1
0
mirror of https://github.com/postgres/postgres.git synced 2025-07-30 11:03:19 +03:00

Allow usage of match_orclause_to_indexcol() for joins

This commit allows transformation of OR-clauses into SAOP's for index scans
within nested loop joins.  That required the following changes.

 1. Make match_orclause_to_indexcol() and group_similar_or_args() understand
    const-ness in the same way as match_opclause_to_indexcol().  This
    generally makes our approach more uniform.
 2. Make match_join_clauses_to_index() pass OR-clauses to
    match_clause_to_index().
 3. Also switch match_join_clauses_to_index() to use list_append_unique_ptr()
    for adding clauses to *joinorclauses.  That avoids possible duplicates
    when processing the same clauses with different indexes.  Previously such
    duplicates were elimited in match_clause_to_index(), but now
    group_similar_or_args() each time generates distinct copies of grouped
    OR clauses.

Discussion: https://postgr.es/m/CAPpHfdv%2BjtNwofg-p5z86jLYZUTt6tR17Wy00ta0dL%3DwHQN3ZA%40mail.gmail.com
Reviewed-by: Andrei Lepikhov <lepihov@gmail.com>
Reviewed-by: Alena Rybakina <a.rybakina@postgrespro.ru>
Reviewed-by: Pavel Borisov <pashkin.elfe@gmail.com>
This commit is contained in:
Alexander Korotkov
2025-02-04 23:21:49 +02:00
parent 23ef119f58
commit 627d63419e
6 changed files with 150 additions and 42 deletions

