mirror of
https://github.com/postgres/postgres.git
synced 2025-07-27 12:41:57 +03:00
Attached is an update to contrib/tablefunc. It implements a new hashed
version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
This commit is contained in:
@ -333,6 +333,125 @@ AS ct(row_name text, category_1 text, category_2 text, category_3 text);
|
||||
==================================================================
|
||||
Name
|
||||
|
||||
crosstab(text, text) - returns a set of row_name, extra, and
|
||||
category value columns
|
||||
|
||||
Synopsis
|
||||
|
||||
crosstab(text source_sql, text category_sql)
|
||||
|
||||
Inputs
|
||||
|
||||
source_sql
|
||||
|
||||
A SQL statement which produces the source set of data. The SQL statement
|
||||
must return one row_name column, one category column, and one value
|
||||
column. It may also have one or more "extra" columns.
|
||||
|
||||
The row_name column must be first. The category and value columns
|
||||
must be the last two columns, in that order. "extra" columns must be
|
||||
columns 2 through (N - 2), where N is the total number of columns.
|
||||
|
||||
The "extra" columns are assumed to be the same for all rows with the
|
||||
same row_name. The values returned are copied from the first row
|
||||
with a given row_name and subsequent values of these columns are ignored
|
||||
until row_name changes.
|
||||
|
||||
e.g. source_sql must produce a set something like:
|
||||
SELECT row_name, extra_col, cat, value FROM foo;
|
||||
|
||||
row_name extra_col cat value
|
||||
----------+------------+-----+---------
|
||||
row1 extra1 cat1 val1
|
||||
row1 extra1 cat2 val2
|
||||
row1 extra1 cat4 val4
|
||||
row2 extra2 cat1 val5
|
||||
row2 extra2 cat2 val6
|
||||
row2 extra2 cat3 val7
|
||||
row2 extra2 cat4 val8
|
||||
|
||||
category_sql
|
||||
|
||||
A SQL statement which produces the distinct set of categories. The SQL
|
||||
statement must return one category column only. category_sql must produce
|
||||
at least one result row or an error will be generated. category_sql
|
||||
must not produce duplicate categories or an error will be generated.
|
||||
|
||||
e.g. SELECT DISTINCT cat FROM foo;
|
||||
|
||||
cat
|
||||
-------
|
||||
cat1
|
||||
cat2
|
||||
cat3
|
||||
cat4
|
||||
|
||||
Outputs
|
||||
|
||||
Returns setof record, which must be defined with a column definition
|
||||
in the FROM clause of the SELECT statement, e.g.:
|
||||
|
||||
SELECT * FROM crosstab(source_sql, cat_sql)
|
||||
AS ct(row_name text, extra text, cat1 text, cat2 text, cat3 text, cat4 text);
|
||||
|
||||
the example crosstab function produces a set something like:
|
||||
<== values columns ==>
|
||||
row_name extra cat1 cat2 cat3 cat4
|
||||
---------+-------+------+------+------+------
|
||||
row1 extra1 val1 val2 val4
|
||||
row2 extra2 val5 val6 val7 val8
|
||||
|
||||
Notes
|
||||
|
||||
1. source_sql must be ordered by row_name (column 1).
|
||||
|
||||
2. The number of values columns is determined at run-time. The
|
||||
column definition provided in the FROM clause must provide for
|
||||
the correct number of columns of the proper data types.
|
||||
|
||||
3. Missing values (i.e. not enough adjacent rows of same row_name to
|
||||
fill the number of result values columns) are filled in with nulls.
|
||||
|
||||
4. Extra values (i.e. source rows with category not found in category_sql
|
||||
result) are skipped.
|
||||
|
||||
5. Rows with a null row_name column are skipped.
|
||||
|
||||
|
||||
Example usage
|
||||
|
||||
create table cth(id serial, rowid text, rowdt timestamp, attribute text, val text);
|
||||
insert into cth values(DEFAULT,'test1','01 March 2003','temperature','42');
|
||||
insert into cth values(DEFAULT,'test1','01 March 2003','test_result','PASS');
|
||||
insert into cth values(DEFAULT,'test1','01 March 2003','volts','2.6987');
|
||||
insert into cth values(DEFAULT,'test2','02 March 2003','temperature','53');
|
||||
insert into cth values(DEFAULT,'test2','02 March 2003','test_result','FAIL');
|
||||
insert into cth values(DEFAULT,'test2','02 March 2003','test_startdate','01 March 2003');
|
||||
insert into cth values(DEFAULT,'test2','02 March 2003','volts','3.1234');
|
||||
|
||||
SELECT * FROM crosstab
|
||||
(
|
||||
'SELECT rowid, rowdt, attribute, val FROM cth ORDER BY 1',
|
||||
'SELECT DISTINCT attribute FROM cth ORDER BY 1'
|
||||
)
|
||||
AS
|
||||
(
|
||||
rowid text,
|
||||
rowdt timestamp,
|
||||
temperature int4,
|
||||
test_result text,
|
||||
test_startdate timestamp,
|
||||
volts float8
|
||||
);
|
||||
rowid | rowdt | temperature | test_result | test_startdate | volts
|
||||
-------+--------------------------+-------------+-------------+--------------------------+--------
|
||||
test1 | Sat Mar 01 00:00:00 2003 | 42 | PASS | | 2.6987
|
||||
test2 | Sun Mar 02 00:00:00 2003 | 53 | FAIL | Sat Mar 01 00:00:00 2003 | 3.1234
|
||||
(2 rows)
|
||||
|
||||
==================================================================
|
||||
Name
|
||||
|
||||
connectby(text, text, text, text, int[, text]) - returns a set
|
||||
representing a hierarchy (tree structure)
|
||||
|
||||
|
Reference in New Issue
Block a user