mirror of
https://github.com/postgres/postgres.git
synced 2025-08-28 18:48:04 +03:00
Move hash_any prototype from access/hash.h to utils/hashutils.h
... as well as its implementation from backend/access/hash/hashfunc.c to backend/utils/hash/hashfn.c. access/hash is the place for the hash index AM, not really appropriate for generic facilities, which is what hash_any is; having things the old way meant that anything using hash_any had to include the AM's include file, pointlessly polluting its namespace with unrelated, unnecessary cruft. Also move the HTEqual strategy number to access/stratnum.h from access/hash.h. To avoid breaking third-party extension code, add an #include "utils/hashutils.h" to access/hash.h. (An easily removed line by committers who enjoy their asbestos suits to protect them from angry extension authors.) Discussion: https://postgr.es/m/201901251935.ser5e4h6djt2@alvherre.pgsql
This commit is contained in:
@@ -28,6 +28,7 @@
|
||||
|
||||
#include "access/hash.h"
|
||||
#include "utils/builtins.h"
|
||||
#include "utils/hashutils.h"
|
||||
|
||||
/*
|
||||
* Datatype-specific hash functions.
|
||||
@@ -307,629 +308,3 @@ hashvarlenaextended(PG_FUNCTION_ARGS)
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
* This hash function was written by Bob Jenkins
|
||||
* (bob_jenkins@burtleburtle.net), and superficially adapted
|
||||
* for PostgreSQL by Neil Conway. For more information on this
|
||||
* hash function, see http://burtleburtle.net/bob/hash/doobs.html,
|
||||
* or Bob's article in Dr. Dobb's Journal, Sept. 1997.
|
||||
*
|
||||
* In the current code, we have adopted Bob's 2006 update of his hash
|
||||
* function to fetch the data a word at a time when it is suitably aligned.
|
||||
* This makes for a useful speedup, at the cost of having to maintain
|
||||
* four code paths (aligned vs unaligned, and little-endian vs big-endian).
|
||||
* It also uses two separate mixing functions mix() and final(), instead
|
||||
* of a slower multi-purpose function.
|
||||
*/
|
||||
|
||||
/* Get a bit mask of the bits set in non-uint32 aligned addresses */
|
||||
#define UINT32_ALIGN_MASK (sizeof(uint32) - 1)
|
||||
|
||||
/* Rotate a uint32 value left by k bits - note multiple evaluation! */
|
||||
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
|
||||
|
||||
/*----------
|
||||
* mix -- mix 3 32-bit values reversibly.
|
||||
*
|
||||
* This is reversible, so any information in (a,b,c) before mix() is
|
||||
* still in (a,b,c) after mix().
|
||||
*
|
||||
* If four pairs of (a,b,c) inputs are run through mix(), or through
|
||||
* mix() in reverse, there are at least 32 bits of the output that
|
||||
* are sometimes the same for one pair and different for another pair.
|
||||
* This was tested for:
|
||||
* * pairs that differed by one bit, by two bits, in any combination
|
||||
* of top bits of (a,b,c), or in any combination of bottom bits of
|
||||
* (a,b,c).
|
||||
* * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
||||
* the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
||||
* is commonly produced by subtraction) look like a single 1-bit
|
||||
* difference.
|
||||
* * the base values were pseudorandom, all zero but one bit set, or
|
||||
* all zero plus a counter that starts at zero.
|
||||
*
|
||||
* This does not achieve avalanche. There are input bits of (a,b,c)
|
||||
* that fail to affect some output bits of (a,b,c), especially of a. The
|
||||
* most thoroughly mixed value is c, but it doesn't really even achieve
|
||||
* avalanche in c.
|
||||
*
|
||||
* This allows some parallelism. Read-after-writes are good at doubling
|
||||
* the number of bits affected, so the goal of mixing pulls in the opposite
|
||||
* direction from the goal of parallelism. I did what I could. Rotates
|
||||
* seem to cost as much as shifts on every machine I could lay my hands on,
|
||||
* and rotates are much kinder to the top and bottom bits, so I used rotates.
