mirror of
https://github.com/postgres/postgres.git
synced 2025-07-02 09:02:37 +03:00
There's a patch attached to fix gcc 2.8.x warnings, except for the
yyerror ones from bison. It also includes a few 'enhancements' to the C programming style (which are, of course, personal). The other patch removes the compilation of backend/lib/qsort.c, as qsort() is a standard function in stdlib.h and can be used any where else (and it is). It was only used in backend/optimizer/geqo/geqo_pool.c, backend/optimizer/path/predmig.c, and backend/storage/page/bufpage.c > > Some or all of these changes might not be appropriate for v6.3, since we > > are in beta testing and since they do not affect the current functionality. > > For those cases, how about submitting patches based on the final v6.3 > > release? There's more to come. Please review these patches. I ran the regression tests and they only failed where this was expected (random, geo, etc). Cheers, Jeroen
This commit is contained in:
@ -4,7 +4,7 @@
|
||||
# Makefile for lib (miscellaneous stuff)
|
||||
#
|
||||
# IDENTIFICATION
|
||||
# $Header: /cvsroot/pgsql/src/backend/lib/Makefile,v 1.9 1997/12/20 00:23:48 scrappy Exp $
|
||||
# $Header: /cvsroot/pgsql/src/backend/lib/Makefile,v 1.10 1998/03/30 16:46:24 momjian Exp $
|
||||
#
|
||||
#-------------------------------------------------------------------------
|
||||
|
||||
@ -15,7 +15,7 @@ INCLUDE_OPT = -I..
|
||||
|
||||
CFLAGS+=$(INCLUDE_OPT)
|
||||
|
||||
OBJS = bit.o fstack.o hasht.o lispsort.o qsort.o stringinfo.o dllist.o
|
||||
OBJS = bit.o fstack.o hasht.o lispsort.o stringinfo.o dllist.o
|
||||
|
||||
all: SUBSYS.o
|
||||
|
||||
|
@ -1,312 +0,0 @@
|
||||
/*-------------------------------------------------------------------------
|
||||
*
|
||||
* qsort.c--
|
||||
*
|
||||
*
|
||||
* Copyright (c) 1994, Regents of the University of California
|
||||
*
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $Header: /cvsroot/pgsql/src/backend/lib/Attic/qsort.c,v 1.6 1998/02/26 04:31:40 momjian Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
/*-
|
||||
* Copyright (c) 1980, 1983, 1990 The Regents of the University of California.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. All advertising materials mentioning features or use of this software
|
||||
* must display the following acknowledgement:
|
||||
* This product includes software developed by the University of
|
||||
* California, Berkeley and its contributors.
|
||||
* 4. Neither the name of the University nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#if defined(LIBC_SCCS) && !defined(lint)
|
||||
static char sccsid[] = "@(#)qsort.c 5.9 (Berkeley) 2/23/91";
|
||||
|
||||
#endif /* LIBC_SCCS and not lint */
|
||||
|
||||
#include <sys/types.h>
|
||||
|
||||
#include <postgres.h>
|
||||
|
||||
#include <lib/qsort.h>
|
||||
|
||||
/*
|
||||
* MTHRESH is the smallest partition for which we compare for a median
|
||||
* value instead of using the middle value.
|
||||
*/
|
||||
#define MTHRESH 6
|
||||
|
||||
/*
|
||||
* THRESH is the minimum number of entries in a partition for continued
|
||||
* partitioning.
|
||||
*/
|
||||
#define THRESH 4
|
||||
|
||||
static void insertion_sort(char *bot, int nmemb, int size, int (*compar) ());
|
||||
static void quick_sort(char *bot, int nmemb, int size, int (*compar) ());
|
||||
|
||||
void
|
||||
pg_qsort(void *bot,
|
||||
size_t nmemb,
|
||||
size_t size,
|
||||
int (*compar) (void *, void *))
|
||||
{
|
||||
|
||||
if (nmemb <= 1)
|
||||
return;
|
||||
|
||||
if (nmemb >= THRESH)
|
||||
quick_sort(bot, nmemb, size, compar);
|
||||
else
|
||||
insertion_sort(bot, nmemb, size, compar);
|
||||
}
|
||||
|
||||
/*
|
||||
* Swap two areas of size number of bytes. Although qsort(3) permits random
|
||||
* blocks of memory to be sorted, sorting pointers is almost certainly the
|
||||
* common case (and, were it not, could easily be made so). Regardless, it
|
||||
* isn't worth optimizing; the SWAP's get sped up by the cache, and pointer
|
||||
* arithmetic gets lost in the time required for comparison function calls.
