mirror of
https://github.com/postgres/postgres.git
synced 2025-07-14 08:21:07 +03:00
Generic implementation of red-black binary tree. It's planned to use in
several places, but for now only GIN uses it during index creation. Using self-balanced tree greatly speeds up index creation in corner cases with preordered data.
This commit is contained in:
@ -4,7 +4,7 @@
|
||||
# Makefile for utils/misc
|
||||
#
|
||||
# IDENTIFICATION
|
||||
# $PostgreSQL: pgsql/src/backend/utils/misc/Makefile,v 1.29 2009/08/28 20:26:19 petere Exp $
|
||||
# $PostgreSQL: pgsql/src/backend/utils/misc/Makefile,v 1.30 2010/02/11 14:29:50 teodor Exp $
|
||||
#
|
||||
#-------------------------------------------------------------------------
|
||||
|
||||
@ -14,7 +14,8 @@ include $(top_builddir)/src/Makefile.global
|
||||
|
||||
override CPPFLAGS := -I. -I$(srcdir) $(CPPFLAGS)
|
||||
|
||||
OBJS = guc.o help_config.o pg_rusage.o ps_status.o superuser.o tzparser.o
|
||||
OBJS = guc.o help_config.o pg_rusage.o ps_status.o superuser.o tzparser.o \
|
||||
rbtree.o
|
||||
|
||||
# This location might depend on the installation directories. Therefore
|
||||
# we can't subsitute it into pg_config.h.
|
||||
|
790
src/backend/utils/misc/rbtree.c
Normal file
790
src/backend/utils/misc/rbtree.c
Normal file
@ -0,0 +1,790 @@
|
||||
/*-------------------------------------------------------------------------
|
||||
*
|
||||
* rbtree.c
|
||||
* implementation for PostgreSQL generic Red-Black binary tree package
|
||||
* Adopted from http://algolist.manual.ru/ds/rbtree.php
|
||||
*
|
||||
* This code comes from Thomas Niemann's "Sorting and Searching Algorithms:
|
||||
* a Cookbook".
|
||||
*
|
||||
* See http://www.cs.auckland.ac.nz/software/AlgAnim/niemann/s_man.htm for
|
||||
* license terms: "Source code, when part of a software project, may be used
|
||||
* freely without reference to the author."
|
||||
*
|
||||
* Red-black trees are a type of balanced binary tree wherein (1) any child of
|
||||
* a red node is always black, and (2) every path from root to leaf traverses
|
||||
* an equal number of black nodes. From these properties, it follows that the
|
||||
* longest path from root to leaf is only about twice as long as the shortest,
|
||||
* so lookups are guaranteed to run in O(lg n) time.
|
||||
*
|
||||
* Copyright (c) 1996-2009, PostgreSQL Global Development Group
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $PostgreSQL: pgsql/src/backend/utils/misc/rbtree.c,v 1.1 2010/02/11 14:29:50 teodor Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
#include "postgres.h"
|
||||
|
||||
#include "utils/rbtree.h"
|
||||
|
||||
/**********************************************************************
|
||||
* Declarations *
|
||||
**********************************************************************/
|
||||
|
||||
/*
|
||||
* Values for RBNode->iteratorState
|
||||
*/
|
||||
#define InitialState (0)
|
||||
#define FirstStepDone (1)
|
||||
#define SecondStepDone (2)
|
||||
#define ThirdStepDone (3)
|
||||
|
||||
/*
|
||||
* Colors of node
|
||||
*/
|
||||
#define RBBLACK (0)
|
||||
#define RBRED (1)
|
||||
|
||||
typedef struct RBNode
|
||||
{
|
||||
uint32 iteratorState:2,
|
||||
color: 1 ,
|
||||
unused: 29;
|
||||
struct RBNode *left;
|
||||
struct RBNode *right;
|
||||
struct RBNode *parent;
|
||||
void *data;
|
||||
} RBNode;
|
||||
|
||||
struct RBTree
|
||||
{
|
||||
RBNode *root;
|
||||
rb_comparator comparator;
|
||||
rb_appendator appendator;
|
||||
rb_freefunc freefunc;
|
||||
void *arg;
|
||||
};
|
||||
|
||||
struct RBTreeIterator
|
||||
{
|
||||
RBNode *node;
|
||||
void *(*iterate) (RBTreeIterator *iterator);
|
||||
};
|
||||
|
||||
/*
|
||||
* all leafs are sentinels, use customized NIL name to prevent