|
||||
*----------
|
||||
*/
|
||||
#define mix(a,b,c) \
|
||||
{ \
|
||||
a -= c; a ^= rot(c, 4); c += b; \
|
||||
b -= a; b ^= rot(a, 6); a += c; \
|
||||
c -= b; c ^= rot(b, 8); b += a; \
|
||||
a -= c; a ^= rot(c,16); c += b; \
|
||||
b -= a; b ^= rot(a,19); a += c; \
|
||||
c -= b; c ^= rot(b, 4); b += a; \
|
||||
}
|
||||
|
||||
/*----------
|
||||
* final -- final mixing of 3 32-bit values (a,b,c) into c
|
||||
*
|
||||
* Pairs of (a,b,c) values differing in only a few bits will usually
|
||||
* produce values of c that look totally different. This was tested for
|
||||
* * pairs that differed by one bit, by two bits, in any combination
|
||||
* of top bits of (a,b,c), or in any combination of bottom bits of
|
||||
* (a,b,c).
|
||||
* * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
||||
* the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
||||
* is commonly produced by subtraction) look like a single 1-bit
|
||||
* difference.
|
||||
* * the base values were pseudorandom, all zero but one bit set, or
|
||||
* all zero plus a counter that starts at zero.
|
||||
*
|
||||
* The use of separate functions for mix() and final() allow for a
|
||||
* substantial performance increase since final() does not need to
|
||||
* do well in reverse, but is does need to affect all output bits.
|
||||
* mix(), on the other hand, does not need to affect all output
|
||||
* bits (affecting 32 bits is enough). The original hash function had
|
||||
* a single mixing operation that had to satisfy both sets of requirements
|
||||
* and was slower as a result.
|
||||
*----------
|
||||
*/
|
||||
#define final(a,b,c) \
|
||||
{ \
|
||||
c ^= b; c -= rot(b,14); \
|
||||
a ^= c; a -= rot(c,11); \
|
||||
b ^= a; b -= rot(a,25); \
|
||||
c ^= b; c -= rot(b,16); \
|
||||
a ^= c; a -= rot(c, 4); \
|
||||
b ^= a; b -= rot(a,14); \
|
||||
c ^= b; c -= rot(b,24); \
|
||||
}
|
||||
|
||||
/*
|
||||
* hash_any() -- hash a variable-length key into a 32-bit value
|
||||
* k : the key (the unaligned variable-length array of bytes)
|
||||
* len : the length of the key, counting by bytes
|
||||
*
|
||||
* Returns a uint32 value. Every bit of the key affects every bit of
|
||||
* the return value. Every 1-bit and 2-bit delta achieves avalanche.
|
||||
* About 6*len+35 instructions. The best hash table sizes are powers
|
||||
* of 2. There is no need to do mod a prime (mod is sooo slow!).
|
||||
* If you need less than 32 bits, use a bitmask.
|
||||
*
|
||||
* This procedure must never throw elog(ERROR); the ResourceOwner code
|
||||
* relies on this not to fail.
|
||||
*
|
||||
* Note: we could easily change this function to return a 64-bit hash value
|
||||
* by using the final values of both b and c. b is perhaps a little less
|
||||
* well mixed than c, however.
|
||||
*/
|
||||
Datum
|
||||
hash_any(register const unsigned char *k, register int keylen)
|
||||
{
|
||||
register uint32 a,
|
||||
b,
|
||||
c,
|
||||
len;
|
||||
|
||||
/* Set up the internal state */
|
||||
len = keylen;
|
||||
a = b = c = 0x9e3779b9 + len + 3923095;
|
||||
|
||||
/* If the source pointer is word-aligned, we use word-wide fetches */
|
