mirror of
https://github.com/postgres/postgres.git
synced 2025-04-22 23:02:54 +03:00
comment cleanup.
This commit is contained in:
parent
01ec673cba
commit
7fe29ecefc
@ -26,7 +26,7 @@
|
||||
*
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $Header: /cvsroot/pgsql/src/backend/executor/execMain.c,v 1.78 1999/02/21 03:48:36 scrappy Exp $
|
||||
* $Header: /cvsroot/pgsql/src/backend/executor/execMain.c,v 1.79 1999/02/22 19:40:09 momjian Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -204,16 +204,14 @@ ExecutorRun(QueryDesc *queryDesc, EState *estate, int feature,
|
||||
int offset = 0;
|
||||
int count = 0;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* sanity checks
|
||||
******************
|
||||
*/
|
||||
Assert(queryDesc != NULL);
|
||||
|
||||
/******************
|
||||
/*
|
||||
* extract information from the query descriptor
|
||||
* and the query feature.
|
||||
******************
|
||||
*/
|
||||
operation = queryDesc->operation;
|
||||
plan = queryDesc->plantree;
|
||||
@ -222,18 +220,16 @@ ExecutorRun(QueryDesc *queryDesc, EState *estate, int feature,
|
||||
estate->es_processed = 0;
|
||||
estate->es_lastoid = InvalidOid;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* FIXME: the dest setup function ought to be handed the tuple desc
|
||||
* for the tuples to be output, but I'm not quite sure how to get that
|
||||
* info at this point. For now, passing NULL is OK because no existing
|
||||
* dest setup function actually uses the pointer.
|
||||
******************
|
||||
*/
|
||||
(*destfunc->setup) (destfunc, (TupleDesc) NULL);
|
||||
|
||||
/******************
|
||||
/*
|
||||
* if given get the offset of the LIMIT clause
|
||||
******************
|
||||
*/
|
||||
if (limoffset != NULL)
|
||||
{
|
||||
@ -276,9 +272,8 @@ ExecutorRun(QueryDesc *queryDesc, EState *estate, int feature,
|
||||
elog(ERROR, "limit offset cannot be negative");
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* if given get the count of the LIMIT clause
|
||||
******************
|
||||
*/
|
||||
if (limcount != NULL)
|
||||
{
|
||||
@ -343,9 +338,8 @@ ExecutorRun(QueryDesc *queryDesc, EState *estate, int feature,
|
||||
destfunc);
|
||||
break;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* retrieve next n "backward" tuples
|
||||
******************
|
||||
*/
|
||||
case EXEC_BACK:
|
||||
result = ExecutePlan(estate,
|
||||
@ -357,10 +351,9 @@ ExecutorRun(QueryDesc *queryDesc, EState *estate, int feature,
|
||||
destfunc);
|
||||
break;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* return one tuple but don't "retrieve" it.
|
||||
* (this is used by the rule manager..) -cim 9/14/89
|
||||
******************
|
||||
*/
|
||||
case EXEC_RETONE:
|
||||
result = ExecutePlan(estate,
|
||||
@ -561,9 +554,8 @@ InitPlan(CmdType operation, Query *parseTree, Plan *plan, EState *estate)
|
||||
List *targetList;
|
||||
int len;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* get information from query descriptor
|
||||
******************
|
||||
*/
|
||||
rangeTable = parseTree->rtable;
|
||||
resultRelation = parseTree->resultRelation;
|
||||
@ -572,32 +564,28 @@ InitPlan(CmdType operation, Query *parseTree, Plan *plan, EState *estate)
|
||||
ExecCheckPerms(operation, resultRelation, rangeTable, parseTree);
|
||||
#endif
|
||||
|
||||
/******************
|
||||
/*
|
||||
* initialize the node's execution state
|
||||
******************
|
||||
*/
|
||||
estate->es_range_table = rangeTable;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* initialize the BaseId counter so node base_id's
|
||||
* are assigned correctly. Someday baseid's will have to
|
||||
* be stored someplace other than estate because they
|
||||
* should be unique per query planned.
|
||||
******************
|
||||
*/
|
||||
estate->es_BaseId = 1;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* initialize result relation stuff
|
||||
******************
|
||||
*/
|
||||
|
||||
if (resultRelation != 0 && operation != CMD_SELECT)
|
||||
{
|
||||
/******************
|
||||
/*
|
||||
* if we have a result relation, open it and
|
||||
* initialize the result relation info stuff.
|
||||
******************
|
||||
*/
|
||||
RelationInfo *resultRelationInfo;
|
||||
Index resultRelationIndex;
|
||||
@ -623,10 +611,9 @@ InitPlan(CmdType operation, Query *parseTree, Plan *plan, EState *estate)
|
||||
resultRelationInfo->ri_IndexRelationDescs = NULL;
|
||||
resultRelationInfo->ri_IndexRelationInfo = NULL;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* open indices on result relation and save descriptors
|
||||
* in the result relation information..
|
||||
******************
|
||||
*/
|
||||
if (operation != CMD_DELETE)
|
||||
ExecOpenIndices(resultRelationOid, resultRelationInfo);
|
||||
@ -635,9 +622,8 @@ InitPlan(CmdType operation, Query *parseTree, Plan *plan, EState *estate)
|
||||
}
|
||||
else
|
||||
{
|
||||
/******************
|
||||
/*
|
||||
* if no result relation, then set state appropriately
|
||||
******************
|
||||
*/
|
||||
estate->es_result_relation_info = NULL;
|
||||
}
|
||||
@ -670,9 +656,8 @@ InitPlan(CmdType operation, Query *parseTree, Plan *plan, EState *estate)
|
||||
}
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* initialize the executor "tuple" table.
|
||||
******************
|
||||
*/
|
||||
{
|
||||
int nSlots = ExecCountSlotsNode(plan);
|
||||
@ -681,33 +666,30 @@ InitPlan(CmdType operation, Query *parseTree, Plan *plan, EState *estate)
|
||||
estate->es_tupleTable = tupleTable;
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* initialize the private state information for
|
||||
* all the nodes in the query tree. This opens
|
||||
* files, allocates storage and leaves us ready
|
||||
* to start processing tuples..
|
||||
******************
|
||||
*/
|
||||
ExecInitNode(plan, estate, NULL);
|
||||
|
||||
/******************
|
||||
/*
|
||||
* get the tuple descriptor describing the type
|
||||
* of tuples to return.. (this is especially important
|
||||
* if we are creating a relation with "retrieve into")
|
||||
******************
|
||||
*/
|
||||
tupType = ExecGetTupType(plan); /* tuple descriptor */
|
||||
targetList = plan->targetlist;
|
||||
len = ExecTargetListLength(targetList); /* number of attributes */
|
||||
|
||||
/******************
|
||||
/*
|
||||
* now that we have the target list, initialize the junk filter
|
||||
* if this is a REPLACE or a DELETE query.
