1
0
mirror of https://github.com/postgres/postgres.git synced 2025-06-27 23:21:58 +03:00

New cost model for planning, incorporating a penalty for random page

accesses versus sequential accesses, a (very crude) estimate of the
effects of caching on random page accesses, and cost to evaluate WHERE-
clause expressions.  Export critical parameters for this model as SET
variables.  Also, create SET variables for the planner's enable flags
(enable_seqscan, enable_indexscan, etc) so that these can be controlled
more conveniently than via PGOPTIONS.

Planner now estimates both startup cost (cost before retrieving
first tuple) and total cost of each path, so it can optimize queries
with LIMIT on a reasonable basis by interpolating between these costs.
Same facility is a win for EXISTS(...) subqueries and some other cases.

Redesign pathkey representation to achieve a major speedup in planning
(I saw as much as 5X on a 10-way join); also minor changes in planner
to reduce memory consumption by recycling discarded Path nodes and
not constructing unnecessary lists.

Minor cleanups to display more-plausible costs in some cases in
EXPLAIN output.

Initdb forced by change in interface to index cost estimation
functions.
This commit is contained in:
Tom Lane
2000-02-15 20:49:31 +00:00
parent 553b5da6a1
commit b1577a7c78
50 changed files with 3200 additions and 1723 deletions

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/joinpath.c,v 1.51 2000/02/07 04:40:59 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/joinpath.c,v 1.52 2000/02/15 20:49:17 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@ -27,24 +27,21 @@
#include "parser/parsetree.h"
#include "utils/lsyscache.h"
static void sort_inner_and_outer(Query *root, RelOptInfo *joinrel,
RelOptInfo *outerrel, RelOptInfo *innerrel,
List *restrictlist, List *mergeclause_list);
static void match_unsorted_outer(Query *root, RelOptInfo *joinrel,
RelOptInfo *outerrel, RelOptInfo *innerrel,
List *restrictlist, List *mergeclause_list);
#ifdef NOT_USED
static void match_unsorted_inner(Query *root, RelOptInfo *joinrel,
RelOptInfo *outerrel, RelOptInfo *innerrel,
List *restrictlist, List *mergeclause_list);
#endif
static void hash_inner_and_outer(Query *root, RelOptInfo *joinrel,
RelOptInfo *outerrel, RelOptInfo *innerrel,
List *restrictlist);
static Path *best_innerjoin(List *join_paths, List *outer_relid);
static List *sort_inner_and_outer(RelOptInfo *joinrel,
RelOptInfo *outerrel,
RelOptInfo *innerrel,
List *restrictlist,
List *mergeclause_list);
static List *match_unsorted_outer(RelOptInfo *joinrel, RelOptInfo *outerrel,
RelOptInfo *innerrel, List *restrictlist,
List *outerpath_list, Path *cheapest_inner,
Path *best_innerjoin,
List *mergeclause_list);
static List *match_unsorted_inner(RelOptInfo *joinrel, RelOptInfo *outerrel,
RelOptInfo *innerrel, List *restrictlist,
List *innerpath_list,
List *mergeclause_list);
static List *hash_inner_and_outer(Query *root, RelOptInfo *joinrel,
RelOptInfo *outerrel, RelOptInfo *innerrel,
List *restrictlist);
static Selectivity estimate_disbursion(Query *root, Var *var);
static List *select_mergejoin_clauses(RelOptInfo *joinrel,
RelOptInfo *outerrel,
@ -70,14 +67,8 @@ add_paths_to_joinrel(Query *root,
RelOptInfo *innerrel,
List *restrictlist)
{
Path *bestinnerjoin;
List *mergeclause_list = NIL;
/*
* Get the best inner join for match_unsorted_outer().
*/
bestinnerjoin = best_innerjoin(innerrel->innerjoin, outerrel->relids);
/*
* Find potential mergejoin clauses.
*/
@ -91,84 +82,41 @@ add_paths_to_joinrel(Query *root,
* 1. Consider mergejoin paths where both relations must be
* explicitly sorted.