||||
if (((uintptr_t) k & UINT32_ALIGN_MASK) == 0)
|
||||
{
|
||||
/* Code path for aligned source data */
|
||||
register const uint32 *ka = (const uint32 *) k;
|
||||
|
||||
/* handle most of the key */
|
||||
while (len >= 12)
|
||||
{
|
||||
a += ka[0];
|
||||
b += ka[1];
|
||||
c += ka[2];
|
||||
mix(a, b, c);
|
||||
ka += 3;
|
||||
len -= 12;
|
||||
}
|
||||
|
||||
/* handle the last 11 bytes */
|
||||
k = (const unsigned char *) ka;
|
||||
#ifdef WORDS_BIGENDIAN
|
||||
switch (len)
|
||||
{
|
||||
case 11:
|
||||
c += ((uint32) k[10] << 8);
|
||||
/* fall through */
|
||||
case 10:
|
||||
c += ((uint32) k[9] << 16);
|
||||
/* fall through */
|
||||
case 9:
|
||||
c += ((uint32) k[8] << 24);
|
||||
/* fall through */
|
||||
case 8:
|
||||
/* the lowest byte of c is reserved for the length */
|
||||
b += ka[1];
|
||||
a += ka[0];
|
||||
break;
|
||||
case 7:
|
||||
b += ((uint32) k[6] << 8);
|
||||
/* fall through */
|
||||
case 6:
|
||||
b += ((uint32) k[5] << 16);
|
||||
/* fall through */
|
||||
case 5:
|
||||
b += ((uint32) k[4] << 24);
|
||||
/* fall through */
|
||||
case 4:
|
||||
a += ka[0];
|
||||
break;
|
||||
case 3:
|
||||
a += ((uint32) k[2] << 8);
|
||||
/* fall through */
|
||||
case 2:
|
||||
a += ((uint32) k[1] << 16);
|
||||
/* fall through */
|
||||
case 1:
|
||||
a += ((uint32) k[0] << 24);
|
||||
/* case 0: nothing left to add */
|
||||
}
|
||||
#else /* !WORDS_BIGENDIAN */
|
||||
switch (len)
|
||||
{
|
||||
case 11:
|
||||
c += ((uint32) k[10] << 24);
|
||||
/* fall through */
|
||||
case 10:
|
||||
c += ((uint32) k[9] << 16);
|
||||
/* fall through */
|
||||
case 9:
|
||||
c += ((uint32) k[8] << 8);
|
||||
/* fall through */
|
||||
case 8:
|
||||
/* the lowest byte of c is reserved for the length */
|
||||
b += ka[1];
|
||||
a += ka[0];
|
||||
break;
|
||||
case 7:
|
||||
b += ((uint32) k[6] << 16);
|
||||
/* fall through */
|
||||
case 6:
|
||||
b += ((uint32) k[5] << 8);
|
||||
/* fall through */
|
||||
case 5:
|
||||
b += k[4];
|
||||
/* fall through */
|
||||
case 4:
|
||||
a += ka[0];
|
||||
break;
|
||||
case 3:
|
||||
a += ((uint32) k[2] << 16);
|
||||
/* fall through */
|
||||
case 2:
|
||||
a += ((uint32) k[1] << 8);
|
||||
/* fall through */
|
||||
case 1:
|
||||
a += k[0];
|
||||
/* case 0: nothing left to add */
|
||||
}
|
||||
#endif /* WORDS_BIGENDIAN */
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Code path for non-aligned source data */
|
||||
|
||||
/* handle most of the key */
|
||||
while (len >= 12)
|
||||
{
|
||||
#ifdef WORDS_BIGENDIAN
|
||||
a += (k[3] + ((uint32) k[2] << 8) + ((uint32) k[1] << 16) + ((uint32) k[0] << 24));
|
||||
b += (k[7] + ((uint32) k[6] << 8) + ((uint32) k[5] << 16) + ((uint32) k[4] << 24));
|
||||
c += (k[11] + ((uint32) k[10] << 8) + ((uint32) k[9] << 16) + ((uint32) k[8] << 24));
|
||||
#else /* !WORDS_BIGENDIAN */
|
||||
a += (k[0] + ((uint32) k[1] << 8) + ((uint32) k[2] << 16) + ((uint32) k[3] << 24));
|
||||
b += (k[4] + ((uint32) k[5] << 8) + ((uint32) k[6] << 16) + ((uint32) k[7] << 24));
|
||||
c += (k[8] + ((uint32) k[9] << 8) + ((uint32) k[10] << 16) + ((uint32) k[11] << 24));
|
||||
#endif /* WORDS_BIGENDIAN */