|
||||
* We also init the junk filter if this is an append query
|
||||
* (there might be some rule lock info there...)
|
||||
* NOTE: in the future we might want to initialize the junk
|
||||
* filter for all queries.
|
||||
******************
|
||||
* SELECT added by daveh@insightdist.com 5/20/98 to allow
|
||||
* ORDER/GROUP BY have an identifier missing from the target.
|
||||
*/
|
||||
@ -744,9 +726,8 @@ InitPlan(CmdType operation, Query *parseTree, Plan *plan, EState *estate)
|
||||
estate->es_junkFilter = NULL;
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* initialize the "into" relation
|
||||
******************
|
||||
*/
|
||||
intoRelationDesc = (Relation) NULL;
|
||||
|
||||
@ -764,9 +745,8 @@ InitPlan(CmdType operation, Query *parseTree, Plan *plan, EState *estate)
|
||||
*/
|
||||
if (parseTree->into != NULL)
|
||||
{
|
||||
/******************
|
||||
/*
|
||||
* create the "into" relation
|
||||
******************
|
||||
*/
|
||||
intoName = parseTree->into;
|
||||
|
||||
@ -780,11 +760,10 @@ InitPlan(CmdType operation, Query *parseTree, Plan *plan, EState *estate)
|
||||
|
||||
FreeTupleDesc(tupdesc);
|
||||
|
||||
/******************
|
||||
/*
|
||||
* XXX rather than having to call setheapoverride(true)
|
||||
* and then back to false, we should change the
|
||||
* arguments to heap_open() instead..
|
||||
******************
|
||||
*/
|
||||
setheapoverride(true);
|
||||
|
||||
@ -817,22 +796,19 @@ EndPlan(Plan *plan, EState *estate)
|
||||
RelationInfo *resultRelationInfo;
|
||||
Relation intoRelationDesc;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* get information from state
|
||||
******************
|
||||
*/
|
||||
resultRelationInfo = estate->es_result_relation_info;
|
||||
intoRelationDesc = estate->es_into_relation_descriptor;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* shut down the query
|
||||
******************
|
||||
*/
|
||||
ExecEndNode(plan, plan);
|
||||
|
||||
/******************
|
||||
/*
|
||||
* destroy the executor "tuple" table.
|
||||
******************
|
||||
*/
|
||||
{
|
||||
TupleTable tupleTable = (TupleTable) estate->es_tupleTable;
|
||||
@ -841,9 +817,8 @@ EndPlan(Plan *plan, EState *estate)
|
||||
estate->es_tupleTable = NULL;
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* close the result relations if necessary
|
||||
******************
|
||||
*/
|
||||
if (resultRelationInfo != NULL)
|
||||
{
|
||||
@ -852,16 +827,14 @@ EndPlan(Plan *plan, EState *estate)
|
||||
resultRelationDesc = resultRelationInfo->ri_RelationDesc;
|
||||
heap_close(resultRelationDesc);
|
||||
|
||||
/******************
|
||||
/*
|
||||
* close indices on the result relation
|
||||
******************
|
||||
*/
|
||||
ExecCloseIndices(resultRelationInfo);
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* close the "into" relation if necessary
|
||||
******************
|
||||
*/
|
||||
if (intoRelationDesc != NULL)
|
||||
heap_close(intoRelationDesc);
|
||||
@ -900,31 +873,27 @@ ExecutePlan(EState *estate,
|
||||
int current_tuple_count;
|
||||
TupleTableSlot *result;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* initialize local variables
|
||||
******************
|
||||
*/
|
||||
slot = NULL;
|
||||
current_tuple_count = 0;
|
||||
result = NULL;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* Set the direction.
|
||||
******************
|
||||
*/
|
||||
estate->es_direction = direction;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* Loop until we've processed the proper number
|
||||
* of tuples from the plan..
|
||||
******************
|
||||
*/
|
||||
|
||||
for (;;)
|
||||
{
|
||||
/******************
|
||||
/*
|
||||
* Execute the plan and obtain a tuple
|
||||
******************
|
||||
*/
|
||||
/* at the top level, the parent of a plan (2nd arg) is itself */
|
||||
lnext:;
|
||||
@ -937,11 +906,10 @@ lnext:;
|
||||
else
|
||||
slot = ExecProcNode(plan, plan);
|
||||
|
||||
/******************
|
||||
/*
|
||||
* if the tuple is null, then we assume
|
||||
* there is nothing more to process so
|
||||
* we just return null...
|
||||
******************
|
||||
*/
|
||||
if (TupIsNull(slot))
|
||||
{
|
||||
@ -949,13 +917,12 @@ lnext:;
|
||||
break;
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* For now we completely execute the plan and skip
|
||||
* result tuples if requested by LIMIT offset.
|
||||
* Finally we should try to do it in deeper levels
|
||||
* if possible (during index scan)
|
||||
* - Jan
|
||||
******************
|
||||
*/
|
||||
if (offsetTuples > 0)
|
||||
{
|
||||
@ -963,7 +930,7 @@ lnext:;
|
||||
continue;
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* if we have a junk filter, then project a new
|
||||
* tuple with the junk removed.
|
||||
*
|
||||
@ -971,7 +938,6 @@ lnext:;
|
||||
* original tuple.
|
||||
*
|
||||
* Also, extract all the junk information we need.
|
||||
******************
|
||||
*/
|
||||
if ((junkfilter = estate->es_junkFilter) != (JunkFilter *) NULL)
|
||||
{
|
||||
@ -979,9 +945,8 @@ lnext:;
|
||||
HeapTuple newTuple;
|
||||
bool isNull;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* extract the 'ctid' junk attribute.
|
||||
******************
|
||||
*/
|
||||
if (operation == CMD_UPDATE || operation == CMD_DELETE)
|
||||
{
|
||||
@ -1063,10 +1028,9 @@ lmark:;
|
||||
}
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* Finally create a new "clean" tuple with all junk attributes
|
||||
* removed
|
||||
******************
|
||||
*/
|
||||
newTuple = ExecRemoveJunk(junkfilter, slot);
|
||||
|
||||
@ -1077,12 +1041,11 @@ lmark:;
|
||||
true); /* tuple should be pfreed */
|
||||
} /* if (junkfilter... */
|
||||
|
||||
/******************
|
||||
/*
|
||||
* now that we have a tuple, do the appropriate thing
|
||||
* with it.. either return it to the user, add
|
||||
* it to a relation someplace, delete it from a
|
||||
* relation, or modify some of it's attributes.
|
||||
******************
|
||||
*/
|
||||
|
||||
switch (operation)
|
||||
@ -1114,21 +1077,19 @@ lmark:;
|
||||
result = NULL;
|
||||
break;
|
||||
}
|
||||
/******************
|
||||
/*
|
||||
* check our tuple count.. if we've returned the
|
||||
* proper number then return, else loop again and
|
||||
* process more tuples..