|
||||
* collision with sytem-wide NIL which is actually NULL
|
||||
*/
|
||||
#define RBNIL &sentinel
|
||||
|
||||
RBNode sentinel = {InitialState, RBBLACK, 0, RBNIL, RBNIL, NULL, NULL};
|
||||
|
||||
/**********************************************************************
|
||||
* Create *
|
||||
**********************************************************************/
|
||||
|
||||
RBTree *
|
||||
rb_create(rb_comparator comparator, rb_appendator appendator,
|
||||
rb_freefunc freefunc, void *arg)
|
||||
{
|
||||
RBTree *tree = palloc(sizeof(RBTree));
|
||||
|
||||
tree->root = RBNIL;
|
||||
tree->comparator = comparator;
|
||||
tree->appendator = appendator;
|
||||
tree->freefunc = freefunc;
|
||||
tree->arg = arg;
|
||||
|
||||
return tree;
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
* Search *
|
||||
**********************************************************************/
|
||||
|
||||
void *
|
||||
rb_find(RBTree *rb, void *data)
|
||||
{
|
||||
RBNode *node = rb->root;
|
||||
int cmp;
|
||||
|
||||
while (node != RBNIL)
|
||||
{
|
||||
cmp = rb->comparator(data, node->data, rb->arg);
|
||||
|
||||
if (cmp == 0)
|
||||
return node->data;
|
||||
else if (cmp < 0)
|
||||
node = node->left;
|
||||
else
|
||||
node = node->right;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
* Insertion *
|
||||
**********************************************************************/
|
||||
|
||||
/*
|
||||
* Rotate node x to left.
|
||||
*
|
||||
* x's right child takes its place in the tree, and x becomes the left
|
||||
* child of that node.
|
||||
*/
|
||||
static void
|
||||
rb_rotate_left(RBTree *rb, RBNode *x)
|
||||
{
|
||||
RBNode *y = x->right;
|
||||
|
||||
/* establish x->right link */
|
||||
x->right = y->left;
|
||||
if (y->left != RBNIL)
|
||||
y->left->parent = x;
|
||||
|
||||
/* establish y->parent link */
|
||||
if (y != RBNIL)
|
||||
y->parent = x->parent;
|
||||
if (x->parent)
|
||||
{
|
||||
if (x == x->parent->left)
|
||||
x->parent->left = y;
|
||||
else
|
||||
x->parent->right = y;
|
||||
}
|
||||
else
|
||||
{
|
||||
rb->root = y;
|
||||
}
|
||||
|
||||
/* link x and y */
|
||||
y->left = x;
|
||||
if (x != RBNIL)
|
||||
x->parent = y;
|
||||
}
|
||||
|
||||
/*
|
||||
* Rotate node x to right.
|
||||
*
|
||||
* x's left right child takes its place in the tree, and x becomes the right
|
||||
* child of that node.
|
||||
*/
|
||||
static void
|
||||
rb_rotate_right(RBTree *rb, RBNode *x)
|
||||
{
|
||||
RBNode *y = x->left;
|
||||
|
||||
/* establish x->left link */
|
||||
x->left = y->right;
|
||||
if (y->right != RBNIL)
|
||||
y->right->parent = x;
|
||||
|
||||
/* establish y->parent link */
|
||||
if (y != RBNIL)
|
||||
y->parent = x->parent;
|
||||
if (x->parent)
|
||||
{
|
||||
if (x == x->parent->right)
|
||||
x->parent->right = y;
|
||||
else
|
||||
x->parent->left = y;
|
||||
}
|
||||
else
|
||||
{
|
||||
rb->root = y;
|
||||
}
|
||||
|
||||
/* link x and y */
|
||||
y->right = x;
|
||||
if (x != RBNIL)
|
||||
x->parent = y;
|
||||
}
|
||||
|
||||
/*
|
||||
* Maintain Red-Black tree balance after inserting node x.
|
||||
*
|
||||
* The newly inserted node is always initially marked red. That may lead to
|
||||
* a situation where a red node has a red child, which is prohibited. We can
|
||||
* always fix the problem by a series of color changes and/or "rotations",
|
||||
* which move the problem progressively higher up in the tree. If one of the
|
||||
* two red nodes is the root, we can always fix the problem by changing the
|
||||
* root from red to black.
|
||||
*
|
||||
* (This does not work lower down in the tree because we must also maintain
|
||||
* the invariant that every leaf has equal black-height.)