*/
add_pathlist(joinrel, sort_inner_and_outer(joinrel,
outerrel,
innerrel,
restrictlist,
mergeclause_list));
sort_inner_and_outer(root, joinrel, outerrel, innerrel,
restrictlist, mergeclause_list);
/*
* 2. Consider paths where the outer relation need not be
* explicitly sorted. This includes both nestloops and
* mergejoins where the outer path is already ordered.
*/
add_pathlist(joinrel, match_unsorted_outer(joinrel,
outerrel,
innerrel,
restrictlist,
outerrel->pathlist,
innerrel->cheapestpath,
bestinnerjoin,
mergeclause_list));
match_unsorted_outer(root, joinrel, outerrel, innerrel,
restrictlist, mergeclause_list);
#ifdef NOT_USED
/*
* 3. Consider paths where the inner relation need not be
* explicitly sorted. This includes mergejoins only
* (nestloops were already built in match_unsorted_outer).
*
* Diked out as redundant 2/13/2000 -- tgl. There isn't any
* really significant difference between the inner and outer
* side of a mergejoin, so match_unsorted_inner creates no paths
* that aren't equivalent to those made by match_unsorted_outer
* when add_paths_to_joinrel() is invoked with the two rels given
* in the other order.
*/
add_pathlist(joinrel, match_unsorted_inner(joinrel,
outerrel,
innerrel,
restrictlist,
innerrel->pathlist,
mergeclause_list));
match_unsorted_inner(root, joinrel, outerrel, innerrel,
restrictlist, mergeclause_list);
#endif
/*
* 4. Consider paths where both outer and inner relations must be
* hashed before being joined.
*/
if (enable_hashjoin)
add_pathlist(joinrel, hash_inner_and_outer(root,
joinrel,
outerrel,
innerrel,
restrictlist));
}
/*
* best_innerjoin
* Find the cheapest index path that has already been identified by
* indexable_joinclauses() as being a possible inner path for the given
* outer relation(s) in a nestloop join.
*
* 'join_paths' is a list of potential inner indexscan join paths
* 'outer_relids' is the relid list of the outer join relation
*
* Returns the pathnode of the best path, or NULL if there's no
* usable path.
*/
static Path *
best_innerjoin(List *join_paths, Relids outer_relids)
{
Path *cheapest = (Path *) NULL;
List *join_path;
foreach(join_path, join_paths)
{
Path *path = (Path *) lfirst(join_path);
Assert(IsA(path, IndexPath));
/* path->joinrelids is the set of base rels that must be part of
* outer_relids in order to use this inner path, because those
* rels are used in the index join quals of this inner path.
*/
if (is_subseti(((IndexPath *) path)->joinrelids, outer_relids) &&
(cheapest == NULL ||
path_is_cheaper(path, cheapest)))
cheapest = path;
}
return cheapest;
hash_inner_and_outer(root, joinrel, outerrel, innerrel,
restrictlist);
}
/*
@ -183,17 +131,15 @@ best_innerjoin(List *join_paths, Relids outer_relids)
* clauses that apply to this join
* 'mergeclause_list' is a list of RestrictInfo nodes for available
* mergejoin clauses in this join
*
* Returns a list of mergejoin paths.
*/
static List *
sort_inner_and_outer(RelOptInfo *joinrel,
static void
sort_inner_and_outer(Query *root,
RelOptInfo *joinrel,
RelOptInfo *outerrel,
RelOptInfo *innerrel,
List *restrictlist,
List *mergeclause_list)
{
List *path_list = NIL;
List *i;
/*
@ -223,7 +169,6 @@ sort_inner_and_outer(RelOptInfo *joinrel,
List *outerkeys;
List *innerkeys;
List *merge_pathkeys;
MergePath *path_node;
/* Make a mergeclause list with this guy first. */
curclause_list = lcons(restrictinfo,
@ -231,31 +176,37 @@ sort_inner_and_outer(RelOptInfo *joinrel,
listCopy(mergeclause_list)));
/* Build sort pathkeys for both sides.
*
* Note: it's possible that the cheapest path will already be
* sorted properly --- create_mergejoin_path will detect that case
* and suppress an explicit sort step.