|
||||
******************
|
||||
*/
|
||||
current_tuple_count += 1;
|
||||
if (numberTuples == current_tuple_count)
|
||||
break;
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* here, result is either a slot containing a tuple in the case
|
||||
* of a RETRIEVE or NULL otherwise.
|
||||
******************
|
||||
*/
|
||||
return result;
|
||||
}
|
||||
@ -1151,16 +1112,14 @@ ExecRetrieve(TupleTableSlot *slot,
|
||||
HeapTuple tuple;
|
||||
TupleDesc attrtype;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* get the heap tuple out of the tuple table slot
|
||||
******************
|
||||
*/
|
||||
tuple = slot->val;
|
||||
attrtype = slot->ttc_tupleDescriptor;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* insert the tuple into the "into relation"
|
||||
******************
|
||||
*/
|
||||
if (estate->es_into_relation_descriptor != NULL)
|
||||
{
|
||||
@ -1168,9 +1127,8 @@ ExecRetrieve(TupleTableSlot *slot,
|
||||
IncrAppended();
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* send the tuple to the front end (or the screen)
|
||||
******************
|
||||
*/
|
||||
(*destfunc->receiveTuple) (tuple, attrtype, destfunc);
|
||||
IncrRetrieved();
|
||||
@ -1197,23 +1155,20 @@ ExecAppend(TupleTableSlot *slot,
|
||||
int numIndices;
|
||||
Oid newId;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* get the heap tuple out of the tuple table slot
|
||||
******************
|
||||
*/
|
||||
tuple = slot->val;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* get information on the result relation
|
||||
******************
|
||||
*/
|
||||
resultRelationInfo = estate->es_result_relation_info;
|
||||
resultRelationDesc = resultRelationInfo->ri_RelationDesc;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* have to add code to preform unique checking here.
|
||||
* cim -12/1/89
|
||||
******************
|
||||
*/
|
||||
|
||||
/* BEFORE ROW INSERT Triggers */
|
||||
@ -1235,9 +1190,8 @@ ExecAppend(TupleTableSlot *slot,
|
||||
}
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* Check the constraints of a tuple
|
||||
******************
|
||||
*/
|
||||
|
||||
if (resultRelationDesc->rd_att->constr)
|
||||
@ -1245,21 +1199,19 @@ ExecAppend(TupleTableSlot *slot,
|
||||
ExecConstraints("ExecAppend", resultRelationDesc, tuple, estate);
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* insert the tuple
|
||||
******************
|
||||
*/
|
||||
newId = heap_insert(resultRelationDesc, /* relation desc */
|
||||
tuple); /* heap tuple */
|
||||
IncrAppended();
|
||||
|
||||
/******************
|
||||
/*
|
||||
* process indices
|
||||
*
|
||||
* Note: heap_insert adds a new tuple to a relation. As a side
|
||||
* effect, the tupleid of the new tuple is placed in the new
|
||||
* tuple's t_ctid field.
|
||||
******************
|
||||
*/
|
||||
numIndices = resultRelationInfo->ri_NumIndices;
|
||||
if (numIndices > 0)
|
||||
@ -1290,9 +1242,8 @@ ExecDelete(TupleTableSlot *slot,
|
||||
ItemPointerData ctid;
|
||||
int result;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* get the result relation information
|
||||
******************
|
||||
*/
|
||||
resultRelationInfo = estate->es_result_relation_info;
|
||||
resultRelationDesc = resultRelationInfo->ri_RelationDesc;
|
||||
@ -1346,7 +1297,7 @@ ldelete:;
|
||||
IncrDeleted();
|
||||
(estate->es_processed)++;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* Note: Normally one would think that we have to
|
||||
* delete index tuples associated with the
|
||||
* heap tuple now..
|
||||
@ -1355,7 +1306,6 @@ ldelete:;
|
||||
* because the vacuum daemon automatically
|
||||
* opens an index scan and deletes index tuples
|
||||
* when it finds deleted heap tuples. -cim 9/27/89
|
||||
******************
|
||||
*/
|
||||
|
||||
/* AFTER ROW DELETE Triggers */
|
||||
@ -1388,9 +1338,8 @@ ExecReplace(TupleTableSlot *slot,
|
||||
int result;
|
||||
int numIndices;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* abort the operation if not running transactions
|
||||
******************
|
||||
*/
|
||||
if (IsBootstrapProcessingMode())
|
||||
{
|
||||
@ -1398,25 +1347,22 @@ ExecReplace(TupleTableSlot *slot,
|
||||
return;
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* get the heap tuple out of the tuple table slot
|
||||
******************
|
||||
*/
|
||||
tuple = slot->val;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* get the result relation information
|
||||
******************
|
||||
*/
|
||||
resultRelationInfo = estate->es_result_relation_info;
|
||||
resultRelationDesc = resultRelationInfo->ri_RelationDesc;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* have to add code to preform unique checking here.
|
||||
* in the event of unique tuples, this becomes a deletion
|
||||
* of the original tuple affected by the replace.
|
||||
* cim -12/1/89
|
||||
******************
|
||||
*/
|
||||
|
||||
/* BEFORE ROW UPDATE Triggers */
|
||||
@ -1438,9 +1384,8 @@ ExecReplace(TupleTableSlot *slot,
|
||||
}
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* Check the constraints of a tuple
|
||||
******************
|
||||
*/
|
||||
|
||||
if (resultRelationDesc->rd_att->constr)
|
||||
@ -1487,7 +1432,7 @@ lreplace:;
|
||||
IncrReplaced();
|
||||
(estate->es_processed)++;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* Note: instead of having to update the old index tuples
|
||||
* associated with the heap tuple, all we do is form
|
||||
* and insert new index tuples.. This is because
|
||||
@ -1495,10 +1440,9 @@ lreplace:;
|
||||
* index tuple deletion is done automagically by
|
||||
* the vaccuum deamon.. All we do is insert new
|
||||
* index tuples. -cim 9/27/89
|
||||
******************
|
||||
*/
|
||||
|
||||
/******************
|
||||
/*
|
||||
* process indices
|
||||
*
|
||||
* heap_replace updates a tuple in the base relation by invalidating
|
||||
@ -1506,7 +1450,6 @@ lreplace:;
|
||||
* effect, the tupleid of the new tuple is placed in the new
|
||||
* tuple's t_ctid field. So we now insert index tuples using
|
||||
* the new tupleid stored there.
