mirror of
https://github.com/postgres/postgres.git
synced 2025-09-02 04:21:28 +03:00
Create a type-specific typanalyze routine for tsvector, which collects stats
on the most common individual lexemes in place of the mostly-useless default behavior of counting duplicate tsvectors. Future work: create selectivity estimation functions that actually do something with these stats. (Some other things we ought to look at doing: using the Lossy Counting algorithm in compute_minimal_stats, and using the element-counting idea for stats on regular arrays.) Jan Urbanski
This commit is contained in:
@@ -4,7 +4,7 @@
|
||||
#
|
||||
# Copyright (c) 2006-2008, PostgreSQL Global Development Group
|
||||
#
|
||||
# $PostgreSQL: pgsql/src/backend/tsearch/Makefile,v 1.6 2008/02/19 10:30:08 petere Exp $
|
||||
# $PostgreSQL: pgsql/src/backend/tsearch/Makefile,v 1.7 2008/07/14 00:51:45 tgl Exp $
|
||||
#
|
||||
#-------------------------------------------------------------------------
|
||||
subdir = src/backend/tsearch
|
||||
@@ -19,7 +19,7 @@ DICTFILES=synonym_sample.syn thesaurus_sample.ths hunspell_sample.affix \
|
||||
OBJS = ts_locale.o ts_parse.o wparser.o wparser_def.o dict.o \
|
||||
dict_simple.o dict_synonym.o dict_thesaurus.o \
|
||||
dict_ispell.o regis.o spell.o \
|
||||
to_tsany.o ts_utils.o
|
||||
to_tsany.o ts_typanalyze.o ts_utils.o
|
||||
|
||||
include $(top_srcdir)/src/backend/common.mk
|
||||
|
||||
|
403
src/backend/tsearch/ts_typanalyze.c
Normal file
403
src/backend/tsearch/ts_typanalyze.c
Normal file
@@ -0,0 +1,403 @@
|
||||
/*-------------------------------------------------------------------------
|
||||
*
|
||||
* ts_typanalyze.c
|
||||
* functions for gathering statistics from tsvector columns
|
||||
*
|
||||
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
|
||||
*
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $PostgreSQL: pgsql/src/backend/tsearch/ts_typanalyze.c,v 1.1 2008/07/14 00:51:45 tgl Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
#include "postgres.h"
|
||||
|
||||
#include "access/hash.h"
|
||||
#include "catalog/pg_operator.h"
|
||||
#include "commands/vacuum.h"
|
||||
#include "tsearch/ts_type.h"
|
||||
#include "utils/builtins.h"
|
||||
#include "utils/hsearch.h"
|
||||
|
||||
|
||||
/* A hash key for lexemes */
|
||||
typedef struct
|
||||
{
|
||||
char *lexeme; /* lexeme (not NULL terminated!) */
|
||||
int length; /* its length in bytes */
|
||||
} LexemeHashKey;
|
||||
|
||||
/* A hash table entry for the Lossy Counting algorithm */
|
||||
typedef struct
|
||||
{
|
||||
LexemeHashKey key; /* This is 'e' from the LC algorithm. */
|
||||
int frequency; /* This is 'f'. */
|
||||
int delta; /* And this is 'delta'. */
|
||||
} TrackItem;
|
||||
|
||||
static void compute_tsvector_stats(VacAttrStats *stats,
|
||||
AnalyzeAttrFetchFunc fetchfunc,
|
||||
int samplerows,
|
||||
double totalrows);
|
||||
static void prune_lexemes_hashtable(HTAB *lexemes_tab, int b_current);
|
||||
static uint32 lexeme_hash(const void *key, Size keysize);
|
||||
static int lexeme_match(const void *key1, const void *key2, Size keysize);
|
||||
static int trackitem_compare_desc(const void *e1, const void *e2);
|
||||
|
||||
|
||||
/*
|
||||
* ts_typanalyze -- a custom typanalyze function for tsvector columns
|
||||
*/
|
||||
Datum
|
||||
ts_typanalyze(PG_FUNCTION_ARGS)
|
||||
{
|
||||
VacAttrStats *stats = (VacAttrStats *) PG_GETARG_POINTER(0);
|
||||
Form_pg_attribute attr = stats->attr;
|
||||
|
||||
/* If the attstattarget column is negative, use the default value */
|
||||
/* NB: it is okay to scribble on stats->attr since it's a copy */
|
||||
if (attr->attstattarget < 0)
|
||||
attr->attstattarget = default_statistics_target;
|
||||
|
||||
stats->compute_stats = compute_tsvector_stats;
|
||||
/* see comment about the choice of minrows from analyze.c */
|
||||
stats->minrows = 300 * attr->attstattarget;
|
||||
|
||||
PG_RETURN_BOOL(true);
|
||||
}
|
||||
|
||||
/*
|
||||
* compute_tsvector_stats() -- compute statistics for a tsvector column
|
||||
*
|
||||
* This functions computes statistics that are useful for determining @@
|
||||
* operations' selectivity, along with the fraction of non-null rows and
|
||||
* average width.