|
||||
mix(a, b, c);
|
||||
k += 12;
|
||||
len -= 12;
|
||||
}
|
||||
|
||||
/* handle the last 11 bytes */
|
||||
#ifdef WORDS_BIGENDIAN
|
||||
switch (len)
|
||||
{
|
||||
case 11:
|
||||
c += ((uint32) k[10] << 8);
|
||||
/* fall through */
|
||||
case 10:
|
||||
c += ((uint32) k[9] << 16);
|
||||
/* fall through */
|
||||
case 9:
|
||||
c += ((uint32) k[8] << 24);
|
||||
/* fall through */
|
||||
case 8:
|
||||
/* the lowest byte of c is reserved for the length */
|
||||
b += k[7];
|
||||
/* fall through */
|
||||
case 7:
|
||||
b += ((uint32) k[6] << 8);
|
||||
/* fall through */
|
||||
case 6:
|
||||
b += ((uint32) k[5] << 16);
|
||||
/* fall through */
|
||||
case 5:
|
||||
b += ((uint32) k[4] << 24);
|
||||
/* fall through */
|
||||
case 4:
|
||||
a += k[3];
|
||||
/* fall through */
|
||||
case 3:
|
||||
a += ((uint32) k[2] << 8);
|
||||
/* fall through */
|
||||
case 2:
|
||||
a += ((uint32) k[1] << 16);
|
||||
/* fall through */
|
||||
case 1:
|
||||
a += ((uint32) k[0] << 24);
|
||||
/* case 0: nothing left to add */
|
||||
}
|
||||
#else /* !WORDS_BIGENDIAN */
|
||||
switch (len)
|
||||
{
|
||||
case 11:
|
||||
c += ((uint32) k[10] << 24);
|
||||
/* fall through */
|
||||
case 10:
|
||||
c += ((uint32) k[9] << 16);
|
||||
/* fall through */
|
||||
case 9:
|
||||
c += ((uint32) k[8] << 8);
|
||||
/* fall through */
|
||||
case 8:
|
||||
/* the lowest byte of c is reserved for the length */
|
||||
b += ((uint32) k[7] << 24);
|
||||
/* fall through */
|
||||
case 7:
|
||||
b += ((uint32) k[6] << 16);
|
||||
/* fall through */
|
||||
case 6:
|
||||
b += ((uint32) k[5] << 8);
|
||||
/* fall through */
|
||||
case 5:
|
||||
b += k[4];
|
||||
/* fall through */
|
||||
case 4:
|
||||
a += ((uint32) k[3] << 24);
|
||||
/* fall through */
|
||||
case 3:
|
||||
a += ((uint32) k[2] << 16);
|
||||
/* fall through */
|
||||
case 2:
|
||||
a += ((uint32) k[1] << 8);
|
||||
/* fall through */
|
||||
case 1:
|
||||
a += k[0];
|
||||
/* case 0: nothing left to add */
|
||||
}
|
||||
#endif /* WORDS_BIGENDIAN */
|
||||
}
|
||||
|
||||
final(a, b, c);
|
||||
|
||||
/* report the result */
|
||||
return UInt32GetDatum(c);
|
||||
}
|
||||
|
||||
/*
|
||||
* hash_any_extended() -- hash into a 64-bit value, using an optional seed
|
||||
* k : the key (the unaligned variable-length array of bytes)
|
||||
* len : the length of the key, counting by bytes
|
||||
* seed : a 64-bit seed (0 means no seed)
|
||||
*
|
||||
* Returns a uint64 value. Otherwise similar to hash_any.
|
||||
*/
|
||||
Datum
|
||||
hash_any_extended(register const unsigned char *k, register int keylen,
|
||||
uint64 seed)
|
||||
{
|
||||
register uint32 a,
|
||||
b,
|
||||
c,
|
||||
len;
|
||||
|
||||
/* Set up the internal state */
|
||||
len = keylen;
|
||||
a = b = c = 0x9e3779b9 + len + 3923095;
|
||||
|
||||
/* If the seed is non-zero, use it to perturb the internal state. */
|
||||
if (seed != 0)
|
||||
{
|
||||
/*
|
||||
* In essence, the seed is treated as part of the data being hashed,
|
||||
* but for simplicity, we pretend that it's padded with four bytes of
|
||||
* zeroes so that the seed constitutes a 12-byte chunk.