* Note: it's possible that the cheapest paths will already be
* sorted properly. create_mergejoin_path will detect that case
* and suppress an explicit sort step, so we needn't do so here.
*/
outerkeys = make_pathkeys_for_mergeclauses(curclause_list,
outerkeys = make_pathkeys_for_mergeclauses(root,
curclause_list,
outerrel->targetlist);
innerkeys = make_pathkeys_for_mergeclauses(curclause_list,
innerkeys = make_pathkeys_for_mergeclauses(root,
curclause_list,
innerrel->targetlist);
/* Build pathkeys representing output sort order. */
merge_pathkeys = build_join_pathkeys(outerkeys,
joinrel->targetlist,
curclause_list);
/* And now we can make the path. */
path_node = create_mergejoin_path(joinrel,
outerrel->cheapestpath,
innerrel->cheapestpath,
restrictlist,
merge_pathkeys,
get_actual_clauses(curclause_list),
outerkeys,
innerkeys);
root->equi_key_list);
path_list = lappend(path_list, path_node);
/*
* And now we can make the path. We only consider the cheapest-
* total-cost input paths, since we are assuming here that a sort
* is required. We will consider cheapest-startup-cost input paths
* later, and only if they don't need a sort.
*/
add_path(joinrel, (Path *)
create_mergejoin_path(joinrel,
outerrel->cheapest_total_path,
innerrel->cheapest_total_path,
restrictlist,
merge_pathkeys,
get_actual_clauses(curclause_list),
outerkeys,
innerkeys));
}
return path_list;
}
/*
@ -266,74 +217,56 @@ sort_inner_and_outer(RelOptInfo *joinrel,
* only outer paths that are already ordered well enough for merging).
*
* We always generate a nestloop path for each available outer path.
* If an indexscan inner path exists that is compatible with this outer rel
* and cheaper than the cheapest general-purpose inner path, then we use
* the indexscan inner path; else we use the cheapest general-purpose inner.
* In fact we may generate as many as three: one on the cheapest-total-cost
* inner path, one on the cheapest-startup-cost inner path (if different),
* and one on the best inner-indexscan path (if any).
*
* We also consider mergejoins if mergejoin clauses are available. We have
* two ways to generate the inner path for a mergejoin: use the cheapest
* inner path (sorting it if it's not suitably ordered already), or using an
* inner path that is already suitably ordered for the merge. If the
* cheapest inner path is suitably ordered, then by definition it's the one
* to use. Otherwise, we look for ordered paths that are cheaper than the
* cheapest inner + sort costs. If we have several mergeclauses, it could be
* that there is no inner path (or only a very expensive one) for the full
* list of mergeclauses, but better paths exist if we truncate the
* mergeclause list (thereby discarding some sort key requirements). So, we
* consider truncations of the mergeclause list as well as the full list.
* In any case, we find the cheapest suitable path and generate a single
* output mergejoin path. (Since all the possible mergejoins will have
* identical output pathkeys, there is no need to keep any but the cheapest.)
* two ways to generate the inner path for a mergejoin: sort the cheapest
* inner path, or use an inner path that is already suitably ordered for the
* merge. If we have several mergeclauses, it could be that there is no inner
* path (or only a very expensive one) for the full list of mergeclauses, but
* better paths exist if we truncate the mergeclause list (thereby discarding
* some sort key requirements). So, we consider truncations of the
* mergeclause list as well as the full list. (Ideally we'd consider all
* subsets of the mergeclause list, but that seems way too expensive.)
*
* 'joinrel' is the join relation
* 'outerrel' is the outer join relation
* 'innerrel' is the inner join relation
* 'restrictlist' contains all of the RestrictInfo nodes for restriction
* clauses that apply to this join
* 'outerpath_list' is the list of possible outer paths
* 'cheapest_inner' is the cheapest inner path
* 'best_innerjoin' is the best inner index path (if any)
* 'mergeclause_list' is a list of RestrictInfo nodes for available
* mergejoin clauses in this join
*
* Returns a list of possible join path nodes.