|
||||
******************
|
||||
*/
|
||||
|
||||
numIndices = resultRelationInfo->ri_NumIndices;
|
||||
|
@ -7,7 +7,7 @@
|
||||
*
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $Header: /cvsroot/pgsql/src/backend/executor/execQual.c,v 1.44 1999/02/21 03:48:39 scrappy Exp $
|
||||
* $Header: /cvsroot/pgsql/src/backend/executor/execQual.c,v 1.45 1999/02/22 19:40:09 momjian Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -53,9 +53,8 @@
|
||||
#include "utils/memutils.h"
|
||||
|
||||
|
||||
/******************
|
||||
/*
|
||||
* externs and constants
|
||||
******************
|
||||
*/
|
||||
|
||||
/*
|
||||
@ -84,14 +83,13 @@ static Datum ExecMakeFunctionResult(Node *node, List *arguments,
|
||||
ExprContext *econtext, bool *isNull, bool *isDone);
|
||||
static bool ExecQualClause(Node *clause, ExprContext *econtext);
|
||||
|
||||
/******************
|
||||
/*
|
||||
* ExecEvalArrayRef
|
||||
*
|
||||
* This function takes an ArrayRef and returns a Const Node if it
|
||||
* is an array reference or returns the changed Array Node if it is
|
||||
* an array assignment.
|
||||
*
|
||||
******************/
|
||||
*/
|
||||
static Datum
|
||||
ExecEvalArrayRef(ArrayRef *arrayRef,
|
||||
ExprContext *econtext,
|
||||
@ -233,9 +231,8 @@ ExecEvalVar(Var *variable, ExprContext *econtext, bool *isNull)
|
||||
bool byval;
|
||||
int16 len;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* get the slot we want
|
||||
******************
|
||||
*/
|
||||
switch (variable->varno)
|
||||
{
|
||||
@ -253,9 +250,8 @@ ExecEvalVar(Var *variable, ExprContext *econtext, bool *isNull)
|
||||
break;
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* extract tuple information from the slot
|
||||
******************
|
||||
*/
|
||||
heapTuple = slot->val;
|
||||
tuple_type = slot->ttc_tupleDescriptor;
|
||||
@ -302,14 +298,13 @@ ExecEvalVar(Var *variable, ExprContext *econtext, bool *isNull)
|
||||
tuple_type, /* tuple descriptor of tuple */
|
||||
isNull); /* return: is attribute null? */
|
||||
|
||||
/******************
|
||||
/*
|
||||
* return null if att is null
|
||||
******************
|
||||
*/
|
||||
if (*isNull)
|
||||
return (Datum) NULL;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* get length and type information..
|
||||
* ??? what should we do about variable length attributes
|
||||
* - variable length attributes have their length stored
|
||||
@ -317,15 +312,13 @@ ExecEvalVar(Var *variable, ExprContext *econtext, bool *isNull)
|
||||
* returned value.. If we can determine that the type
|
||||
* is a variable length type, we can do the right thing.
|
||||
* -cim 9/15/89
|
||||
******************
|
||||
*/
|
||||
if (attnum < 0)
|
||||
{
|
||||
/******************
|
||||
/*
|
||||
* If this is a pseudo-att, we get the type and fake the length.
|
||||
* There ought to be a routine to return the real lengths, so
|
||||
* we'll mark this one ... XXX -mao
|
||||
******************
|
||||
*/
|
||||
len = heap_sysattrlen(attnum); /* XXX see -mao above */
|
||||
byval = heap_sysattrbyval(attnum); /* XXX see -mao above */
|
||||
@ -490,7 +483,7 @@ ExecEvalParam(Param *expression, ExprContext *econtext, bool *isNull)
|
||||
* ----------------------------------------------------------------
|
||||
*/
|
||||
|
||||
/******************
|
||||
/*
|
||||
* GetAttributeByName
|
||||
* GetAttributeByNum
|
||||
*
|
||||
@ -498,7 +491,6 @@ ExecEvalParam(Param *expression, ExprContext *econtext, bool *isNull)
|
||||
* named attribute out of the tuple from the arg slot. User defined
|
||||
* C functions which take a tuple as an argument are expected
|
||||
* to use this. Ex: overpaid(EMP) might call GetAttributeByNum().
|
||||
******************
|
||||
*/
|
||||
/* static but gets called from external functions */
|
||||
char *
|
||||
@ -617,12 +609,11 @@ ExecEvalFuncArgs(FunctionCachePtr fcache,
|
||||
i = 0;
|
||||
foreach(arg, argList)
|
||||
{
|
||||
/******************
|
||||
/*
|
||||
* evaluate the expression, in general functions cannot take
|
||||
* sets as arguments but we make an exception in the case of
|
||||
* nested dot expressions. We have to watch out for this case
|
||||
* here.
|
||||
******************
|
||||
*/
|
||||
argV[i] = (Datum)
|
||||
ExecEvalExpr((Node *) lfirst(arg),
|
||||
@ -645,9 +636,8 @@ ExecEvalFuncArgs(FunctionCachePtr fcache,
|
||||
}
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* ExecMakeFunctionResult
|
||||
******************
|
||||
*/
|
||||
static Datum
|
||||
ExecMakeFunctionResult(Node *node,
|
||||
@ -680,12 +670,11 @@ ExecMakeFunctionResult(Node *node,
|
||||
fcache = operNode->op_fcache;
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* arguments is a list of expressions to evaluate
|
||||
* before passing to the function manager.
|
||||
* We collect the results of evaluating the expressions
|
||||
* into a datum array (argV) and pass this array to arrayFmgr()
|
||||
******************
|
||||
*/
|
||||
if (fcache->nargs != 0)
|
||||
{
|
||||
@ -753,10 +742,9 @@ ExecMakeFunctionResult(Node *node,
|
||||
}
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* now return the value gotten by calling the function manager,
|
||||
* passing the function the evaluated parameter values.
|
||||
******************
|
||||
*/
|
||||
if (fcache->language == SQLlanguageId)
|
||||
{
|
||||
@ -854,14 +842,13 @@ ExecEvalOper(Expr *opClause, ExprContext *econtext, bool *isNull)
|
||||
FunctionCachePtr fcache;
|
||||
bool isDone;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* an opclause is a list (op args). (I think)
|
||||
*
|
||||
* we extract the oid of the function associated with
|
||||
* the op and then pass the work onto ExecMakeFunctionResult
|
||||
* which evaluates the arguments and returns the result of
|
||||
* calling the function on the evaluated arguments.
|
||||
******************
|
||||
*/
|
||||
op = (Oper *) opClause->oper;
|
||||
argList = opClause->args;
|
||||
@ -877,10 +864,9 @@ ExecEvalOper(Expr *opClause, ExprContext *econtext, bool *isNull)
|
||||
fcache = op->op_fcache;
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* call ExecMakeFunctionResult() with a dummy isDone that we ignore.
|
||||
* We don't have operator whose arguments are sets.