|
||||
*/
|
||||
a += (uint32) (seed >> 32);
|
||||
b += (uint32) seed;
|
||||
mix(a, b, c);
|
||||
}
|
||||
|
||||
/* If the source pointer is word-aligned, we use word-wide fetches */
|
||||
if (((uintptr_t) k & UINT32_ALIGN_MASK) == 0)
|
||||
{
|
||||
/* Code path for aligned source data */
|
||||
register const uint32 *ka = (const uint32 *) k;
|
||||
|
||||
/* handle most of the key */
|
||||
while (len >= 12)
|
||||
{
|
||||
a += ka[0];
|
||||
b += ka[1];
|
||||
c += ka[2];
|
||||
mix(a, b, c);
|
||||
ka += 3;
|
||||
len -= 12;
|
||||
}
|
||||
|
||||
/* handle the last 11 bytes */
|
||||
k = (const unsigned char *) ka;
|
||||
#ifdef WORDS_BIGENDIAN
|
||||
switch (len)
|
||||
{
|
||||
case 11:
|
||||
c += ((uint32) k[10] << 8);
|
||||
/* fall through */
|
||||
case 10:
|
||||
c += ((uint32) k[9] << 16);
|
||||
/* fall through */
|
||||
case 9:
|
||||
c += ((uint32) k[8] << 24);
|
||||
/* fall through */
|
||||
case 8:
|
||||
/* the lowest byte of c is reserved for the length */
|
||||
b += ka[1];
|
||||
a += ka[0];
|
||||
break;
|
||||
case 7:
|
||||
b += ((uint32) k[6] << 8);
|
||||
/* fall through */
|
||||
case 6:
|
||||
b += ((uint32) k[5] << 16);
|
||||
/* fall through */
|
||||
case 5:
|
||||
b += ((uint32) k[4] << 24);
|
||||
/* fall through */
|
||||
case 4:
|
||||
a += ka[0];
|
||||
break;
|
||||
case 3:
|
||||
a += ((uint32) k[2] << 8);
|
||||
/* fall through */
|
||||
case 2:
|
||||
a += ((uint32) k[1] << 16);
|
||||
/* fall through */
|
||||
case 1:
|
||||
a += ((uint32) k[0] << 24);
|
||||
/* case 0: nothing left to add */
|
||||
}
|
||||
#else /* !WORDS_BIGENDIAN */
|
||||
switch (len)
|
||||
{
|
||||
case 11:
|
||||
c += ((uint32) k[10] << 24);
|
||||
/* fall through */
|
||||
case 10:
|
||||
c += ((uint32) k[9] << 16);
|
||||
/* fall through */
|
||||
case 9:
|
||||
c += ((uint32) k[8] << 8);
|
||||
/* fall through */
|
||||
case 8:
|
||||
/* the lowest byte of c is reserved for the length */
|
||||
b += ka[1];
|
||||
a += ka[0];
|
||||
break;
|
||||
case 7:
|
||||
b += ((uint32) k[6] << 16);
|
||||
/* fall through */
|
||||
case 6:
|
||||
b += ((uint32) k[5] << 8);
|
||||
/* fall through */
|
||||
case 5:
|
||||
b += k[4];
|
||||
/* fall through */
|
||||
case 4:
|
||||
a += ka[0];
|
||||
break;
|
||||
case 3:
|
||||
a += ((uint32) k[2] << 16);
|
||||
/* fall through */
|
||||
case 2:
|
||||
a += ((uint32) k[1] << 8);
|
||||
/* fall through */
|
||||
case 1:
|
||||
a += k[0];
|
||||
/* case 0: nothing left to add */
|
||||
}
|
||||
#endif /* WORDS_BIGENDIAN */
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Code path for non-aligned source data */
|
||||
|
||||
/* handle most of the key */
|
||||
while (len >= 12)
|
||||
{
|
||||
#ifdef WORDS_BIGENDIAN
|
||||
a += (k[3] + ((uint32) k[2] << 8) + ((uint32) k[1] << 16) + ((uint32) k[0] << 24));
|
||||
b += (k[7] + ((uint32) k[6] << 8) + ((uint32) k[5] << 16) + ((uint32) k[4] << 24));
|
||||
c += (k[11] + ((uint32) k[10] << 8) + ((uint32) k[9] << 16) + ((uint32) k[8] << 24));
|
||||
#else /* !WORDS_BIGENDIAN */
|
||||
a += (k[0] + ((uint32) k[1] << 8) + ((uint32) k[2] << 16) + ((uint32) k[3] << 24));
|
||||
b += (k[4] + ((uint32) k[5] << 8) + ((uint32) k[6] << 16) + ((uint32) k[7] << 24));
|
||||
c += (k[8] + ((uint32) k[9] << 8) + ((uint32) k[10] << 16) + ((uint32) k[11] << 24));
|
||||
#endif /* WORDS_BIGENDIAN */
|
||||
mix(a, b, c);
|
||||
k += 12;