*/
static List *
match_unsorted_outer(RelOptInfo *joinrel,
static void
match_unsorted_outer(Query *root,
RelOptInfo *joinrel,
RelOptInfo *outerrel,
RelOptInfo *innerrel,
List *restrictlist,
List *outerpath_list,
Path *cheapest_inner,
Path *best_innerjoin,
List *mergeclause_list)
{
List *path_list = NIL;
Path *nestinnerpath;
Path *bestinnerjoin;
List *i;
/*
* We only use the best innerjoin indexpath if it is cheaper
* than the cheapest general-purpose inner path.
* Get the best innerjoin indexpath (if any) for this outer rel.
* It's the same for all outer paths.
*/
if (best_innerjoin &&
path_is_cheaper(best_innerjoin, cheapest_inner))
nestinnerpath = best_innerjoin;
else
nestinnerpath = cheapest_inner;
bestinnerjoin = best_innerjoin(innerrel->innerjoin, outerrel->relids);
foreach(i, outerpath_list)
foreach(i, outerrel->pathlist)
{
Path *outerpath = (Path *) lfirst(i);
List *mergeclauses;
List *merge_pathkeys;
List *mergeclauses;
List *innersortkeys;
Path *mergeinnerpath;
int mergeclausecount;
List *trialsortkeys;
Path *cheapest_startup_inner;
Path *cheapest_total_inner;
int clausecnt;
/* Look for useful mergeclauses (if any) */
mergeclauses = find_mergeclauses_for_pathkeys(outerpath->pathkeys,
mergeclause_list);
/*
* The result will have this sort order (even if it is implemented
* as a nestloop, and even if some of the mergeclauses are implemented
@ -341,91 +274,137 @@ match_unsorted_outer(RelOptInfo *joinrel,
*/
merge_pathkeys = build_join_pathkeys(outerpath->pathkeys,
joinrel->targetlist,
mergeclauses);
root->equi_key_list);
/* Always consider a nestloop join with this outer and best inner. */
path_list = lappend(path_list,
create_nestloop_path(joinrel,
outerpath,
nestinnerpath,
restrictlist,
merge_pathkeys));
/*
* Always consider a nestloop join with this outer and cheapest-
* total-cost inner. Consider nestloops using the cheapest-
* startup-cost inner as well, and the best innerjoin indexpath.
*/
add_path(joinrel, (Path *)
create_nestloop_path(joinrel,
outerpath,
innerrel->cheapest_total_path,
restrictlist,
merge_pathkeys));
if (innerrel->cheapest_startup_path != innerrel->cheapest_total_path)
add_path(joinrel, (Path *)
create_nestloop_path(joinrel,
outerpath,
innerrel->cheapest_startup_path,
restrictlist,
merge_pathkeys));
if (bestinnerjoin != NULL)
add_path(joinrel, (Path *)
create_nestloop_path(joinrel,
outerpath,
bestinnerjoin,
restrictlist,
merge_pathkeys));
/* Look for useful mergeclauses (if any) */
mergeclauses = find_mergeclauses_for_pathkeys(outerpath->pathkeys,
mergeclause_list);
/* Done with this outer path if no chance for a mergejoin */
if (mergeclauses == NIL)
continue;
/* Compute the required ordering of the inner path */
innersortkeys = make_pathkeys_for_mergeclauses(mergeclauses,
innersortkeys = make_pathkeys_for_mergeclauses(root,
mergeclauses,
innerrel->targetlist);
/* Set up on the assumption that we will use the cheapest_inner */
mergeinnerpath = cheapest_inner;
mergeclausecount = length(mergeclauses);
/* If the cheapest_inner doesn't need to be sorted, it is the winner
* by definition.
/*
* Generate a mergejoin on the basis of sorting the cheapest inner.
* Since a sort will be needed, only cheapest total cost matters.