|
||||
*
|
||||
* Instead of finding the most common values, as we do for most datatypes,
|
||||
* we're looking for the most common lexemes. This is more useful, because
|
||||
* there most probably won't be any two rows with the same tsvector and thus
|
||||
* the notion of a MCV is a bit bogus with this datatype. With a list of the
|
||||
* most common lexemes we can do a better job at figuring out @@ selectivity.
|
||||
*
|
||||
* For the same reasons we assume that tsvector columns are unique when
|
||||
* determining the number of distinct values.
|
||||
*
|
||||
* The algorithm used is Lossy Counting, as proposed in the paper "Approximate
|
||||
* frequency counts over data streams" by G. S. Manku and R. Motwani, in
|
||||
* Proceedings of the 28th International Conference on Very Large Data Bases,
|
||||
* Hong Kong, China, August 2002, section 4.2. The paper is available at
|
||||
* http://www.vldb.org/conf/2002/S10P03.pdf
|
||||
*
|
||||
* The Lossy Counting (aka LC) algorithm goes like this:
|
||||
* Let D be a set of triples (e, f, d), where e is an element value, f is
|
||||
* that element's frequency (occurrence count) and d is the maximum error in
|
||||
* f. We start with D empty and process the elements in batches of size
|
||||
* w. (The batch size is also known as "bucket size".) Let the current batch
|
||||
* number be b_current, starting with 1. For each element e we either
|
||||
* increment its f count, if it's already in D, or insert a new triple into D
|
||||
* with values (e, 1, b_current - 1). After processing each batch we prune D,
|
||||
* by removing from it all elements with f + d <= b_current. Finally, we
|
||||
* gather elements with largest f. The LC paper proves error bounds on f
|
||||
* dependent on the batch size w, and shows that the required table size
|
||||
* is no more than a few times w.
|
||||
*
|
||||
* We use a hashtable for the D structure and a bucket width of
|
||||
* statistic_target * 100, where 100 is an arbitrarily chosen constant, meant
|
||||
* to approximate the number of lexemes in a single tsvector.
|
||||
*/
|
||||
static void
|
||||
compute_tsvector_stats(VacAttrStats *stats,
|
||||
AnalyzeAttrFetchFunc fetchfunc,
|
||||
int samplerows,
|
||||
double totalrows)
|
||||
{
|
||||
int num_mcelem;
|
||||
int null_cnt = 0;
|
||||
double total_width = 0;
|
||||
/* This is D from the LC algorithm. */
|
||||
HTAB *lexemes_tab;
|
||||
HASHCTL hash_ctl;
|
||||
HASH_SEQ_STATUS scan_status;
|
||||
/* This is the current bucket number from the LC algorithm */
|
||||
int b_current;
|
||||
/* This is 'w' from the LC algorithm */
|
||||
int bucket_width;
|
||||
int vector_no,
|
||||
lexeme_no;
|
||||
LexemeHashKey hash_key;
|
||||
TrackItem *item;
|
||||
|
||||
/* We want statistic_target * 100 lexemes in the MCELEM array */
|
||||
num_mcelem = stats->attr->attstattarget * 100;
|
||||
|
||||
/*
|
||||
* We set bucket width equal to the target number of result lexemes.
|
||||
* This is probably about right but perhaps might need to be scaled
|
||||
* up or down a bit?
|
||||
*/
|
||||
bucket_width = num_mcelem;
|
||||
|
||||
/*
|
||||
* Create the hashtable. It will be in local memory, so we don't need to
|
||||
* worry about initial size too much. Also we don't need to pay any
|
||||
* attention to locking and memory management.
|
||||
*/
|
||||
MemSet(&hash_ctl, 0, sizeof(hash_ctl));
|
||||
hash_ctl.keysize = sizeof(LexemeHashKey);
|
||||
hash_ctl.entrysize = sizeof(TrackItem);
|
||||
hash_ctl.hash = lexeme_hash;
|
||||
hash_ctl.match = lexeme_match;
|
||||
hash_ctl.hcxt = CurrentMemoryContext;
|
||||
lexemes_tab = hash_create("Analyzed lexemes table",
|
||||
bucket_width * 4,
|
||||
&hash_ctl,
|
||||
HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);
|
||||
|
||||
/* Initialize counters. */
|
||||
b_current = 1;
|
||||
lexeme_no = 1;
|
||||
|
||||
/* Loop over the tsvectors. */
|
||||
for (vector_no = 0; vector_no < samplerows; vector_no++)
|
||||
{
|
||||
Datum value;
|
||||
bool isnull;
|
||||
TSVector vector;
|
||||
WordEntry *curentryptr;
|
||||
char *lexemesptr;
|
||||
int j;
|
||||
|
||||
vacuum_delay_point();
|
||||
|
||||
value = fetchfunc(stats, vector_no, &isnull);
|
||||
|
||||
/*
|
||||
* Check for null/nonnull.
