->plan_rows *= 0.1;
if (plan->plan_rows < 1)
plan->plan_rows = 1;
/* One output tuple per estimated result group */
plan->plan_rows = numGroups;
plan->state = (EState *) NULL;
plan->qual = NULL;
@@ -1786,17 +1777,16 @@ make_unique(List *tlist, Plan *lefttree, List *distinctList)
/*
* Charge one cpu_operator_cost per comparison per input tuple. We
* assume all columns get compared at most of the tuples.
* assume all columns get compared at most of the tuples. (XXX probably
* this is an overestimate.)
*/
plan->total_cost += cpu_operator_cost * plan->plan_rows * numCols;
/*
* As for Group, we make the unsupported assumption that there will be
* 10% as many tuples out as in.
* plan->plan_rows is left as a copy of the input subplan's plan_rows;
* ie, we assume the filter removes nothing. The caller must alter this
* if he has a better idea.
*/
plan->plan_rows *= 0.1;
if (plan->plan_rows < 1)
plan->plan_rows = 1;
plan->state = (EState *) NULL;
plan->targetlist = tlist;
@@ -1850,8 +1840,8 @@ make_setop(SetOpCmd cmd, List *tlist, Plan *lefttree,
plan->total_cost += cpu_operator_cost * plan->plan_rows * numCols;
/*
* As for Group, we make the unsupported assumption that there will be
* 10% as many tuples out as in.
* We make the unsupported assumption that there will be 10% as many
* tuples out as in. Any way to do better?
*/
plan->plan_rows *= 0.1;
if (plan->plan_rows < 1)

View File

@@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/initsplan.c,v 1.75 2002/09/04 20:31:21 momjian Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/initsplan.c,v 1.76 2002/11/19 23:21:58 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@@ -784,6 +784,71 @@ process_implied_equality(Query *root, Node *item1, Node *item2,
pull_varnos((Node *) clause));
}
/*
* vars_known_equal
* Detect whether two Vars are known equal due to equijoin clauses.
*
* This is not completely accurate since we avoid adding redundant restriction
* clauses to individual base rels (see qual_is_redundant). However, after
* the implied-equality-deduction phase, it is complete for Vars of different
* rels; that's sufficient for planned uses.
*/
bool
vars_known_equal(Query *root, Var *var1, Var *var2)
{
Index irel1;
Index irel2;
RelOptInfo *rel1;
List *restrictlist;
List *itm;
/*
* Would need more work here if we wanted to check for known equality
* of general clauses: there might be multiple base rels involved.
*/
Assert(IsA(var1, Var));
irel1 = var1->varno;
Assert(IsA(var2, Var));
irel2 = var2->varno;
/*
* If both vars belong to same rel, we need to look at that rel's
* baserestrictinfo list. If different rels, each will have a
* joininfo node for the other, and we can scan either list.
*/
rel1 = find_base_rel(root, irel1);
if (irel1 == irel2)
restrictlist = rel1->baserestrictinfo;
else
{
JoinInfo *joininfo = find_joininfo_node(rel1,
makeListi1(irel2));
restrictlist = joininfo->jinfo_restrictinfo;
}
/*
* Scan to see if equality is known.
*/
foreach(itm, restrictlist)
{
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(itm);
Node *left,
*right;
if (restrictinfo->mergejoinoperator == InvalidOid)
continue; /* ignore non-mergejoinable clauses */
/* We now know the restrictinfo clause is a binary opclause */
left = (Node *) get_leftop(restrictinfo->clause);
right = (Node *) get_rightop(restrictinfo->clause);
if ((equal(var1, left) && equal(var2, right)) ||
(equal(var2, left) && equal(var1, right)))
return true; /* found a matching clause */
}
return false;
}
/*
* qual_is_redundant
* Detect whether an implied-equality qual that turns out to be a