|
||||
******************
|
||||
*/
|
||||
return ExecMakeFunctionResult((Node *) op, argList, econtext, isNull, &isDone);
|
||||
}
|
||||
@ -900,7 +886,7 @@ ExecEvalFunc(Expr *funcClause,
|
||||
List *argList;
|
||||
FunctionCachePtr fcache;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* an funcclause is a list (func args). (I think)
|
||||
*
|
||||
* we extract the oid of the function associated with
|
||||
@ -909,7 +895,6 @@ ExecEvalFunc(Expr *funcClause,
|
||||
* calling the function on the evaluated arguments.
|
||||
*
|
||||
* this is nearly identical to the ExecEvalOper code.
|
||||
******************
|
||||
*/
|
||||
func = (Func *) funcClause->oper;
|
||||
argList = funcClause->args;
|
||||
@ -953,25 +938,22 @@ ExecEvalNot(Expr *notclause, ExprContext *econtext, bool *isNull)
|
||||
|
||||
clause = lfirst(notclause->args);
|
||||
|
||||
/******************
|
||||
/*
|
||||
* We don't iterate over sets in the quals, so pass in an isDone
|
||||
* flag, but ignore it.
|
||||
******************
|
||||
*/
|
||||
expr_value = ExecEvalExpr(clause, econtext, isNull, &isDone);
|
||||
|
||||
/******************
|
||||
/*
|
||||
* if the expression evaluates to null, then we just
|
||||
* cascade the null back to whoever called us.
|
||||
******************
|
||||
*/
|
||||
if (*isNull)
|
||||
return expr_value;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* evaluation of 'not' is simple.. expr is false, then
|
||||
* return 'true' and vice versa.
|
||||
******************
|
||||
*/
|
||||
if (DatumGetInt32(expr_value) == 0)
|
||||
return (Datum) true;
|
||||
@ -995,7 +977,7 @@ ExecEvalOr(Expr *orExpr, ExprContext *econtext, bool *isNull)
|
||||
IsNull = false;
|
||||
clauses = orExpr->args;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* we use three valued logic functions here...
|
||||
* we evaluate each of the clauses in turn,
|
||||
* as soon as one is true we return that
|
||||
@ -1005,33 +987,30 @@ ExecEvalOr(Expr *orExpr, ExprContext *econtext, bool *isNull)
|
||||
* should be false) with *isNull set to false else
|
||||
* if none is true and at least one clause evaluated
|
||||
* to NULL we set *isNull flag to true -
|
||||
******************
|
||||
*/
|
||||
foreach(clause, clauses)
|
||||
{
|
||||
|
||||
/******************
|
||||
/*
|
||||
* We don't iterate over sets in the quals, so pass in an isDone
|
||||
* flag, but ignore it.
|
||||
******************
|
||||
*/
|
||||
const_value = ExecEvalExpr((Node *) lfirst(clause),
|
||||
econtext,
|
||||
isNull,
|
||||
&isDone);
|
||||
|
||||
/******************
|
||||
/*
|
||||
* if the expression evaluates to null, then we
|
||||
* remember it in the local IsNull flag, if none of the
|
||||
* clauses are true then we need to set *isNull
|
||||
* to true again.
|
||||
******************
|
||||
*/
|
||||
if (*isNull)
|
||||
{
|
||||
IsNull = *isNull;
|
||||
|
||||
/*************
|
||||
/*
|
||||
* Many functions don't (or can't!) check if an argument is NULL
|
||||
* or NOT_NULL and may return TRUE (1) with *isNull TRUE
|
||||
* (an_int4_column <> 1: int4ne returns TRUE for NULLs).
|
||||
@ -1044,13 +1023,12 @@ ExecEvalOr(Expr *orExpr, ExprContext *econtext, bool *isNull)
|
||||
* if isnull is TRUE then the clause failed.
|
||||
* Note: nullvalue() & nonnullvalue() always sets isnull to FALSE for NULLs.
|
||||
* - vadim 09/22/97
|
||||
*************/
|
||||
*/
|
||||
const_value = 0;
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* if we have a true result, then we return it.
|
||||
******************
|
||||
*/
|
||||
if (DatumGetInt32(const_value) != 0)
|
||||
return const_value;
|
||||
@ -1078,41 +1056,37 @@ ExecEvalAnd(Expr *andExpr, ExprContext *econtext, bool *isNull)
|
||||
|
||||
clauses = andExpr->args;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* we evaluate each of the clauses in turn,
|
||||
* as soon as one is false we return that
|
||||
* value. If none are false or NULL then we return
|
||||
* the value of the last clause evaluated, which
|
||||
* should be true.
|
||||
******************
|
||||
*/
|
||||
foreach(clause, clauses)
|
||||
{
|
||||
|
||||
/******************
|
||||
/*
|
||||
* We don't iterate over sets in the quals, so pass in an isDone
|
||||
* flag, but ignore it.
|
||||
******************
|
||||
*/
|
||||
const_value = ExecEvalExpr((Node *) lfirst(clause),
|
||||
econtext,
|
||||
isNull,
|
||||
&isDone);
|
||||
|
||||
/******************
|
||||
/*
|
||||
* if the expression evaluates to null, then we
|
||||
* remember it in IsNull, if none of the clauses after
|
||||
* this evaluates to false we will have to set *isNull
|
||||
* to true again.
|
||||
******************
|
||||
*/
|
||||
if (*isNull)
|
||||
IsNull = *isNull;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* if we have a false result, then we return it, since the
|
||||
* conjunction must be false.
|
||||
******************
|
||||
*/
|
||||
if (DatumGetInt32(const_value) == 0)
|
||||
return const_value;
|
||||
@ -1142,20 +1116,18 @@ ExecEvalCase(CaseExpr *caseExpr, ExprContext *econtext, bool *isNull)
|
||||
|
||||
clauses = caseExpr->args;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* we evaluate each of the WHEN clauses in turn,
|
||||
* as soon as one is true we return the corresponding
|
||||
* result. If none are true then we return the value
|
||||
* of the default clause, or NULL.
|
||||
******************
|
||||
*/
|
||||
foreach(clause, clauses)
|
||||
{
|
||||
|
||||
/******************
|
||||
/*
|
||||
* We don't iterate over sets in the quals, so pass in an isDone
|
||||
* flag, but ignore it.
|
||||
******************
|
||||
*/
|
||||
|
||||
wclause = lfirst(clause);
|
||||
@ -1164,10 +1136,9 @@ ExecEvalCase(CaseExpr *caseExpr, ExprContext *econtext, bool *isNull)
|
||||
isNull,
|
||||
&isDone);
|
||||
|
||||
/******************
|
||||
/*
|
||||
* if we have a true test, then we return the result,
|
||||
* since the case statement is satisfied.
|
||||
******************
|
||||
*/
|
||||
if (DatumGetInt32(const_value) != 0)
|
||||
{
|
||||
@ -1232,10 +1203,9 @@ ExecEvalExpr(Node *expression,
|
||||
if (isDone)
|
||||
*isDone = true;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* here we dispatch the work to the appropriate type
|
||||
* of function given the type of our expression.