|
||||
*/
|
||||
#define SWAP(a, b) { \
|
||||
cnt = size; \
|
||||
do { \
|
||||
ch = *a; \
|
||||
*a++ = *b; \
|
||||
*b++ = ch; \
|
||||
} while (--cnt); \
|
||||
}
|
||||
|
||||
/*
|
||||
* Knuth, Vol. 3, page 116, Algorithm Q, step b, argues that a single pass
|
||||
* of straight insertion sort after partitioning is complete is better than
|
||||
* sorting each small partition as it is created. This isn't correct in this
|
||||
* implementation because comparisons require at least one (and often two)
|
||||
* function calls and are likely to be the dominating expense of the sort.
|
||||
* Doing a final insertion sort does more comparisons than are necessary
|
||||
* because it compares the "edges" and medians of the partitions which are
|
||||
* known to be already sorted.
|
||||
*
|
||||
* This is also the reasoning behind selecting a small THRESH value (see
|
||||
* Knuth, page 122, equation 26), since the quicksort algorithm does less
|
||||
* comparisons than the insertion sort.
|
||||
*/
|
||||
#define SORT(bot, n) { \
|
||||
if (n > 1) \
|
||||
if (n == 2) { \
|
||||
t1 = bot + size; \
|
||||
if (compar(t1, bot) < 0) \
|
||||
SWAP(t1, bot); \
|
||||
} else \
|
||||
insertion_sort(bot, n, size, compar); \
|
||||
}
|
||||
|
||||
static void
|
||||
quick_sort(char *bot, int nmemb, int size, int (*compar) ())
|
||||
{
|
||||
int cnt;
|
||||
u_char ch;
|
||||
char *top,
|
||||
*mid,
|
||||
*t1,
|
||||
*t2;
|
||||
int n1,
|
||||
n2;
|
||||
char *bsv;
|
||||
|
||||
/* bot and nmemb must already be set. */
|
||||
partition:
|
||||
|
||||
/* find mid and top elements */
|
||||
mid = bot + size * (nmemb >> 1);
|
||||
top = bot + (nmemb - 1) * size;
|
||||
|
||||
/*
|
||||
* Find the median of the first, last and middle element (see Knuth,
|
||||
* Vol. 3, page 123, Eq. 28). This test order gets the equalities
|
||||
* right.
|
||||
*/
|
||||
if (nmemb >= MTHRESH)
|
||||
{
|
||||
n1 = compar(bot, mid);
|
||||
n2 = compar(mid, top);
|
||||
if (n1 < 0 && n2 > 0)
|
||||
t1 = compar(bot, top) < 0 ? top : bot;
|
||||
else if (n1 > 0 && n2 < 0)
|
||||
t1 = compar(bot, top) > 0 ? top : bot;
|
||||
else
|
||||
t1 = mid;
|
||||
|
||||
/* if mid element not selected, swap selection there */
|
||||
if (t1 != mid)
|
||||
{
|
||||
SWAP(t1, mid);
|
||||
mid -= size;
|
||||
}
|
||||
}
|
||||
|
||||
/* Standard quicksort, Knuth, Vol. 3, page 116, Algorithm Q. */
|
||||
#define didswap n1
|
||||
#define newbot t1
|
||||
#define replace t2
|
||||
didswap = 0;
|
||||
for (bsv = bot;;)
|
||||
{
|
||||
for (; bot < mid && compar(bot, mid) <= 0; bot += size);
|
||||
while (top > mid)
|
||||
{
|
||||
if (compar(mid, top) <= 0)
|
||||
{
|
||||
top -= size;
|
||||
continue;
|
||||
}
|
||||
newbot = bot + size;/* value of bot after swap */
|
||||
if (bot == mid) /* top <-> mid, mid == top */
|
||||
replace = mid = top;
|
||||
else
|
||||
{ /* bot <-> top */
|
||||
replace = top;
|
||||
top -= size;
|
||||
}
|
||||
goto swap;
|
||||
}
|
||||
if (bot == mid)
|
||||
break;
|
||||
|
||||
/* bot <-> mid, mid == bot */
|
||||
replace = mid;
|
||||
newbot = mid = bot; /* value of bot after swap */
|
||||
top -= size;
|
||||
|
||||
swap: SWAP(bot, replace);
|
||||
bot = newbot;
|
||||
didswap = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Quicksort behaves badly in the presence of data which is already
|
||||
* sorted (see Knuth, Vol. 3, page 119) going from O N lg N to O N^2.