|
||||
*/
|
||||
static void
|
||||
rb_insert_fixup(RBTree *rb, RBNode *x)
|
||||
{
|
||||
/*
|
||||
* x is always a red node. Initially, it is the newly inserted node.
|
||||
* Each iteration of this loop moves it higher up in the tree.
|
||||
*/
|
||||
while (x != rb->root && x->parent->color == RBRED)
|
||||
{
|
||||
/*
|
||||
* x and x->parent are both red. Fix depends on whether x->parent is
|
||||
* a left or right child. In either case, we define y to be the
|
||||
* "uncle" of x, that is, the other child of x's grandparent.
|
||||
*
|
||||
* If the uncle is red, we flip the grandparent to red and its two
|
||||
* children to black. Then we loop around again to check whether the
|
||||
* grandparent still has a problem.
|
||||
*
|
||||
* If the uncle is black, we will perform one or two "rotations" to
|
||||
* balance the tree. Either x or x->parent will take the grandparent's
|
||||
* position in the tree and recolored black, and the original
|
||||
* grandparent will be recolored red and become a child of that node.
|
||||
* This always leaves us with a valid red-black tree, so the loop
|
||||
* will terminate.
|
||||
*/
|
||||
if (x->parent == x->parent->parent->left)
|
||||
{
|
||||
RBNode *y = x->parent->parent->right;
|
||||
|
||||
if (y->color == RBRED)
|
||||
{
|
||||
/* uncle is RBRED */
|
||||
x->parent->color = RBBLACK;
|
||||
y->color = RBBLACK;
|
||||
x->parent->parent->color = RBRED;
|
||||
x = x->parent->parent;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* uncle is RBBLACK */
|
||||
if (x == x->parent->right)
|
||||
{
|
||||
/* make x a left child */
|
||||
x = x->parent;
|
||||
rb_rotate_left(rb, x);
|
||||
}
|
||||
|
||||
/* recolor and rotate */
|
||||
x->parent->color = RBBLACK;
|
||||
x->parent->parent->color = RBRED;
|
||||
rb_rotate_right(rb, x->parent->parent);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* mirror image of above code */
|
||||
RBNode *y = x->parent->parent->left;
|
||||
|
||||
if (y->color == RBRED)
|
||||
{
|
||||
/* uncle is RBRED */
|
||||
x->parent->color = RBBLACK;
|
||||
y->color = RBBLACK;
|
||||
x->parent->parent->color = RBRED;
|
||||
x = x->parent->parent;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* uncle is RBBLACK */
|
||||
if (x == x->parent->left)
|
||||
{
|
||||
x = x->parent;
|
||||
rb_rotate_right(rb, x);
|
||||
}
|
||||
x->parent->color = RBBLACK;
|
||||
x->parent->parent->color = RBRED;
|
||||
rb_rotate_left(rb, x->parent->parent);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* The root may already have been black; if not, the black-height of every
|
||||
* node in the tree increases by one.
|
||||
*/
|
||||
rb->root->color = RBBLACK;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate node for data and insert in tree.
|
||||
*
|
||||
* Return old data (or result of appendator method) if it exists and NULL
|
||||
* otherwise.
|
||||
*/
|
||||
void *
|
||||
rb_insert(RBTree *rb, void *data)
|
||||
{
|
||||
RBNode *current,
|
||||
*parent,
|
||||
*x;
|
||||
int cmp;
|
||||
|
||||
/* find where node belongs */
|
||||
current = rb->root;
|
||||
parent = NULL;
|
||||
while (current != RBNIL)
|
||||
{
|
||||
cmp = rb->comparator(data, current->data, rb->arg);
|
||||
if (cmp == 0)
|
||||
{
|
||||
/*
|
||||
* Found node with given key. If appendator method is provided,
|
||||
* call it to join old and new data; else, new data replaces old
|
||||
* data.
|
||||
*/
|
||||
if (rb->appendator)
|
||||
{
|
||||
current->data = rb->appendator(current->data, data, rb->arg);
|
||||
return current->data;
|
||||
}
|
||||
else
|
||||
{
|
||||
void *old = current->data;
|
||||
|
||||
current->data = data;
|
||||
return old;
|
||||
}
|
||||
}
|
||||
parent = current;
|
||||
current = (cmp < 0) ? current->left : current->right;
|
||||
}
|
||||
|
||||
/* setup new node in tree */
|
||||
x = palloc(sizeof(RBNode));
|
||||
x->data = data;
|
||||
x->parent = parent;
|
||||
x->left = RBNIL;
|
||||
x->right = RBNIL;
|
||||
x->color = RBRED;
|
||||
x->iteratorState = InitialState;
|
||||
|
||||
/* insert node in tree */
|
||||
if (parent)
|
||||
{
|
||||
if (cmp < 0)
|
||||
parent->left = x;
|
||||
else
|
||||
parent->right = x;
|
||||
}
|
||||
else
|
||||
{
|
||||
rb->root = x;
|
||||
}
|
||||
|
||||
rb_insert_fixup(rb, x);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
* Deletion *
|
||||
**********************************************************************/
|
||||
|
||||
/*
|
||||
* Maintain Red-Black tree balance after deleting a black node.