|
||||
*/
|
||||
if (isnull)
|
||||
{
|
||||
null_cnt++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* Add up widths for average-width calculation. Since it's a
|
||||
* tsvector, we know it's varlena. As in the regular
|
||||
* compute_minimal_stats function, we use the toasted width for this
|
||||
* calculation.
|
||||
*/
|
||||
total_width += VARSIZE_ANY(DatumGetPointer(value));
|
||||
|
||||
/*
|
||||
* Now detoast the tsvector if needed.
|
||||
*/
|
||||
vector = DatumGetTSVector(value);
|
||||
|
||||
/*
|
||||
* We loop through the lexemes in the tsvector and add them to our
|
||||
* tracking hashtable. Note: the hashtable entries will point into
|
||||
* the (detoasted) tsvector value, therefore we cannot free that
|
||||
* storage until we're done.
|
||||
*/
|
||||
lexemesptr = STRPTR(vector);
|
||||
curentryptr = ARRPTR(vector);
|
||||
for (j = 0; j < vector->size; j++)
|
||||
{
|
||||
bool found;
|
||||
|
||||
/* Construct a hash key */
|
||||
hash_key.lexeme = lexemesptr + curentryptr->pos;
|
||||
hash_key.length = curentryptr->len;
|
||||
|
||||
/* Lookup current lexeme in hashtable, adding it if new */
|
||||
item = (TrackItem *) hash_search(lexemes_tab,
|
||||
(const void *) &hash_key,
|
||||
HASH_ENTER, &found);
|
||||
|
||||
if (found)
|
||||
{
|
||||
/* The lexeme is already on the tracking list */
|
||||
item->frequency++;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Initialize new tracking list element */
|
||||
item->frequency = 1;
|
||||
item->delta = b_current - 1;
|
||||
}
|
||||
|
||||
/* We prune the D structure after processing each bucket */
|
||||
if (lexeme_no % bucket_width == 0)
|
||||
{
|
||||
prune_lexemes_hashtable(lexemes_tab, b_current);
|
||||
b_current++;
|
||||
}
|
||||
|
||||
/* Advance to the next WordEntry in the tsvector */
|
||||
lexeme_no++;
|
||||
curentryptr++;
|
||||
}
|
||||
}
|
||||
|
||||
/* We can only compute real stats if we found some non-null values. */
|
||||
if (null_cnt < samplerows)
|
||||
{
|
||||
int nonnull_cnt = samplerows - null_cnt;
|
||||
int i;
|
||||
TrackItem **sort_table;
|
||||
int track_len;
|
||||
|
||||
stats->stats_valid = true;
|
||||
/* Do the simple null-frac and average width stats */
|
||||
stats->stanullfrac = (double) null_cnt / (double) samplerows;
|
||||
stats->stawidth = total_width / (double) nonnull_cnt;
|
||||
|
||||
/* Assume it's a unique column (see notes above) */
|
||||
stats->stadistinct = -1.0;
|
||||
|
||||
/*
|
||||
* Determine the top-N lexemes by simply copying pointers from the
|
||||
* hashtable into an array and applying qsort()
|
||||
*/
|
||||
track_len = hash_get_num_entries(lexemes_tab);
|
||||
|
||||
sort_table = (TrackItem **) palloc(sizeof(TrackItem *) * track_len);
|
||||
|
||||
hash_seq_init(&scan_status, lexemes_tab);
|
||||
i = 0;
|
||||
while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL)
|
||||
{
|
||||
sort_table[i++] = item;
|
||||
}
|
||||
Assert(i == track_len);
|
||||
|
||||
qsort(sort_table, track_len, sizeof(TrackItem *),
|
||||
trackitem_compare_desc);
|
||||
|
||||
/* Suppress any single-occurrence items */
|
||||
while (track_len > 0)
|
||||
{
|
||||
if (sort_table[track_len-1]->frequency > 1)
|
||||
break;
|
||||
track_len--;
|
||||
}
|
||||
|
||||
/* Determine the number of most common lexemes to be stored */
|
||||
if (num_mcelem > track_len)
|
||||
num_mcelem = track_len;
|
||||
|
||||
/* Generate MCELEM slot entry */
|
||||
if (num_mcelem > 0)
|
||||
{
|
||||
MemoryContext old_context;
|
||||
Datum *mcelem_values;
|
||||
float4 *mcelem_freqs;
|
||||
|
||||
/* Must copy the target values into anl_context */