|
||||
******************
|
||||
*/
|
||||
if (expression == NULL)
|
||||
{
|
||||
@ -1354,19 +1324,17 @@ ExecQualClause(Node *clause, ExprContext *econtext)
|
||||
expr_value = (Datum)
|
||||
ExecEvalExpr(clause, econtext, &isNull, &isDone);
|
||||
|
||||
/******************
|
||||
/*
|
||||
* this is interesting behaviour here. When a clause evaluates
|
||||
* to null, then we consider this as passing the qualification.
|
||||
* it seems kind of like, if the qual is NULL, then there's no
|
||||
* qual..
|
||||
******************
|
||||
*/
|
||||
if (isNull)
|
||||
return true;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* remember, we return true when the qualification fails..
|
||||
******************
|
||||
*/
|
||||
if (DatumGetInt32(expr_value) == 0)
|
||||
return true;
|
||||
@ -1387,9 +1355,8 @@ ExecQual(List *qual, ExprContext *econtext)
|
||||
List *clause;
|
||||
bool result;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* debugging stuff
|
||||
******************
|
||||
*/
|
||||
EV_printf("ExecQual: qual is ");
|
||||
EV_nodeDisplay(qual);
|
||||
@ -1397,21 +1364,19 @@ ExecQual(List *qual, ExprContext *econtext)
|
||||
|
||||
IncrProcessed();
|
||||
|
||||
/******************
|
||||
/*
|
||||
* return true immediately if no qual
|
||||
******************
|
||||
*/
|
||||
if (qual == NIL)
|
||||
return true;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* a "qual" is a list of clauses. To evaluate the
|
||||
* qual, we evaluate each of the clauses in the list.
|
||||
*
|
||||
* ExecQualClause returns true when we know the qualification
|
||||
* *failed* so we just pass each clause in qual to it until
|
||||
* we know the qual failed or there are no more clauses.
|
||||
******************
|
||||
*/
|
||||
result = false;
|
||||
|
||||
@ -1422,11 +1387,10 @@ ExecQual(List *qual, ExprContext *econtext)
|
||||
break;
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* if result is true, then it means a clause failed so we
|
||||
* return false. if result is false then it means no clause
|
||||
* failed so we return true.
|
||||
******************
|
||||
*/
|
||||
if (result == true)
|
||||
return false;
|
||||
@ -1482,23 +1446,21 @@ ExecTargetList(List *targetlist,
|
||||
HeapTuple newTuple;
|
||||
bool isNull;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* debugging stuff
|
||||
******************
|
||||
*/
|
||||
EV_printf("ExecTargetList: tl is ");
|
||||
EV_nodeDisplay(targetlist);
|
||||
EV_printf("\n");
|
||||
|
||||
/******************
|
||||
/*
|
||||
* Return a dummy tuple if the targetlist is empty .
|
||||
* the dummy tuple is necessary to differentiate
|
||||
* between passing and failing the qualification.
|
||||
******************
|
||||
*/
|
||||
if (targetlist == NIL)
|
||||
{
|
||||
/******************
|
||||
/*
|
||||
* I now think that the only time this makes
|
||||
* any sence is when we run a delete query. Then
|
||||
* we need to return something other than nil
|
||||
@ -1512,18 +1474,16 @@ ExecTargetList(List *targetlist,
|
||||
* is this a new phenomenon? it might cause bogus behavior
|
||||
* if we try to free this tuple later!! I put a hook in
|
||||
* ExecProject to watch out for this case -mer 24 Aug 1992
|
||||
******************
|
||||
*/
|
||||
CXT1_printf("ExecTargetList: context is %d\n", CurrentMemoryContext);
|
||||
*isDone = true;
|
||||
return (HeapTuple) true;
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* allocate an array of char's to hold the "null" information
|
||||
* only if we have a really large targetlist. otherwise we use
|
||||
* the stack.
|
||||
******************
|
||||
*/
|
||||
if (nodomains > 64)
|
||||
{
|
||||
@ -1536,23 +1496,21 @@ ExecTargetList(List *targetlist,
|
||||
fjIsNull = &fjNullArray[0];
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* evaluate all the expressions in the target list
|
||||
******************
|
||||
*/
|
||||
EV_printf("ExecTargetList: setting target list values\n");
|
||||
|
||||
*isDone = true;
|
||||
foreach(tl, targetlist)
|
||||
{
|
||||
/******************
|
||||
/*
|
||||
* remember, a target list is a list of lists:
|
||||
*
|
||||
* ((<resdom | fjoin> expr) (<resdom | fjoin> expr) ...)
|
||||
*
|
||||
* tl is a pointer to successive cdr's of the targetlist
|
||||
* tle is a pointer to the target list entry in tl
|
||||
******************
|
||||
*/
|
||||
tle = lfirst(tl);
|
||||
|
||||
@ -1626,16 +1584,14 @@ ExecTargetList(List *targetlist,
|
||||
}
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* form the new result tuple (in the "normal" context)
|
||||
******************
|
||||
*/
|
||||
newTuple = (HeapTuple)
|
||||
heap_formtuple(targettype, values, null_head);
|
||||
|
||||
/******************
|
||||
/*
|
||||
* free the nulls array if we allocated one..
|
||||
******************
|
||||
*/
|
||||
if (nodomains > 64)
|
||||
pfree(null_head);
|
||||
@ -1667,16 +1623,14 @@ ExecProject(ProjectionInfo *projInfo, bool *isDone)
|
||||
ExprContext *econtext;
|
||||
HeapTuple newTuple;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* sanity checks
|
||||
******************
|
||||
*/
|
||||
if (projInfo == NULL)
|
||||
return (TupleTableSlot *) NULL;
|
||||
|
||||
/******************
|
||||
/*
|
||||
* get the projection info we want
|
||||
******************
|
||||
*/
|
||||
slot = projInfo->pi_slot;
|
||||
targetlist = projInfo->pi_targetlist;
|
||||
@ -1692,9 +1646,8 @@ ExecProject(ProjectionInfo *projInfo, bool *isDone)
|
||||
return (TupleTableSlot *) NULL;
|
||||
}
|
||||
|
||||
/******************
|
||||
/*
|
||||
* form a new (result) tuple
|
||||
******************
|
||||
*/
|
||||
newTuple = ExecTargetList(targetlist,
|
||||
len,
|
||||
@ -1703,13 +1656,12 @@ ExecProject(ProjectionInfo *projInfo, bool *isDone)
|
||||
econtext,
|
||||
isDone);
|
||||
|
||||
/******************
|
||||
/*
|
||||
* store the tuple in the projection slot and return the slot.
|
||||
*
|
||||
* If there's no projection target list we don't want to pfree
|
||||
* the bogus tuple that ExecTargetList passes back to us.