|
||||
*/
|
||||
static void
|
||||
rb_delete_fixup(RBTree *rb, RBNode *x)
|
||||
{
|
||||
/*
|
||||
* x is always a black node. Initially, it is the former child of the
|
||||
* deleted node. Each iteration of this loop moves it higher up in the
|
||||
* tree.
|
||||
*/
|
||||
while (x != rb->root && x->color == RBBLACK)
|
||||
{
|
||||
/*
|
||||
* Left and right cases are symmetric. Any nodes that are children
|
||||
* of x have a black-height one less than the remainder of the nodes
|
||||
* in the tree. We rotate and recolor nodes to move the problem up
|
||||
* the tree: at some stage we'll either fix the problem, or reach the
|
||||
* root (where the black-height is allowed to decrease).
|
||||
*/
|
||||
if (x == x->parent->left)
|
||||
{
|
||||
RBNode *w = x->parent->right;
|
||||
|
||||
if (w->color == RBRED)
|
||||
{
|
||||
w->color = RBBLACK;
|
||||
x->parent->color = RBRED;
|
||||
rb_rotate_left(rb, x->parent);
|
||||
w = x->parent->right;
|
||||
}
|
||||
|
||||
if (w->left->color == RBBLACK && w->right->color == RBBLACK)
|
||||
{
|
||||
w->color = RBRED;
|
||||
x = x->parent;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (w->right->color == RBBLACK)
|
||||
{
|
||||
w->left->color = RBBLACK;
|
||||
w->color = RBRED;
|
||||
rb_rotate_right(rb, w);
|
||||
w = x->parent->right;
|
||||
}
|
||||
w->color = x->parent->color;
|
||||
x->parent->color = RBBLACK;
|
||||
w->right->color = RBBLACK;
|
||||
rb_rotate_left(rb, x->parent);
|
||||
x = rb->root; /* Arrange for loop to terminate. */
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
RBNode *w = x->parent->left;
|
||||
|
||||
if (w->color == RBRED)
|
||||
{
|
||||
w->color = RBBLACK;
|
||||
x->parent->color = RBRED;
|
||||
rb_rotate_right(rb, x->parent);
|
||||
w = x->parent->left;
|
||||
}
|
||||
|
||||
if (w->right->color == RBBLACK && w->left->color == RBBLACK)
|
||||
{
|
||||
w->color = RBRED;
|
||||
x = x->parent;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (w->left->color == RBBLACK)
|
||||
{
|
||||
w->right->color = RBBLACK;
|
||||
w->color = RBRED;
|
||||
rb_rotate_left(rb, w);
|
||||
w = x->parent->left;
|
||||
}
|
||||
w->color = x->parent->color;
|
||||
x->parent->color = RBBLACK;
|
||||
w->left->color = RBBLACK;
|
||||
rb_rotate_right(rb, x->parent);
|
||||
x = rb->root; /* Arrange for loop to terminate. */
|
||||
}
|
||||
}
|
||||
}
|
||||
x->color = RBBLACK;
|
||||
}
|
||||
|
||||
/*
|
||||
* Delete node z from tree.
|
||||
*/
|
||||
static void
|
||||
rb_delete_node(RBTree *rb, RBNode *z)
|
||||
{
|
||||
RBNode *x,
|
||||
*y;
|
||||
|
||||
if (!z || z == RBNIL)
|
||||
return;
|
||||
|
||||
/*
|
||||
* y is the node that will actually be removed from the tree. This will
|
||||
* be z if z has fewer than two children, or the tree successor of z
|
||||
* otherwise.
