1
0
mirror of https://github.com/postgres/postgres.git synced 2025-06-25 01:02:05 +03:00

Post-PG 10 beta1 pgindent run

perltidy run not included.
This commit is contained in:
Bruce Momjian
2017-05-17 16:31:56 -04:00
parent 8a94332478
commit a6fd7b7a5f
310 changed files with 3338 additions and 3171 deletions

View File

@ -170,7 +170,7 @@ static double eqjoinsel_semi(Oid operator,
VariableStatData *vardata1, VariableStatData *vardata2,
RelOptInfo *inner_rel);
static bool estimate_multivariate_ndistinct(PlannerInfo *root,
RelOptInfo *rel, List **varinfos, double *ndistinct);
RelOptInfo *rel, List **varinfos, double *ndistinct);
static bool convert_to_scalar(Datum value, Oid valuetypid, double *scaledvalue,
Datum lobound, Datum hibound, Oid boundstypid,
double *scaledlobound, double *scaledhibound);
@ -3364,8 +3364,8 @@ estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows,
List *relvarinfos = NIL;
/*
* Split the list of varinfos in two - one for the current rel,
* one for remaining Vars on other rels.
* Split the list of varinfos in two - one for the current rel, one
* for remaining Vars on other rels.
*/
relvarinfos = lcons(varinfo1, relvarinfos);
for_each_cell(l, lnext(list_head(varinfos)))
@ -3388,9 +3388,9 @@ estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows,
* Get the numdistinct estimate for the Vars of this rel. We
* iteratively search for multivariate n-distinct with maximum number
* of vars; assuming that each var group is independent of the others,
* we multiply them together. Any remaining relvarinfos after
* no more multivariate matches are found are assumed independent too,
* so their individual ndistinct estimates are multiplied also.
* we multiply them together. Any remaining relvarinfos after no more
* multivariate matches are found are assumed independent too, so
* their individual ndistinct estimates are multiplied also.
*
* While iterating, count how many separate numdistinct values we
* apply. We apply a fudge factor below, but only if we multiplied
@ -3410,7 +3410,7 @@ estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows,
}
else
{
foreach (l, relvarinfos)
foreach(l, relvarinfos)
{
GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l);
@ -3702,12 +3702,12 @@ estimate_multivariate_ndistinct(PlannerInfo *root, RelOptInfo *rel,
}
/* look for the ndistinct statistics matching the most vars */
nmatches = 1; /* we require at least two matches */
nmatches = 1; /* we require at least two matches */
foreach(lc, rel->statlist)
{
StatisticExtInfo *info = (StatisticExtInfo *) lfirst(lc);
Bitmapset *shared;
int nshared;
int nshared;
/* skip statistics of other kinds */
if (info->kind != STATS_EXT_NDISTINCT)
@ -3745,8 +3745,8 @@ estimate_multivariate_ndistinct(PlannerInfo *root, RelOptInfo *rel,
*/
if (stats)
{
int i;
List *newlist = NIL;
int i;
List *newlist = NIL;
MVNDistinctItem *item = NULL;
/* Find the specific item that exactly matches the combination */
@ -7766,8 +7766,8 @@ brincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
*
* Because we can use all index quals equally when scanning, we can use
* the largest correlation (in absolute value) among columns used by the
* query. Start at zero, the worst possible case. If we cannot find
* any correlation statistics, we will keep it as 0.
* query. Start at zero, the worst possible case. If we cannot find any
* correlation statistics, we will keep it as 0.
*/
*indexCorrelation = 0;
@ -7790,7 +7790,7 @@ brincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
*/
if (HeapTupleIsValid(vardata.statsTuple) && !vardata.freefunc)
elog(ERROR,
"no function provided to release variable stats with");
"no function provided to release variable stats with");
}
else
{
@ -7813,11 +7813,11 @@ brincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
attnum = qinfo->indexcol + 1;
if (get_index_stats_hook &&
(*get_index_stats_hook) (root, index->indexoid, attnum, &vardata))
(*get_index_stats_hook) (root, index->indexoid, attnum, &vardata))
{
/*
* The hook took control of acquiring a stats tuple. If it did
* supply a tuple, it'd better have supplied a freefunc.
* The hook took control of acquiring a stats tuple. If it
* did supply a tuple, it'd better have supplied a freefunc.
*/
if (HeapTupleIsValid(vardata.statsTuple) &&
!vardata.freefunc)
@ -7826,7 +7826,7 @@ brincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
else
{
vardata.statsTuple = SearchSysCache3(STATRELATTINH,
ObjectIdGetDatum(index->indexoid),
ObjectIdGetDatum(index->indexoid),
Int16GetDatum(attnum),
BoolGetDatum(false));
vardata.freefunc = ReleaseSysCache;
@ -7872,8 +7872,8 @@ brincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
/*
* Now estimate the number of ranges that we'll touch by using the
* indexCorrelation from the stats. Careful not to divide by zero
* (note we're using the absolute value of the correlation).
* indexCorrelation from the stats. Careful not to divide by zero (note
* we're using the absolute value of the correlation).
*/
if (*indexCorrelation < 1.0e-10)
estimatedRanges = indexRanges;
@ -7888,8 +7888,8 @@ brincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
*indexSelectivity = selec;
/*
* Compute the index qual costs, much as in genericcostestimate, to add
* to the index costs.
* Compute the index qual costs, much as in genericcostestimate, to add to
* the index costs.
*/
qual_arg_cost = other_operands_eval_cost(root, qinfos) +
orderby_operands_eval_cost(root, path);