|
||||
* -mer 24 Aug 1992
|
||||
******************
|
||||
*/
|
||||
return (TupleTableSlot *)
|
||||
ExecStoreTuple(newTuple,/* tuple to store */
|
||||
|
@ -7,7 +7,7 @@
|
||||
*
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $Header: /cvsroot/pgsql/src/backend/executor/nodeMergejoin.c,v 1.21 1999/02/13 23:15:24 momjian Exp $
|
||||
* $Header: /cvsroot/pgsql/src/backend/executor/nodeMergejoin.c,v 1.22 1999/02/22 19:40:10 momjian Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -26,12 +26,12 @@
|
||||
* Skip Inner SKIPINNER
|
||||
* mark inner position JOINMARK
|
||||
* do forever { -
|
||||
* while (outer ** inner) { JOINTEST
|
||||
* while (outer == inner) { JOINTEST
|
||||
* join tuples JOINTUPLES
|
||||
* advance inner position NEXTINNER
|
||||
* } -
|
||||
* advance outer position NEXTOUTER
|
||||
* if (outer ** mark) { TESTOUTER
|
||||
* if (outer == mark) { TESTOUTER
|
||||
* restore inner position to mark TESTOUTER
|
||||
* continue -
|
||||
* } else { -
|
||||
@ -42,7 +42,7 @@
|
||||
* } -
|
||||
*
|
||||
* Skip Outer { SKIPOUTER
|
||||
* if (inner ** outer) Join Tuples JOINTUPLES
|
||||
* if (inner == outer) Join Tuples JOINTUPLES
|
||||
* while (outer < inner) SKIPOUTER
|
||||
* advance outer SKIPOUTER
|
||||
* if (outer > inner) SKIPOUTER
|
||||
@ -50,7 +50,7 @@
|
||||
* } -
|
||||
*
|
||||
* Skip Inner { SKIPINNER
|
||||
* if (inner ** outer) Join Tuples JOINTUPLES
|
||||
* if (inner == outer) Join Tuples JOINTUPLES
|
||||
* while (outer > inner) SKIPINNER
|
||||
* advance inner SKIPINNER
|
||||
* if (outer < inner) SKIPINNER
|
||||
@ -475,13 +475,13 @@ ExecMergeJoin(MergeJoin *node)
|
||||
switch (mergestate->mj_JoinState)
|
||||
{
|
||||
|
||||
/*
|
||||
* ******************************** EXEC_MJ_INITIALIZE
|
||||
/* ---------------------------------------------------
|
||||
* EXEC_MJ_INITIALIZE
|
||||
* means that this is the first time ExecMergeJoin() has
|
||||
* been called and so we have to initialize the inner,
|
||||
* outer and marked tuples as well as various stuff in the
|
||||
* expression context. ********************************
|
||||
*
|
||||
* expression context.
|
||||
* ---------------------------------------------------
|
||||
*/
|
||||
case EXEC_MJ_INITIALIZE:
|
||||
MJ_printf("ExecMergeJoin: EXEC_MJ_INITIALIZE\n");
|
||||
@ -522,12 +522,12 @@ ExecMergeJoin(MergeJoin *node)
|
||||
mergestate->mj_JoinState = EXEC_MJ_SKIPINNER;
|
||||
break;
|
||||
|
||||
/*
|
||||
* ******************************** EXEC_MJ_JOINMARK means
|
||||
* we have just found a new outer tuple and a possible
|
||||
/* ---------------------------------------------------
|
||||
* EXEC_MJ_JOINMARK
|
||||
* means we have just found a new outer tuple and a possible
|
||||
* matching inner tuple. This is the case after the
|
||||
* INITIALIZE, SKIPOUTER or SKIPINNER states. ********************************
|
||||
*
|
||||
* INITIALIZE, SKIPOUTER or SKIPINNER states.
|
||||
* ----------------------------------------------------
|
||||
*/
|
||||
case EXEC_MJ_JOINMARK:
|
||||
MJ_printf("ExecMergeJoin: EXEC_MJ_JOINMARK\n");
|
||||
@ -538,16 +538,16 @@ ExecMergeJoin(MergeJoin *node)
|
||||
mergestate->mj_JoinState = EXEC_MJ_JOINTEST;
|
||||
break;
|
||||
|
||||
/*
|
||||
* ******************************** EXEC_MJ_JOINTEST means
|
||||
* we have two tuples which might satisify the merge
|
||||
/* ----------------------------------------------------
|
||||
* EXEC_MJ_JOINTEST
|
||||
* means we have two tuples which might satisify the merge
|
||||
* clause, so we test them.
|
||||
*
|
||||
* If they do satisify, then we join them and move on to the
|
||||
* next inner tuple (EXEC_MJ_JOINTUPLES).
|
||||
*
|
||||
* If they do not satisify then advance to next outer tuple. ********************************
|
||||
*
|
||||
* If they do not satisify then advance to next outer tuple.
|
||||
* ------------------------------------------------------
|
||||
*/
|
||||
case EXEC_MJ_JOINTEST:
|
||||
MJ_printf("ExecMergeJoin: EXEC_MJ_JOINTEST\n");
|
||||
@ -561,12 +561,12 @@ ExecMergeJoin(MergeJoin *node)
|
||||
mergestate->mj_JoinState = EXEC_MJ_NEXTOUTER;
|
||||
break;
|
||||
|
||||
/*
|
||||
* ******************************** EXEC_MJ_JOINTUPLES
|
||||
/* ----------------------------------------------------
|
||||
* EXEC_MJ_JOINTUPLES
|
||||
* means we have two tuples which satisified the merge
|
||||
* clause so we join them and then proceed to get the next
|
||||
* inner tuple (EXEC_NEXT_INNER). ********************************
|
||||
*
|
||||
* inner tuple (EXEC_NEXT_INNER).
|
||||
* ----------------------------------------------------
|
||||
*/
|
||||
case EXEC_MJ_JOINTUPLES:
|
||||
MJ_printf("ExecMergeJoin: EXEC_MJ_JOINTUPLES\n");
|
||||
@ -596,12 +596,12 @@ ExecMergeJoin(MergeJoin *node)
|
||||
}
|
||||
break;
|
||||
|
||||
/*
|
||||
* ******************************** EXEC_MJ_NEXTINNER
|
||||
/* --------------------------------------------------
|
||||
* EXEC_MJ_NEXTINNER
|
||||
* means advance the inner scan to the next tuple. If the
|
||||
* tuple is not nil, we then proceed to test it against
|
||||
* the join qualification. ********************************
|
||||
*
|
||||
* the join qualification.