View File

@@ -8,14 +8,17 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/planner.c,v 1.128 2002/11/14 19:00:36 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/planner.c,v 1.129 2002/11/19 23:21:59 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <limits.h>
#include "catalog/pg_type.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#ifdef OPTIMIZER_DEBUG
#include "nodes/print.h"
@@ -35,6 +38,7 @@
#include "parser/parse_expr.h"
#include "rewrite/rewriteManip.h"
#include "utils/lsyscache.h"
#include "utils/selfuncs.h"
/* Expression kind codes for preprocess_expression */
@@ -160,6 +164,23 @@ subquery_planner(Query *parse, double tuple_fraction)
parse->jointree = (FromExpr *)
preprocess_jointree(parse, (Node *) parse->jointree);
/*
* Detect whether any rangetable entries are RTE_JOIN kind; if not,
* we can avoid the expense of doing flatten_join_alias_vars().
* This must be done after we have done pull_up_subqueries, of course.
*/
parse->hasJoinRTEs = false;
foreach(lst, parse->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(lst);
if (rte->rtekind == RTE_JOIN)
{
parse->hasJoinRTEs = true;
break;
}
}
/*
* Do expression preprocessing on targetlist and quals.
*/
@@ -694,9 +715,6 @@ preprocess_jointree(Query *parse, Node *jtnode)
static Node *
preprocess_expression(Query *parse, Node *expr, int kind)
{
bool has_join_rtes;
List *rt;
/*
* Simplify constant expressions.
*
@@ -737,22 +755,8 @@ preprocess_expression(Query *parse, Node *expr, int kind)
* with base-relation variables, to allow quals to be pushed down. We
* must do this after sublink processing, since it does not recurse
* into sublinks.
*
* The flattening pass is expensive enough that it seems worthwhile to
* scan the rangetable to see if we can avoid it.
*/
has_join_rtes = false;
foreach(rt, parse->rtable)
{
RangeTblEntry *rte = lfirst(rt);
if (rte->rtekind == RTE_JOIN)
{
has_join_rtes = true;
break;
}
}
if (has_join_rtes)
if (parse->hasJoinRTEs)
expr = flatten_join_alias_vars(expr, parse->rtable, false);
return expr;
@@ -931,6 +935,9 @@ grouping_planner(Query *parse, double tuple_fraction)
AttrNumber *groupColIdx = NULL;
Path *cheapest_path;
Path *sorted_path;
double dNumGroups = 0;
long numGroups = 0;
int numAggs = 0;
bool use_hashed_grouping = false;
/* Preprocess targetlist in case we are inside an INSERT/UPDATE. */
@@ -1006,6 +1013,19 @@ grouping_planner(Query *parse, double tuple_fraction)
sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
tlist);
/*
* Will need actual number of aggregates for estimating costs.
* Also, it's possible that optimization has eliminated all
* aggregates, and we may as well check for that here.
*/
if (parse->hasAggs)
{
numAggs = length(pull_agg_clause((Node *) tlist)) +
length(pull_agg_clause(parse->havingQual));
if (numAggs == 0)
parse->hasAggs = false;
}
/*
* Figure out whether we need a sorted result from query_planner.
*
@@ -1215,6 +1235,14 @@ grouping_planner(Query *parse, double tuple_fraction)
*/
if (parse->groupClause)
{
/*
* Always estimate the number of groups.
*/
dNumGroups = estimate_num_groups(parse,
parse->groupClause,
cheapest_path->parent->rows);
numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
/*
* Executor doesn't support hashed aggregation with DISTINCT
* aggregates. (Doing so would imply storing *all* the input
@@ -1226,10 +1254,30 @@ grouping_planner(Query *parse, double tuple_fraction)
use_hashed_grouping = false;
else
{
#if 0 /* much more to do here */
/* TEMPORARY HOTWIRE FOR TESTING */
use_hashed_grouping = true;
/*
* Use hashed grouping if (a) we think we can fit the
* hashtable into SortMem, *and* (b) the estimated cost
* is no more than doing it the other way. While avoiding
* the need for sorted input is usually a win, the fact
* that the output won't be sorted may be a loss; so we
* need to do an actual cost comparison.
*
* In most cases we have no good way to estimate the size of
* the transition value needed by an aggregate; arbitrarily
* assume it is 100 bytes. Also set the overhead per hashtable
* entry at 64 bytes.
*/
int hashentrysize = cheapest_path->parent->width + 64 +
numAggs * 100;
if (hashentrysize * dNumGroups <= SortMem * 1024L)
{
/* much more to do here */
#if 0
/* TEMPORARY HOTWIRE FOR TESTING */
use_hashed_grouping = true;
#endif
}
}
}
@@ -1319,6 +1367,8 @@ grouping_planner(Query *parse, double tuple_fraction)
AGG_HASHED,
length(parse->groupClause),
groupColIdx,
numGroups,
numAggs,
result_plan);
/* Hashed aggregation produces randomly-ordered results */
current_pathkeys = NIL;
@@ -1356,6 +1406,8 @@ grouping_planner(Query *parse, double tuple_fraction)
aggstrategy,
length(parse->groupClause),
groupColIdx,
numGroups,
numAggs,
result_plan);
}
else
@@ -1387,6 +1439,7 @@ grouping_planner(Query *parse, double tuple_fraction)
result_plan = (Plan *) make_group(tlist,
length(parse->groupClause),
groupColIdx,
dNumGroups,
result_plan);
}
}
@@ -1410,6 +1463,16 @@ grouping_planner(Query *parse, double tuple_fraction)
{
result_plan = (Plan *) make_unique(tlist, result_plan,
parse->distinctClause);
/*
* If there was grouping or aggregation, leave plan_rows as-is
* (ie, assume the result was already mostly unique). If not,
* it's reasonable to assume the UNIQUE filter has effects
* comparable to GROUP BY.
*/
if (!parse->groupClause && !parse->hasAggs)
result_plan->plan_rows = estimate_num_groups(parse,
parse->distinctClause,
result_plan->plan_rows);
}
/*

View File

@@ -9,7 +9,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/setrefs.c,v 1.81 2002/09/04 20:31:21 momjian Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/setrefs.c,v 1.82 2002/11/19 23:21:59 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@@ -439,7 +439,14 @@ join_references_mutator(Node *node,
return (Node *) newvar;
}
/* Perhaps it's a join alias that can be resolved to input vars? */
/* Return the Var unmodified, if it's for acceptable_rel */
if (var->varno == context->acceptable_rel)
return (Node *) copyObject(var);
/*
* Perhaps it's a join alias that can be resolved to input vars?
* We try this last since it's relatively slow.
*/
newnode = flatten_join_alias_vars((Node *) var,
context->rtable,
true);
@@ -450,13 +457,8 @@ join_references_mutator(Node *node,
return newnode;
}
/*
* No referent found for Var --- either raise an error, or return
* the Var unmodified if it's for acceptable_rel.
*/
if (var->varno != context->acceptable_rel)
elog(ERROR, "join_references: variable not in subplan target lists");
return (Node *) copyObject(var);
/* No referent found for Var */
elog(ERROR, "join_references: variable not in subplan target lists");
}
return expression_tree_mutator(node,
join_references_mutator,