View File

@ -1255,6 +1255,7 @@ group_similar_or_args(PlannerInfo *root, RelOptInfo *rel, RestrictInfo *rinfo)
ListCell *lc2;
List *orargs;
List *result = NIL;
Index relid = rel->relid;
Assert(IsA(rinfo->orclause, BoolExpr));
orargs = ((BoolExpr *) rinfo->orclause)->args;
@ -1319,10 +1320,13 @@ group_similar_or_args(PlannerInfo *root, RelOptInfo *rel, RestrictInfo *rinfo)
/*
* Check for clauses of the form: (indexkey operator constant) or
* (constant operator indexkey). But we don't know a particular index
* yet. First check for a constant, which must be Const or Param.
* That's cheaper than search for an index key among all indexes.
* yet. Therefore, we try to distinguish the potential index key and
* constant first, then search for a matching index key among all
* indexes.
*/
if (IsA(leftop, Const) || IsA(leftop, Param))
if (bms_is_member(relid, argrinfo->right_relids) &&
!bms_is_member(relid, argrinfo->left_relids) &&
!contain_volatile_functions(leftop))
{
opno = get_commutator(opno);
@ -1333,7 +1337,9 @@ group_similar_or_args(PlannerInfo *root, RelOptInfo *rel, RestrictInfo *rinfo)
}
nonConstExpr = rightop;
}
else if (IsA(rightop, Const) || IsA(rightop, Param))
else if (bms_is_member(relid, argrinfo->left_relids) &&
!bms_is_member(relid, argrinfo->right_relids) &&
!contain_volatile_functions(rightop))
{
nonConstExpr = leftop;
}
@ -2414,6 +2420,7 @@ match_restriction_clauses_to_index(PlannerInfo *root,
* Identify join clauses for the rel that match the index.
* Matching clauses are added to *clauseset.
* Also, add any potentially usable join OR clauses to *joinorclauses.
* They also might be processed by match_clause_to_index() as a whole.
*/
static void
match_join_clauses_to_index(PlannerInfo *root,
@ -2432,11 +2439,15 @@ match_join_clauses_to_index(PlannerInfo *root,
if (!join_clause_is_movable_to(rinfo, rel))
continue;
/* Potentially usable, so see if it matches the index or is an OR */
/*
* Potentially usable, so see if it matches the index or is an OR. Use
* list_append_unique_ptr() here to avoid possible duplicates when
* processing the same clauses with different indexes.
*/
if (restriction_is_or_clause(rinfo))
*joinorclauses = lappend(*joinorclauses, rinfo);
else
match_clause_to_index(root, rinfo, index, clauseset);
*joinorclauses = list_append_unique_ptr(*joinorclauses, rinfo);
match_clause_to_index(root, rinfo, index, clauseset);
}
}
@ -2585,10 +2596,7 @@ match_clause_to_index(PlannerInfo *root,
* (3) must match the collation of the index, if collation is relevant.
*
* Our definition of "const" is exceedingly liberal: we allow anything that
* doesn't involve a volatile function or a Var of the index's relation
* except for a boolean OR expression input: due to a trade-off between the
* expected execution speedup and planning complexity, we limit or->saop
* transformation by obvious cases when an index scan can get a profit.
* doesn't involve a volatile function or a Var of the index's relation.
* In particular, Vars belonging to other relations of the query are
* accepted here, since a clause of that form can be used in a
* parameterized indexscan. It's the responsibility of higher code levels
@ -3247,7 +3255,8 @@ match_orclause_to_indexcol(PlannerInfo *root,
Oid arraytype = InvalidOid;
Oid inputcollid = InvalidOid;
bool firstTime = true;
bool haveParam = false;
bool haveNonConst = false;
Index indexRelid = index->rel->relid;
Assert(IsA(orclause, BoolExpr));
Assert(orclause->boolop == OR_EXPR);
@ -3259,10 +3268,9 @@ match_orclause_to_indexcol(PlannerInfo *root,
/*
* Try to convert a list of OR-clauses to a single SAOP expression. Each
* OR entry must be in the form: (indexkey operator constant) or (constant
* operator indexkey). Operators of all the entries must match. Constant
* might be either Const or Param. To be effective, give up on the first
* non-matching entry. Exit is implemented as a break from the loop,
* which is catched afterwards.
* operator indexkey). Operators of all the entries must match. To be
* effective, give up on the first non-matching entry. Exit is
* implemented as a break from the loop, which is catched afterwards.
*/
foreach(lc, orclause->args)
{
@ -3313,17 +3321,21 @@ match_orclause_to_indexcol(PlannerInfo *root,
/*
* Check for clauses of the form: (indexkey operator constant) or
* (constant operator indexkey). Determine indexkey side first, check
* the constant later.
* (constant operator indexkey). See match_clause_to_indexcol's notes
* about const-ness.
*/
leftop = (Node *) linitial(subClause->args);
rightop = (Node *) lsecond(subClause->args);
if (match_index_to_operand(leftop, indexcol, index))
if (match_index_to_operand(leftop, indexcol, index) &&
!bms_is_member(indexRelid, subRinfo->right_relids) &&
!contain_volatile_functions(rightop))
{
indexExpr = leftop;
constExpr = rightop;
}
else if (match_index_to_operand(rightop, indexcol, index))
else if (match_index_to_operand(rightop, indexcol, index) &&
!bms_is_member(indexRelid, subRinfo->left_relids) &&
!contain_volatile_functions(leftop))
{
opno = get_commutator(opno);
if (!OidIsValid(opno))
@ -3350,10 +3362,6 @@ match_orclause_to_indexcol(PlannerInfo *root,
if (IsA(indexExpr, RelabelType))
indexExpr = (Node *) ((RelabelType *) indexExpr)->arg;
/* We allow constant to be Const or Param */
if (!IsA(constExpr, Const) && !IsA(constExpr, Param))
break;
/* Forbid transformation for composite types, records. */
if (type_is_rowtype(exprType(constExpr)) ||
type_is_rowtype(exprType(indexExpr)))
@ -3390,8 +3398,12 @@ match_orclause_to_indexcol(PlannerInfo *root,
break;
}
if (IsA(constExpr, Param))
haveParam = true;
/*
* Check if our list of constants in match_clause_to_indexcol's
* understanding of const-ness have something other than Const.
*/
if (!IsA(constExpr, Const))
haveNonConst = true;
consts = lappend(consts, constExpr);
}
@ -3408,10 +3420,10 @@ match_orclause_to_indexcol(PlannerInfo *root,
/*
* Assemble an array from the list of constants. It seems more profitable
* to build a const array. But in the presence of parameters, we don't
* to build a const array. But in the presence of other nodes, we don't
* have a specific value here and must employ an ArrayExpr instead.
*/
if (haveParam)
if (haveNonConst)
{
ArrayExpr *arrayExpr = makeNode(ArrayExpr);