|
||||
len -= 12;
|
||||
}
|
||||
|
||||
/* handle the last 11 bytes */
|
||||
#ifdef WORDS_BIGENDIAN
|
||||
switch (len)
|
||||
{
|
||||
case 11:
|
||||
c += ((uint32) k[10] << 8);
|
||||
/* fall through */
|
||||
case 10:
|
||||
c += ((uint32) k[9] << 16);
|
||||
/* fall through */
|
||||
case 9:
|
||||
c += ((uint32) k[8] << 24);
|
||||
/* fall through */
|
||||
case 8:
|
||||
/* the lowest byte of c is reserved for the length */
|
||||
b += k[7];
|
||||
/* fall through */
|
||||
case 7:
|
||||
b += ((uint32) k[6] << 8);
|
||||
/* fall through */
|
||||
case 6:
|
||||
b += ((uint32) k[5] << 16);
|
||||
/* fall through */
|
||||
case 5:
|
||||
b += ((uint32) k[4] << 24);
|
||||
/* fall through */
|
||||
case 4:
|
||||
a += k[3];
|
||||
/* fall through */
|
||||
case 3:
|
||||
a += ((uint32) k[2] << 8);
|
||||
/* fall through */
|
||||
case 2:
|
||||
a += ((uint32) k[1] << 16);
|
||||
/* fall through */
|
||||
case 1:
|
||||
a += ((uint32) k[0] << 24);
|
||||
/* case 0: nothing left to add */
|
||||
}
|
||||
#else /* !WORDS_BIGENDIAN */
|
||||
switch (len)
|
||||
{
|
||||
case 11:
|
||||
c += ((uint32) k[10] << 24);
|
||||
/* fall through */
|
||||
case 10:
|
||||
c += ((uint32) k[9] << 16);
|
||||
/* fall through */
|
||||
case 9:
|
||||
c += ((uint32) k[8] << 8);
|
||||
/* fall through */
|
||||
case 8:
|
||||
/* the lowest byte of c is reserved for the length */
|
||||
b += ((uint32) k[7] << 24);
|
||||
/* fall through */
|
||||
case 7:
|
||||
b += ((uint32) k[6] << 16);
|
||||
/* fall through */
|
||||
case 6:
|
||||
b += ((uint32) k[5] << 8);
|
||||
/* fall through */
|
||||
case 5:
|
||||
b += k[4];
|
||||
/* fall through */
|
||||
case 4:
|
||||
a += ((uint32) k[3] << 24);
|
||||
/* fall through */
|
||||
case 3:
|
||||
a += ((uint32) k[2] << 16);
|
||||
/* fall through */
|
||||
case 2:
|
||||
a += ((uint32) k[1] << 8);
|
||||
/* fall through */
|
||||
case 1:
|
||||
a += k[0];
|
||||
/* case 0: nothing left to add */
|
||||
}
|
||||
#endif /* WORDS_BIGENDIAN */
|
||||
}
|
||||
|
||||
final(a, b, c);
|
||||
|
||||
/* report the result */
|
||||
PG_RETURN_UINT64(((uint64) b << 32) | c);
|
||||
}
|
||||
|
||||
/*
|
||||
* hash_uint32() -- hash a 32-bit value to a 32-bit value
|
||||
*
|
||||
* This has the same result as
|
||||
* hash_any(&k, sizeof(uint32))
|
||||
* but is faster and doesn't force the caller to store k into memory.
|
||||
*/
|
||||
Datum
|
||||
hash_uint32(uint32 k)
|
||||
{
|
||||
register uint32 a,
|
||||
b,
|
||||
c;
|
||||
|
||||
a = b = c = 0x9e3779b9 + (uint32) sizeof(uint32) + 3923095;
|
||||
a += k;
|
||||
|
||||
final(a, b, c);
|
||||
|
||||
/* report the result */
|
||||
return UInt32GetDatum(c);
|
||||
}
|
||||
|
||||
/*
|
||||
* hash_uint32_extended() -- hash a 32-bit value to a 64-bit value, with a seed
|
||||
*
|
||||
* Like hash_uint32, this is a convenience function.
|
||||
*/
|
||||
Datum
|
||||
hash_uint32_extended(uint32 k, uint64 seed)
|
||||
{
|
||||
register uint32 a,
|
||||
b,
|
||||
c;
|
||||
|
||||
a = b = c = 0x9e3779b9 + (uint32) sizeof(uint32) + 3923095;
|
||||
|
||||
if (seed != 0)
|
||||
{
|
||||
a += (uint32) (seed >> 32);
|
||||
b += (uint32) seed;
|
||||
mix(a, b, c);
|
||||
}
|
||||
|
||||
a += k;
|
||||
|
||||
final(a, b, c);
|
||||
|
||||
/* report the result */
|
||||
PG_RETURN_UINT64(((uint64) b << 32) | c);
|
||||
}
|
||||
|
Reference in New Issue
Block a user