|
||||
old_context = MemoryContextSwitchTo(stats->anl_context);
|
||||
mcelem_values = (Datum *) palloc(num_mcelem * sizeof(Datum));
|
||||
mcelem_freqs = (float4 *) palloc(num_mcelem * sizeof(float4));
|
||||
|
||||
for (i = 0; i < num_mcelem; i++)
|
||||
{
|
||||
TrackItem *item = sort_table[i];
|
||||
|
||||
mcelem_values[i] =
|
||||
PointerGetDatum(cstring_to_text_with_len(item->key.lexeme,
|
||||
item->key.length));
|
||||
mcelem_freqs[i] = (double) item->frequency / (double) nonnull_cnt;
|
||||
}
|
||||
MemoryContextSwitchTo(old_context);
|
||||
|
||||
stats->stakind[0] = STATISTIC_KIND_MCELEM;
|
||||
stats->staop[0] = TextEqualOperator;
|
||||
stats->stanumbers[0] = mcelem_freqs;
|
||||
stats->numnumbers[0] = num_mcelem;
|
||||
stats->stavalues[0] = mcelem_values;
|
||||
stats->numvalues[0] = num_mcelem;
|
||||
/* We are storing text values */
|
||||
stats->statypid[0] = TEXTOID;
|
||||
stats->statyplen[0] = -1; /* typlen, -1 for varlena */
|
||||
stats->statypbyval[0] = false;
|
||||
stats->statypalign[0] = 'i';
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* We found only nulls; assume the column is entirely null */
|
||||
stats->stats_valid = true;
|
||||
stats->stanullfrac = 1.0;
|
||||
stats->stawidth = 0; /* "unknown" */
|
||||
stats->stadistinct = 0.0; /* "unknown" */
|
||||
}
|
||||
|
||||
/*
|
||||
* We don't need to bother cleaning up any of our temporary palloc's.
|
||||
* The hashtable should also go away, as it used a child memory context.
|
||||
*/
|
||||
}
|
||||
|
||||
/*
|
||||
* A function to prune the D structure from the Lossy Counting algorithm.
|
||||
* Consult compute_tsvector_stats() for wider explanation.
|
||||
*/
|
||||
static void
|
||||
prune_lexemes_hashtable(HTAB *lexemes_tab, int b_current)
|
||||
{
|
||||
HASH_SEQ_STATUS scan_status;
|
||||
TrackItem *item;
|
||||
|
||||
hash_seq_init(&scan_status, lexemes_tab);
|
||||
while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL)
|
||||
{
|
||||
if (item->frequency + item->delta <= b_current)
|
||||
{
|
||||
if (hash_search(lexemes_tab, (const void *) &item->key,
|
||||
HASH_REMOVE, NULL) == NULL)
|
||||
elog(ERROR, "hash table corrupted");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Hash functions for lexemes. They are strings, but not NULL terminated,
|
||||
* so we need a special hash function.
|
||||
*/
|
||||
static uint32
|
||||
lexeme_hash(const void *key, Size keysize)
|
||||
{
|
||||
const LexemeHashKey *l = (const LexemeHashKey *) key;
|
||||
|
||||
return DatumGetUInt32(hash_any((const unsigned char *) l->lexeme,
|
||||
l->length));
|
||||
}
|
||||
|
||||
/*
|
||||
* Matching function for lexemes, to be used in hashtable lookups.
|
||||
*/
|
||||
static int
|
||||
lexeme_match(const void *key1, const void *key2, Size keysize)
|
||||
{
|
||||
const LexemeHashKey *d1 = (const LexemeHashKey *) key1;
|
||||
const LexemeHashKey *d2 = (const LexemeHashKey *) key2;
|
||||
|
||||
/* The lexemes need to have the same length, and be memcmp-equal */
|
||||
if (d1->length == d2->length &&
|
||||
memcmp(d1->lexeme, d2->lexeme, d1->length) == 0)
|
||||
return 0;
|
||||
else
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* qsort() comparator for TrackItems - LC style (descending sort)
|
||||
*/
|
||||
static int
|
||||
trackitem_compare_desc(const void *e1, const void *e2)
|
||||
{
|
||||
const TrackItem * const *t1 = (const TrackItem * const *) e1;
|
||||
const TrackItem * const *t2 = (const TrackItem * const *) e2;
|
||||
|
||||
return (*t2)->frequency - (*t1)->frequency;
|
||||
}
|
Reference in New Issue
Block a user