*/
if (pathkeys_contained_in(innersortkeys,
cheapest_inner->pathkeys))
{
/* cheapest_inner is the winner */
innersortkeys = NIL; /* we do not need to sort it... */
}
else
{
/* look for a presorted path that's cheaper */
List *trialsortkeys = listCopy(innersortkeys);
Cost cheapest_cost;
int clausecount;
add_path(joinrel, (Path *)
create_mergejoin_path(joinrel,
outerpath,
innerrel->cheapest_total_path,
restrictlist,
merge_pathkeys,
get_actual_clauses(mergeclauses),
NIL,
innersortkeys));
cheapest_cost = cheapest_inner->path_cost +
cost_sort(innersortkeys, innerrel->rows, innerrel->width);
/*
* Look for presorted inner paths that satisfy the mergeclause list
* or any truncation thereof. Here, we consider both cheap startup
* cost and cheap total cost.
*/
trialsortkeys = listCopy(innersortkeys); /* modifiable copy */
cheapest_startup_inner = NULL;
cheapest_total_inner = NULL;
for (clausecount = mergeclausecount;
clausecount > 0;
clausecount--)
for (clausecnt = length(mergeclauses); clausecnt > 0; clausecnt--)
{
Path *innerpath;
/* Look for an inner path ordered well enough to merge with
* the first 'clausecnt' mergeclauses. NB: trialsortkeys list
* is modified destructively, which is why we made a copy...
*/
trialsortkeys = ltruncate(clausecnt, trialsortkeys);
innerpath = get_cheapest_path_for_pathkeys(innerrel->pathlist,
trialsortkeys,
TOTAL_COST);
if (innerpath != NULL &&
(cheapest_total_inner == NULL ||
compare_path_costs(innerpath, cheapest_total_inner,
TOTAL_COST) < 0))
{
Path *trialinnerpath;
/* Found a cheap (or even-cheaper) sorted path */
List *newclauses;
/* Look for an inner path ordered well enough to merge with
* the first 'clausecount' mergeclauses. NB: trialsortkeys
* is modified destructively, which is why we made a copy...
*/
trialinnerpath =
get_cheapest_path_for_pathkeys(innerrel->pathlist,
ltruncate(clausecount,
trialsortkeys),
false);
if (trialinnerpath != NULL &&
trialinnerpath->path_cost < cheapest_cost)
newclauses = ltruncate(clausecnt,
get_actual_clauses(mergeclauses));
add_path(joinrel, (Path *)
create_mergejoin_path(joinrel,
outerpath,
innerpath,
restrictlist,
merge_pathkeys,
newclauses,
NIL,
NIL));
cheapest_total_inner = innerpath;
}
/* Same on the basis of cheapest startup cost ... */
innerpath = get_cheapest_path_for_pathkeys(innerrel->pathlist,
trialsortkeys,
STARTUP_COST);
if (innerpath != NULL &&
(cheapest_startup_inner == NULL ||
compare_path_costs(innerpath, cheapest_startup_inner,
STARTUP_COST) < 0))
{
/* Found a cheap (or even-cheaper) sorted path */
if (innerpath != cheapest_total_inner)
{
/* Found a cheaper (or even-cheaper) sorted path */
cheapest_cost = trialinnerpath->path_cost;
mergeinnerpath = trialinnerpath;
mergeclausecount = clausecount;
innersortkeys = NIL; /* we will not need to sort it... */
List *newclauses;
newclauses = ltruncate(clausecnt,
get_actual_clauses(mergeclauses));
add_path(joinrel, (Path *)
create_mergejoin_path(joinrel,
outerpath,
innerpath,
restrictlist,
merge_pathkeys,
newclauses,
NIL,
NIL));
}
cheapest_startup_inner = innerpath;
}
}
/* Finally, we can build the mergejoin path */
mergeclauses = ltruncate(mergeclausecount,
get_actual_clauses(mergeclauses));
path_list = lappend(path_list,
create_mergejoin_path(joinrel,
outerpath,
mergeinnerpath,
restrictlist,
merge_pathkeys,
mergeclauses,
NIL,
innersortkeys));
}
return path_list;
}
#ifdef NOT_USED
/*
* match_unsorted_inner
* Generate mergejoin paths that use an explicit sort of the outer path
@ -436,86 +415,105 @@ match_unsorted_outer(RelOptInfo *joinrel,
* 'innerrel' is the inner join relation
* 'restrictlist' contains all of the RestrictInfo nodes for restriction
* clauses that apply to this join
* 'innerpath_list' is the list of possible inner join paths
* 'mergeclause_list' is a list of RestrictInfo nodes for available
* mergejoin clauses in this join
*
* Returns a list of possible merge paths.
