1
0
mirror of https://github.com/postgres/postgres.git synced 2025-07-02 09:02:37 +03:00

Run pgindent on 9.2 source tree in preparation for first 9.3

commit-fest.
This commit is contained in:
Bruce Momjian
2012-06-10 15:20:04 -04:00
parent 60801944fa
commit 927d61eeff
494 changed files with 7343 additions and 7046 deletions

View File

@ -1302,26 +1302,26 @@ coerce_to_common_type(ParseState *pstate, Node *node,
*
* 1) All arguments declared ANYELEMENT must have the same datatype.
* 2) All arguments declared ANYARRAY must have the same datatype,
* which must be a varlena array type.
* which must be a varlena array type.
* 3) All arguments declared ANYRANGE must have the same datatype,
* which must be a range type.
* which must be a range type.
* 4) If there are arguments of both ANYELEMENT and ANYARRAY, make sure the
* actual ANYELEMENT datatype is in fact the element type for the actual
* ANYARRAY datatype.
* actual ANYELEMENT datatype is in fact the element type for the actual
* ANYARRAY datatype.
* 5) Similarly, if there are arguments of both ANYELEMENT and ANYRANGE,
* make sure the actual ANYELEMENT datatype is in fact the subtype for
* the actual ANYRANGE type.
* make sure the actual ANYELEMENT datatype is in fact the subtype for
* the actual ANYRANGE type.
* 6) ANYENUM is treated the same as ANYELEMENT except that if it is used
* (alone or in combination with plain ANYELEMENT), we add the extra
* condition that the ANYELEMENT type must be an enum.
* (alone or in combination with plain ANYELEMENT), we add the extra
* condition that the ANYELEMENT type must be an enum.
* 7) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used,
* we add the extra condition that the ANYELEMENT type must not be an array.
* (This is a no-op if used in combination with ANYARRAY or ANYENUM, but
* is an extra restriction if not.)
* we add the extra condition that the ANYELEMENT type must not be an array.
* (This is a no-op if used in combination with ANYARRAY or ANYENUM, but
* is an extra restriction if not.)
*
* Domains over arrays match ANYARRAY, and are immediately flattened to their
* base type. (Thus, for example, we will consider it a match if one ANYARRAY
* argument is a domain over int4[] while another one is just int4[].) Also
* argument is a domain over int4[] while another one is just int4[].) Also
* notice that such a domain does *not* match ANYNONARRAY.
*
* Similarly, domains over ranges match ANYRANGE, and are immediately
@ -1475,7 +1475,7 @@ check_generic_type_consistency(Oid *actual_arg_types,
*
* If any polymorphic pseudotype is used in a function's arguments or
* return type, we make sure the actual data types are consistent with
* each other. The argument consistency rules are shown above for
* each other. The argument consistency rules are shown above for
* check_generic_type_consistency().
*
* If we have UNKNOWN input (ie, an untyped literal) for any polymorphic
@ -1487,35 +1487,35 @@ check_generic_type_consistency(Oid *actual_arg_types,
* if it is declared as a polymorphic type:
*
* 1) If return type is ANYARRAY, and any argument is ANYARRAY, use the
* argument's actual type as the function's return type.
* argument's actual type as the function's return type.
* 2) Similarly, if return type is ANYRANGE, and any argument is ANYRANGE,
* use the argument's actual type as the function's return type.
* use the argument's actual type as the function's return type.
* 3) If return type is ANYARRAY, no argument is ANYARRAY, but any argument is
* ANYELEMENT, use the actual type of the argument to determine the
* function's return type, i.e. the element type's corresponding array
* type. (Note: similar behavior does not exist for ANYRANGE, because it's
* impossible to determine the range type from the subtype alone.)
* ANYELEMENT, use the actual type of the argument to determine the
* function's return type, i.e. the element type's corresponding array
* type. (Note: similar behavior does not exist for ANYRANGE, because it's
* impossible to determine the range type from the subtype alone.)
* 4) If return type is ANYARRAY, but no argument is ANYARRAY or ANYELEMENT,
* generate an error. Similarly, if return type is ANYRANGE, but no
* argument is ANYRANGE, generate an error. (These conditions are
* prevented by CREATE FUNCTION and therefore are not expected here.)
* generate an error. Similarly, if return type is ANYRANGE, but no
* argument is ANYRANGE, generate an error. (These conditions are
* prevented by CREATE FUNCTION and therefore are not expected here.)
* 5) If return type is ANYELEMENT, and any argument is ANYELEMENT, use the
* argument's actual type as the function's return type.
* argument's actual type as the function's return type.
* 6) If return type is ANYELEMENT, no argument is ANYELEMENT, but any argument
* is ANYARRAY or ANYRANGE, use the actual type of the argument to determine
* the function's return type, i.e. the array type's corresponding element
* type or the range type's corresponding subtype (or both, in which case
* they must match).
* is ANYARRAY or ANYRANGE, use the actual type of the argument to determine
* the function's return type, i.e. the array type's corresponding element
* type or the range type's corresponding subtype (or both, in which case
* they must match).
* 7) If return type is ANYELEMENT, no argument is ANYELEMENT, ANYARRAY, or
* ANYRANGE, generate an error. (This condition is prevented by CREATE
* FUNCTION and therefore is not expected here.)
* ANYRANGE, generate an error. (This condition is prevented by CREATE
* FUNCTION and therefore is not expected here.)
* 8) ANYENUM is treated the same as ANYELEMENT except that if it is used
* (alone or in combination with plain ANYELEMENT), we add the extra
* condition that the ANYELEMENT type must be an enum.
* (alone or in combination with plain ANYELEMENT), we add the extra
* condition that the ANYELEMENT type must be an enum.
* 9) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used,
* we add the extra condition that the ANYELEMENT type must not be an array.
* (This is a no-op if used in combination with ANYARRAY or ANYENUM, but
* is an extra restriction if not.)
* we add the extra condition that the ANYELEMENT type must not be an array.
* (This is a no-op if used in combination with ANYARRAY or ANYENUM, but
* is an extra restriction if not.)
*
* Domains over arrays or ranges match ANYARRAY or ANYRANGE arguments,
* respectively, and are immediately flattened to their base type. (In
@ -1524,14 +1524,14 @@ check_generic_type_consistency(Oid *actual_arg_types,
*
* When allow_poly is false, we are not expecting any of the actual_arg_types
* to be polymorphic, and we should not return a polymorphic result type
* either. When allow_poly is true, it is okay to have polymorphic "actual"
* either. When allow_poly is true, it is okay to have polymorphic "actual"
* arg types, and we can return ANYARRAY, ANYRANGE, or ANYELEMENT as the
* result. (This case is currently used only to check compatibility of an
* result. (This case is currently used only to check compatibility of an
* aggregate's declaration with the underlying transfn.)
*
* A special case is that we could see ANYARRAY as an actual_arg_type even
* when allow_poly is false (this is possible only because pg_statistic has
* columns shown as anyarray in the catalogs). We allow this to match a
* columns shown as anyarray in the catalogs). We allow this to match a
* declared ANYARRAY argument, but only if there is no ANYELEMENT argument
* or result (since we can't determine a specific element type to match to
* ANYELEMENT). Note this means that functions taking ANYARRAY had better