View File

@ -2006,6 +2006,27 @@ SELECT * FROM tenk1
Filter: (((tenthous)::numeric = '1'::numeric) OR (tenthous = 3) OR ((tenthous)::numeric = '42'::numeric))
(2 rows)
EXPLAIN (COSTS OFF)
SELECT count(*) FROM tenk1 t1
WHERE t1.thousand = 42 OR t1.thousand = (SELECT t2.tenthous FROM tenk1 t2 WHERE t2.thousand = t1.tenthous + 1 LIMIT 1);
QUERY PLAN
----------------------------------------------------------------------------
Aggregate
-> Index Only Scan using tenk1_thous_tenthous on tenk1 t1
Filter: ((thousand = 42) OR (thousand = (SubPlan 1)))
SubPlan 1
-> Limit
-> Index Only Scan using tenk1_thous_tenthous on tenk1 t2
Index Cond: (thousand = (t1.tenthous + 1))
(7 rows)
SELECT count(*) FROM tenk1 t1
WHERE t1.thousand = 42 OR t1.thousand = (SELECT t2.tenthous FROM tenk1 t2 WHERE t2.thousand = t1.tenthous + 1 LIMIT 1);
count
-------
10
(1 row)
EXPLAIN (COSTS OFF)
SELECT count(*) FROM tenk1
WHERE hundred = 42 AND (thousand = 42 OR thousand = 99);
@ -3255,6 +3276,17 @@ CREATE INDEX t_b_c_idx ON bitmap_split_or (b, c);
CREATE STATISTICS t_a_b_stat (mcv) ON a, b FROM bitmap_split_or;
CREATE STATISTICS t_b_c_stat (mcv) ON b, c FROM bitmap_split_or;
ANALYZE bitmap_split_or;
EXPLAIN (COSTS OFF)
SELECT * FROM bitmap_split_or t1, bitmap_split_or t2
WHERE t1.a = t2.b OR t1.a = 2;
QUERY PLAN
--------------------------------------------------------
Nested Loop
-> Seq Scan on bitmap_split_or t2
-> Index Scan using t_a_b_idx on bitmap_split_or t1
Index Cond: (a = ANY (ARRAY[t2.b, 2]))
(4 rows)
EXPLAIN (COSTS OFF)
SELECT * FROM bitmap_split_or WHERE a = 1 AND (b = 1 OR b = 2) AND c = 2;
QUERY PLAN

View File

@ -3849,14 +3849,11 @@ where q1 = thousand or q2 = thousand;
-> Seq Scan on q2
-> Bitmap Heap Scan on tenk1
Recheck Cond: ((q1.q1 = thousand) OR (q2.q2 = thousand))
-> BitmapOr
-> Bitmap Index Scan on tenk1_thous_tenthous
Index Cond: (thousand = q1.q1)
-> Bitmap Index Scan on tenk1_thous_tenthous
Index Cond: (thousand = q2.q2)
-> Bitmap Index Scan on tenk1_thous_tenthous
Index Cond: (thousand = ANY (ARRAY[q1.q1, q2.q2]))
-> Hash
-> Seq Scan on int4_tbl
(15 rows)
(12 rows)
explain (costs off)
select * from
@ -8239,3 +8236,45 @@ GROUP BY s.c1, s.c2;
(7 rows)
DROP TABLE group_tbl;
--
-- Test for a nested loop join involving index scan, transforming OR-clauses
-- to SAOP.
--
EXPLAIN (COSTS OFF)
SELECT COUNT(*) FROM tenk1 t1, tenk1 t2
WHERE t2.thousand = t1.tenthous OR t2.thousand = t1.unique1 OR t2.thousand = t1.unique2;
QUERY PLAN
-----------------------------------------------------------------------------------------
Aggregate
-> Nested Loop
-> Seq Scan on tenk1 t1
-> Index Only Scan using tenk1_thous_tenthous on tenk1 t2
Index Cond: (thousand = ANY (ARRAY[t1.tenthous, t1.unique1, t1.unique2]))
(5 rows)
SELECT COUNT(*) FROM tenk1 t1, tenk1 t2
WHERE t2.thousand = t1.tenthous OR t2.thousand = t1.unique1 OR t2.thousand = t1.unique2;
count
-------
20000
(1 row)
EXPLAIN (COSTS OFF)
SELECT COUNT(*) FROM onek t1 LEFT JOIN tenk1 t2
ON (t2.thousand = t1.tenthous OR t2.thousand = t1.thousand);
QUERY PLAN
------------------------------------------------------------------------------
Aggregate
-> Nested Loop Left Join
-> Seq Scan on onek t1
-> Index Only Scan using tenk1_thous_tenthous on tenk1 t2
Index Cond: (thousand = ANY (ARRAY[t1.tenthous, t1.thousand]))
(5 rows)
SELECT COUNT(*) FROM onek t1 LEFT JOIN tenk1 t2
ON (t2.thousand = t1.tenthous OR t2.thousand = t1.thousand);
count
-------
19000
(1 row)