*/
static List *
match_unsorted_inner(RelOptInfo *joinrel,
static void
match_unsorted_inner(Query *root,
RelOptInfo *joinrel,
RelOptInfo *outerrel,
RelOptInfo *innerrel,
List *restrictlist,
List *innerpath_list,
List *mergeclause_list)
{
List *path_list = NIL;
List *i;
foreach(i, innerpath_list)
foreach(i, innerrel->pathlist)
{
Path *innerpath = (Path *) lfirst(i);
List *mergeclauses;
List *outersortkeys;
List *merge_pathkeys;
Path *totalouterpath;
Path *startupouterpath;
/* Look for useful mergeclauses (if any) */
mergeclauses = find_mergeclauses_for_pathkeys(innerpath->pathkeys,
mergeclause_list);
if (mergeclauses == NIL)
continue;
if (mergeclauses)
/* Compute the required ordering of the outer path */
outersortkeys = make_pathkeys_for_mergeclauses(root,
mergeclauses,
outerrel->targetlist);
/*
* Generate a mergejoin on the basis of sorting the cheapest outer.
* Since a sort will be needed, only cheapest total cost matters.
*/
merge_pathkeys = build_join_pathkeys(outersortkeys,
joinrel->targetlist,
root->equi_key_list);
add_path(joinrel, (Path *)
create_mergejoin_path(joinrel,
outerrel->cheapest_total_path,
innerpath,
restrictlist,
merge_pathkeys,
get_actual_clauses(mergeclauses),
outersortkeys,
NIL));
/*
* Now generate mergejoins based on already-sufficiently-ordered
* outer paths. There's likely to be some redundancy here with paths
* already generated by merge_unsorted_outer ... but since
* merge_unsorted_outer doesn't consider all permutations of the
* mergeclause list, it may fail to notice that this particular
* innerpath could have been used with this outerpath.
*/
totalouterpath = get_cheapest_path_for_pathkeys(outerrel->pathlist,
outersortkeys,
TOTAL_COST);
if (totalouterpath == NULL)
continue; /* there won't be a startup-cost path either */
merge_pathkeys = build_join_pathkeys(totalouterpath->pathkeys,
joinrel->targetlist,
root->equi_key_list);
add_path(joinrel, (Path *)
create_mergejoin_path(joinrel,
totalouterpath,
innerpath,
restrictlist,
merge_pathkeys,
get_actual_clauses(mergeclauses),
NIL,
NIL));
startupouterpath = get_cheapest_path_for_pathkeys(outerrel->pathlist,
outersortkeys,
STARTUP_COST);
if (startupouterpath != NULL && startupouterpath != totalouterpath)
{
List *outersortkeys;
Path *mergeouterpath;
List *merge_pathkeys;
/* Compute the required ordering of the outer path */
outersortkeys =
make_pathkeys_for_mergeclauses(mergeclauses,
outerrel->targetlist);
/* Look for an outer path already ordered well enough to merge */
mergeouterpath =
get_cheapest_path_for_pathkeys(outerrel->pathlist,
outersortkeys,
false);
/* Should we use the mergeouter, or sort the cheapest outer? */
if (mergeouterpath != NULL &&
mergeouterpath->path_cost <=
(outerrel->cheapestpath->path_cost +
cost_sort(outersortkeys, outerrel->rows, outerrel->width)))
{
/* Use mergeouterpath */
outersortkeys = NIL; /* no explicit sort step */
}
else
{
/* Use outerrel->cheapestpath, with the outersortkeys */
mergeouterpath = outerrel->cheapestpath;
}
/* Compute pathkeys the result will have */
merge_pathkeys = build_join_pathkeys(
outersortkeys ? outersortkeys : mergeouterpath->pathkeys,
joinrel->targetlist,
mergeclauses);
mergeclauses = get_actual_clauses(mergeclauses);
path_list = lappend(path_list,
create_mergejoin_path(joinrel,
mergeouterpath,
innerpath,
restrictlist,
merge_pathkeys,
mergeclauses,
outersortkeys,
NIL));
merge_pathkeys = build_join_pathkeys(startupouterpath->pathkeys,
joinrel->targetlist,
root->equi_key_list);
add_path(joinrel, (Path *)
create_mergejoin_path(joinrel,
startupouterpath,
innerpath,
restrictlist,
merge_pathkeys,
get_actual_clauses(mergeclauses),
NIL,
NIL));
}
}
return path_list;
}
#endif
/*
* hash_inner_and_outer
* Create hashjoin join paths by explicitly hashing both the outer and
@ -526,17 +524,14 @@ match_unsorted_inner(RelOptInfo *joinrel,
* 'innerrel' is the inner join relation
* 'restrictlist' contains all of the RestrictInfo nodes for restriction
* clauses that apply to this join
*
* Returns a list of hashjoin paths.
