1
0
mirror of https://github.com/postgres/postgres.git synced 2025-08-28 18:48:04 +03:00

VariableCache (next XID generator) is placed in shmem.

This commit is contained in:
Vadim B. Mikheev
1998-07-21 06:17:39 +00:00
parent 224a62c5b7
commit 5afe171443
3 changed files with 50 additions and 73 deletions

View File

@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/access/transam/varsup.c,v 1.15 1998/01/07 21:02:21 momjian Exp $
* $Header: /cvsroot/pgsql/src/backend/access/transam/varsup.c,v 1.16 1998/07/21 06:17:13 vadim Exp $
*
*-------------------------------------------------------------------------
*/
@@ -31,6 +31,8 @@ static void VariableRelationPutNextOid(Oid *oidP);
*/
int OidGenLockId;
VariableCache ShmemVariableCache = NULL;
/* ----------------------------------------------------------------
* variable relation query/update routines
* ----------------------------------------------------------------
@@ -258,16 +260,7 @@ VariableRelationPutNextOid(Oid *oidP)
* In the version 2 transaction system, transaction id's are
* restricted in several ways.
*
* First, all transaction id's are even numbers (4, 88, 121342, etc).
* This means the binary representation of the number will never
* have the least significent bit set. This bit is reserved to
* indicate that the transaction id does not in fact hold an XID,
* but rather a commit time. This makes it possible for the
* vaccuum daemon to disgard information from the log and time
* relations for committed tuples. This is important when archiving
* tuples to an optical disk because tuples with commit times
* stored in their xid fields will not need to consult the log
* and time relations.
* -- Old comments removed --
*
* Second, since we may someday preform compression of the data
* in the log and time relations, we cause the numbering of the
@@ -276,32 +269,16 @@ VariableRelationPutNextOid(Oid *oidP)
* transaction id's 0 - 510 will never be used. This space is
* in fact used to store the version number of the postgres
* transaction log and will someday store compression information
* about the log.
*
* Lastly, rather then access the variable relation each time
* a backend requests a new transction id, we "prefetch" 32
* transaction id's by incrementing the nextXid stored in the
* var relation by 64 (remember only even xid's are legal) and then
* returning these id's one at a time until they are exhausted.
* This means we reduce the number of accesses to the variable
* relation by 32 for each backend.
*
* Note: 32 has no special significance. We don't want the
* number to be too large because if when the backend
* terminates, we lose the xid's we cached.
* about the log. -- this is also old comments...
*
* ----------------
*/
#define VAR_XID_PREFETCH 32
static int prefetched_xid_count = 0;
static TransactionId next_prefetched_xid;
#define VAR_XID_PREFETCH 1024
void
GetNewTransactionId(TransactionId *xid)
{
TransactionId nextid;
/* ----------------
* during bootstrap initialization, we return the special
@@ -314,51 +291,24 @@ GetNewTransactionId(TransactionId *xid)
return;
}
/* ----------------
* if we run out of prefetched xids, then we get some
* more before handing them out to the caller.
* ----------------
*/
if (prefetched_xid_count == 0)
SpinAcquire(OidGenLockId); /* not good for concurrency... */
if (ShmemVariableCache->xid_count == 0)
{
/* ----------------
* obtain exclusive access to the variable relation page
*
* get the "next" xid from the variable relation
* and save it in the prefetched id.
* ----------------
*/
SpinAcquire(OidGenLockId);
TransactionId nextid;
VariableRelationGetNextXid(&nextid);
TransactionIdStore(nextid, &next_prefetched_xid);
/* ----------------
* now increment the variable relation's next xid
* and reset the prefetched_xid_count. We multiply
* the id by two because our xid's are always even.
* ----------------
*/
prefetched_xid_count = VAR_XID_PREFETCH;
TransactionIdAdd(&nextid, prefetched_xid_count);
TransactionIdStore(nextid, &(ShmemVariableCache->nextXid));
ShmemVariableCache->xid_count = VAR_XID_PREFETCH;
TransactionIdAdd(&nextid, VAR_XID_PREFETCH);
VariableRelationPutNextXid(nextid);
SpinRelease(OidGenLockId);
}
/* ----------------
* return the next prefetched xid in the pointer passed by
* the user and decrement the prefetch count. We add two
* to id we return the next time this is called because our
* transaction ids are always even.
*
* XXX Transaction Ids used to be even as the low order bit was
* used to determine commit status. This is no long true so
* we now use even and odd transaction ids. -mer 5/26/92
* ----------------
*/
TransactionIdStore(next_prefetched_xid, xid);
TransactionIdAdd(&next_prefetched_xid, 1);
prefetched_xid_count--;
TransactionIdStore(ShmemVariableCache->nextXid, xid);
TransactionIdAdd(&(ShmemVariableCache->nextXid), 1);
(ShmemVariableCache->xid_count)--;
SpinRelease(OidGenLockId);
}
/* ----------------------------------------------------------------