View File

@ -2533,24 +2533,24 @@ where not exists (select 1 from prtx2
-> Seq Scan on prtx1_1
Filter: ((a < 20) AND (c = 91))
-> Bitmap Heap Scan on prtx2_1
Recheck Cond: ((b = (prtx1_1.b + 1)) OR (c = 99))
Recheck Cond: ((c = 99) OR (b = (prtx1_1.b + 1)))
Filter: (a = prtx1_1.a)
-> BitmapOr
-> Bitmap Index Scan on prtx2_1_b_idx
Index Cond: (b = (prtx1_1.b + 1))
-> Bitmap Index Scan on prtx2_1_c_idx
Index Cond: (c = 99)
-> Bitmap Index Scan on prtx2_1_b_idx
Index Cond: (b = (prtx1_1.b + 1))
-> Nested Loop Anti Join
-> Seq Scan on prtx1_2
Filter: ((a < 20) AND (c = 91))
-> Bitmap Heap Scan on prtx2_2
Recheck Cond: ((b = (prtx1_2.b + 1)) OR (c = 99))
Recheck Cond: ((c = 99) OR (b = (prtx1_2.b + 1)))
Filter: (a = prtx1_2.a)
-> BitmapOr
-> Bitmap Index Scan on prtx2_2_b_idx
Index Cond: (b = (prtx1_2.b + 1))
-> Bitmap Index Scan on prtx2_2_c_idx
Index Cond: (c = 99)
-> Bitmap Index Scan on prtx2_2_b_idx
Index Cond: (b = (prtx1_2.b + 1))
(23 rows)
select * from prtx1

View File

@ -781,6 +781,12 @@ EXPLAIN (COSTS OFF)
SELECT * FROM tenk1
WHERE tenthous = 1::numeric OR tenthous = 3::int4 OR tenthous = 42::numeric;
EXPLAIN (COSTS OFF)
SELECT count(*) FROM tenk1 t1
WHERE t1.thousand = 42 OR t1.thousand = (SELECT t2.tenthous FROM tenk1 t2 WHERE t2.thousand = t1.tenthous + 1 LIMIT 1);
SELECT count(*) FROM tenk1 t1
WHERE t1.thousand = 42 OR t1.thousand = (SELECT t2.tenthous FROM tenk1 t2 WHERE t2.thousand = t1.tenthous + 1 LIMIT 1);
EXPLAIN (COSTS OFF)
SELECT count(*) FROM tenk1
WHERE hundred = 42 AND (thousand = 42 OR thousand = 99);
@ -1367,6 +1373,9 @@ CREATE STATISTICS t_a_b_stat (mcv) ON a, b FROM bitmap_split_or;
CREATE STATISTICS t_b_c_stat (mcv) ON b, c FROM bitmap_split_or;
ANALYZE bitmap_split_or;
EXPLAIN (COSTS OFF)
SELECT * FROM bitmap_split_or t1, bitmap_split_or t2
WHERE t1.a = t2.b OR t1.a = 2;
EXPLAIN (COSTS OFF)
SELECT * FROM bitmap_split_or WHERE a = 1 AND (b = 1 OR b = 2) AND c = 2;
DROP TABLE bitmap_split_or;

View File

@ -3016,7 +3016,6 @@ SELECT t1.a FROM skip_fetch t1 LEFT JOIN skip_fetch t2 ON t2.a = 1 WHERE t2.a IS
RESET enable_indexonlyscan;
RESET enable_seqscan;
-- Test BitmapHeapScan with a rescan releases resources correctly
SET enable_seqscan = off;
SET enable_indexscan = off;
@ -3046,3 +3045,20 @@ SELECT 1 FROM group_tbl t1
GROUP BY s.c1, s.c2;
DROP TABLE group_tbl;
--
-- Test for a nested loop join involving index scan, transforming OR-clauses
-- to SAOP.
--
EXPLAIN (COSTS OFF)
SELECT COUNT(*) FROM tenk1 t1, tenk1 t2
WHERE t2.thousand = t1.tenthous OR t2.thousand = t1.unique1 OR t2.thousand = t1.unique2;
SELECT COUNT(*) FROM tenk1 t1, tenk1 t2
WHERE t2.thousand = t1.tenthous OR t2.thousand = t1.unique1 OR t2.thousand = t1.unique2;
EXPLAIN (COSTS OFF)
SELECT COUNT(*) FROM onek t1 LEFT JOIN tenk1 t2
ON (t2.thousand = t1.tenthous OR t2.thousand = t1.thousand);
SELECT COUNT(*) FROM onek t1 LEFT JOIN tenk1 t2
ON (t2.thousand = t1.tenthous OR t2.thousand = t1.thousand);