*/
static List *
static void
hash_inner_and_outer(Query *root,
RelOptInfo *joinrel,
RelOptInfo *outerrel,
RelOptInfo *innerrel,
List *restrictlist)
{
List *hpath_list = NIL;
Relids outerrelids = outerrel->relids;
Relids innerrelids = innerrel->relids;
List *i;
@ -558,7 +553,6 @@ hash_inner_and_outer(Query *root,
*right,
*inner;
Selectivity innerdisbursion;
HashPath *hash_path;
if (restrictinfo->hashjoinoperator == InvalidOid)
continue; /* not hashjoinable */
@ -581,17 +575,66 @@ hash_inner_and_outer(Query *root,
/* estimate disbursion of inner var for costing purposes */
innerdisbursion = estimate_disbursion(root, inner);
hash_path = create_hashjoin_path(joinrel,
outerrel->cheapestpath,
innerrel->cheapestpath,
restrictlist,
lcons(clause, NIL),
innerdisbursion);
hpath_list = lappend(hpath_list, hash_path);
/*
* We consider both the cheapest-total-cost and cheapest-startup-cost
* outer paths. There's no need to consider any but the cheapest-
* total-cost inner path, however.
*/
add_path(joinrel, (Path *)
create_hashjoin_path(joinrel,
outerrel->cheapest_total_path,
innerrel->cheapest_total_path,
restrictlist,
lcons(clause, NIL),
innerdisbursion));
if (outerrel->cheapest_startup_path != outerrel->cheapest_total_path)
add_path(joinrel, (Path *)
create_hashjoin_path(joinrel,
outerrel->cheapest_startup_path,
innerrel->cheapest_total_path,
restrictlist,
lcons(clause, NIL),
innerdisbursion));
}
}
return hpath_list;
/*
* best_innerjoin
* Find the cheapest index path that has already been identified by
* indexable_joinclauses() as being a possible inner path for the given
* outer relation(s) in a nestloop join.
*
* We compare indexpaths on total_cost only, assuming that they will all have
* zero or negligible startup_cost. We might have to think harder someday...
*
* 'join_paths' is a list of potential inner indexscan join paths
* 'outer_relids' is the relid list of the outer join relation
*
* Returns the pathnode of the best path, or NULL if there's no
* usable path.
*/
static Path *
best_innerjoin(List *join_paths, Relids outer_relids)
{
Path *cheapest = (Path *) NULL;
List *join_path;
foreach(join_path, join_paths)
{
Path *path = (Path *) lfirst(join_path);
Assert(IsA(path, IndexPath));
/* path->joinrelids is the set of base rels that must be part of
* outer_relids in order to use this inner path, because those
* rels are used in the index join quals of this inner path.
*/
if (is_subseti(((IndexPath *) path)->joinrelids, outer_relids) &&
(cheapest == NULL ||
compare_path_costs(path, cheapest, TOTAL_COST) < 0))
cheapest = path;
}
return cheapest;
}
/*