|
||||
* ----------------------------------------------------
|
||||
*/
|
||||
case EXEC_MJ_NEXTINNER:
|
||||
MJ_printf("ExecMergeJoin: EXEC_MJ_NEXTINNER\n");
|
||||
@ -620,18 +620,20 @@ ExecMergeJoin(MergeJoin *node)
|
||||
mergestate->mj_JoinState = EXEC_MJ_JOINTEST;
|
||||
break;
|
||||
|
||||
/*
|
||||
* ******************************** EXEC_MJ_NEXTOUTER
|
||||
/* --------------------------------------------------
|
||||
* EXEC_MJ_NEXTOUTER
|
||||
* means
|
||||
*
|
||||
* outer inner outer tuple - 5 5 - marked tuple 5 5
|
||||
* 6 6 - inner tuple 7 7
|
||||
* outer inner
|
||||
* outer tuple - 5 5 - marked tuple
|
||||
* 5 5
|
||||
* 6 6 - inner tuple
|
||||
* 7 7
|
||||
*
|
||||
* we know we just bumped into the first inner tuple >
|
||||
* current outer tuple so get a new outer tuple and then
|
||||
* proceed to test it against the marked tuple
|
||||
* (EXEC_MJ_TESTOUTER) ********************************
|
||||
*
|
||||
* (EXEC_MJ_TESTOUTER)
|
||||
* -------------------------------------------------
|
||||
*/
|
||||
case EXEC_MJ_NEXTOUTER:
|
||||
MJ_printf("ExecMergeJoin: EXEC_MJ_NEXTOUTER\n");
|
||||
@ -654,35 +656,40 @@ ExecMergeJoin(MergeJoin *node)
|
||||
mergestate->mj_JoinState = EXEC_MJ_TESTOUTER;
|
||||
break;
|
||||
|
||||
/*
|
||||
* ******************************** EXEC_MJ_TESTOUTER If
|
||||
* the new outer tuple and the marked tuple satisify the
|
||||
/* ---------------------------------------------------
|
||||
* EXEC_MJ_TESTOUTER
|
||||
* If the new outer tuple and the marked tuple satisify the
|
||||
* merge clause then we know we have duplicates in the
|
||||
* outer scan so we have to restore the inner scan to the
|
||||
* marked tuple and proceed to join the new outer tuples
|
||||
* with the inner tuples (EXEC_MJ_JOINTEST)
|
||||
*
|
||||
* This is the case when
|
||||
*
|
||||
* outer inner 4 5 - marked tuple outer tuple - 5 5
|
||||
* new outer tuple - 5 5 6 8 - inner tuple 7 12
|
||||
* outer inner
|
||||
* 4 5 - marked tuple
|
||||
* outer tuple - 5 5
|
||||
* new outer tuple - 5 5
|
||||
* 6 8 - inner tuple
|
||||
* 7 12
|
||||
*
|
||||
* new outer tuple = marked tuple
|
||||
*
|
||||
* If the outer tuple fails the test, then we know we have to
|
||||
* proceed to skip outer tuples until outer >= inner
|
||||
* If the outer tuple fails the test, then we know we have
|
||||
* to proceed to skip outer tuples until outer >= inner
|
||||
* (EXEC_MJ_SKIPOUTER).
|
||||
*
|
||||
* This is the case when
|
||||
*
|
||||
* outer inner 5 5 - marked tuple outer tuple - 5 5
|
||||
* new outer tuple - 6 8 - inner tuple 7 12
|
||||
* outer inner
|
||||
* 5 5 - marked tuple
|
||||
* outer tuple - 5 5
|
||||
* new outer tuple - 6 8 - inner tuple
|
||||
* 7 12
|
||||
*
|
||||
*
|
||||
* new outer tuple > marked tuple
|
||||
*
|
||||
***************************
|
||||
*
|
||||
*
|
||||
* -----------------------------------------------------------
|
||||
*/
|
||||
case EXEC_MJ_TESTOUTER:
|
||||
MJ_printf("ExecMergeJoin: EXEC_MJ_TESTOUTER\n");
|
||||
@ -746,27 +753,23 @@ ExecMergeJoin(MergeJoin *node)
|
||||
}
|
||||
break;
|
||||
|
||||
/*
|
||||
* ******************************** EXEC_MJ_SKIPOUTER
|
||||
/* --------------------------------------------------
|
||||
* EXEC_MJ_SKIPOUTER
|
||||
* means skip over tuples in the outer plan until we find
|
||||
* an outer tuple > current inner tuple.
|
||||
*
|
||||
* For example:
|
||||
*
|
||||
* outer inner 5 5 5 5 outer tuple - 6 8 -
|
||||
* inner tuple 7 12 8 14
|
||||
* outer inner
|
||||
* 5 5
|
||||
* 5 5
|
||||
* outer tuple - 6 8 - inner tuple
|
||||
* 7 12
|
||||
* 8 14
|
||||
*
|
||||
* we have to advance the outer scan until we find the outer
|
||||
* We have to advance the outer scan until we find the outer
|
||||
* 8.
|
||||
*
|
||||
**************************
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
* ------------------------------------------------
|
||||
*/
|
||||
case EXEC_MJ_SKIPOUTER:
|
||||
MJ_printf("ExecMergeJoin: EXEC_MJ_SKIPOUTER\n");
|
||||
@ -848,27 +851,22 @@ ExecMergeJoin(MergeJoin *node)
|
||||
mergestate->mj_JoinState = EXEC_MJ_JOINMARK;
|
||||
break;
|
||||
|
||||
/*
|
||||
* ******************************** EXEC_MJ_SKIPINNER
|
||||
/* ------------------------------------------------
|
||||
* EXEC_MJ_SKIPINNER
|
||||
* means skip over tuples in the inner plan until we find
|
||||
* an inner tuple > current outer tuple.
|
||||
*
|
||||
* For example:
|
||||
* outer inner
|
||||
* 5 5
|
||||
* 5 5
|
||||
* outer tuple - 12 8 - inner tuple
|
||||
* 14 10
|
||||
* 17 12
|
||||
*
|
||||
* outer inner 5 5 5 5 outer tuple - 12 8 - inner
|
||||
* tuple 14 10 17 12
|
||||
*
|
||||
* we have to advance the inner scan until we find the inner
|
||||
* We have to advance the inner scan until we find the inner
|
||||
* 12.
|
||||
*
|
||||
**************************
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
* ---------------------------------------------------
|
||||
*/
|
||||
case EXEC_MJ_SKIPINNER:
|
||||
MJ_printf("ExecMergeJoin: EXEC_MJ_SKIPINNER\n");
|
||||
@ -971,10 +969,8 @@ ExecMergeJoin(MergeJoin *node)
|
||||
break;
|
||||
|
||||
/*
|
||||
* ******************************** if we get here it
|
||||
* means our code is fucked up and so we just end the join
|
||||
* prematurely. ********************************
|
||||
*
|
||||
* If we get here it means our code is messed up and so we
|
||||
* just end the join prematurely.
|
||||
*/
|
||||
default:
|
||||
elog(NOTICE, "ExecMergeJoin: invalid join state. aborting");
|
||||
|
Loading…
x
Reference in New Issue
Block a user