|
||||
* To avoid this worst case behavior, if a re-partitioning occurs
|
||||
* without swapping any elements, it is not further partitioned and is
|
||||
* insert sorted. This wins big with almost sorted data sets and only
|
||||
* loses if the data set is very strangely partitioned. A fix for
|
||||
* those data sets would be to return prematurely if the insertion
|
||||
* sort routine is forced to make an excessive number of swaps, and
|
||||
* continue the partitioning.
|
||||
*/
|
||||
if (!didswap)
|
||||
{
|
||||
insertion_sort(bsv, nmemb, size, compar);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Re-partition or sort as necessary. Note that the mid element
|
||||
* itself is correctly positioned and can be ignored.
|
||||
*/
|
||||
#define nlower n1
|
||||
#define nupper n2
|
||||
bot = bsv;
|
||||
nlower = (mid - bot) / size;/* size of lower partition */
|
||||
mid += size;
|
||||
nupper = nmemb - nlower - 1;/* size of upper partition */
|
||||
|
||||
/*
|
||||
* If must call recursively, do it on the smaller partition; this
|
||||
* bounds the stack to lg N entries.
|
||||
*/
|
||||
if (nlower > nupper)
|
||||
{
|
||||
if (nupper >= THRESH)
|
||||
quick_sort(mid, nupper, size, compar);
|
||||
else
|
||||
{
|
||||
SORT(mid, nupper);
|
||||
if (nlower < THRESH)
|
||||
{
|
||||
SORT(bot, nlower);
|
||||
return;
|
||||
}
|
||||
}
|
||||
nmemb = nlower;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (nlower >= THRESH)
|
||||
quick_sort(bot, nlower, size, compar);
|
||||
else
|
||||
{
|
||||
SORT(bot, nlower);
|
||||
if (nupper < THRESH)
|
||||
{
|
||||
SORT(mid, nupper);
|
||||
return;
|
||||
}
|
||||
}
|
||||
bot = mid;
|
||||
nmemb = nupper;
|
||||
}
|
||||
goto partition;
|
||||
}
|
||||
|
||||
static void
|
||||
insertion_sort(char *bot, int nmemb, int size, int (*compar) ())
|
||||
{
|
||||
int cnt;
|
||||
u_char ch;
|
||||
char *s1,
|
||||
*s2,
|
||||
*t1,
|
||||
*t2,
|
||||
*top;
|
||||
|
||||
/*
|
||||
* A simple insertion sort (see Knuth, Vol. 3, page 81, Algorithm S).
|
||||
* Insertion sort has the same worst case as most simple sorts (O
|
||||
* N^2). It gets used here because it is (O N) in the case of sorted
|
||||
* data.
|
||||
*/
|
||||
top = bot + nmemb * size;
|
||||
for (t1 = bot + size; t1 < top;)
|
||||
{
|
||||
for (t2 = t1; (t2 -= size) >= bot && compar(t1, t2) < 0;);
|
||||
if (t1 != (t2 += size))
|
||||
{
|
||||
/* Bubble bytes up through each element. */
|
||||
for (cnt = size; cnt--; ++t1)
|
||||
{
|
||||
ch = *t1;
|
||||
for (s1 = s2 = t1; (s2 -= size) >= t2; s1 = s2)
|
||||
*s1 = *s2;
|
||||
*s1 = ch;
|
||||
}
|
||||
}
|
||||
else
|
||||
t1 += size;
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user