|
||||
*/
|
||||
if (z->left == RBNIL || z->right == RBNIL)
|
||||
{
|
||||
/* y has a RBNIL node as a child */
|
||||
y = z;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* find tree successor */
|
||||
y = z->right;
|
||||
while (y->left != RBNIL)
|
||||
y = y->left;
|
||||
}
|
||||
|
||||
/* x is y's only child */
|
||||
if (y->left != RBNIL)
|
||||
x = y->left;
|
||||
else
|
||||
x = y->right;
|
||||
|
||||
/* Remove y from the tree. */
|
||||
x->parent = y->parent;
|
||||
if (y->parent)
|
||||
{
|
||||
if (y == y->parent->left)
|
||||
y->parent->left = x;
|
||||
else
|
||||
y->parent->right = x;
|
||||
}
|
||||
else
|
||||
{
|
||||
rb->root = x;
|
||||
}
|
||||
|
||||
/*
|
||||
* If we removed the tree successor of z rather than z itself, then
|
||||
* attach the data for the removed node to the one we were supposed to
|
||||
* remove.
|
||||
*/
|
||||
if (y != z)
|
||||
z->data = y->data;
|
||||
|
||||
/*
|
||||
* Removing a black node might make some paths from root to leaf contain
|
||||
* fewer black nodes than others, or it might make two red nodes adjacent.
|
||||
*/
|
||||
if (y->color == RBBLACK)
|
||||
rb_delete_fixup(rb, x);
|
||||
|
||||
pfree(y);
|
||||
}
|
||||
|
||||
extern void
|
||||
rb_delete(RBTree *rb, void *data)
|
||||
{
|
||||
RBNode *node = rb->root;
|
||||
int cmp;
|
||||
|
||||
while (node != RBNIL)
|
||||
{
|
||||
cmp = rb->comparator(data, node->data, rb->arg);
|
||||
|
||||
if (cmp == 0)
|
||||
{
|
||||
/* found node to delete */
|
||||
if (rb->freefunc)
|
||||
rb->freefunc(node->data);
|
||||
node->data = NULL;
|
||||
rb_delete_node(rb, node);
|
||||
return;
|
||||
}
|
||||
else if (cmp < 0)
|
||||
node = node->left;
|
||||
else
|
||||
node = node->right;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Return data on left most node and delete
|
||||
* that node
|
||||
*/
|
||||
extern void *
|
||||
rb_leftmost(RBTree *rb)
|
||||
{
|
||||
RBNode *node = rb->root;
|
||||
RBNode *leftmost = rb->root;
|
||||
void *res = NULL;
|
||||
|
||||
while (node != RBNIL)
|
||||
{
|
||||
leftmost = node;
|
||||
node = node->left;
|
||||
}
|
||||
|
||||
if (leftmost != RBNIL)
|
||||
{
|
||||
res = leftmost->data;
|
||||
leftmost->data = NULL;
|
||||
rb_delete_node(rb, leftmost);
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
* Traverse *
|
||||
**********************************************************************/
|
||||
|
||||
static void *
|
||||
rb_next_node(RBTreeIterator *iterator, RBNode *node)
|
||||
{
|
||||
node->iteratorState = InitialState;
|
||||
iterator->node = node;
|
||||
return iterator->iterate(iterator);
|
||||
}
|
||||
|
||||
static void *
|
||||
rb_left_right_iterator(RBTreeIterator *iterator)
|
||||
{
|
||||
RBNode *node = iterator->node;
|
||||
|
||||
switch (node->iteratorState)
|
||||
{
|
||||
case InitialState:
|
||||
if (node->left != RBNIL)
|
||||
{
|
||||
node->iteratorState = FirstStepDone;
|
||||
return rb_next_node(iterator, node->left);
|
||||
}
|
||||
case FirstStepDone:
|
||||
node->iteratorState = SecondStepDone;
|
||||
return node->data;
|
||||
case SecondStepDone:
|
||||
if (node->right != RBNIL)
|
||||
{
|
||||
node->iteratorState = ThirdStepDone;
|
||||
return rb_next_node(iterator, node->right);
|
||||
}
|
||||
case ThirdStepDone:
|
||||
if (node->parent)
|
||||
{
|
||||
iterator->node = node->parent;
|
||||
return iterator->iterate(iterator);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
elog(ERROR, "Unknow node state: %d", node->iteratorState);
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void *
|
||||
rb_right_left_iterator(RBTreeIterator *iterator)
|
||||
{
|
||||
RBNode *node = iterator->node;
|
||||
|
||||
switch (node->iteratorState)
|
||||
{
|
||||
case InitialState:
|
||||
if (node->right != RBNIL)
|
||||
{
|
||||
node->iteratorState = FirstStepDone;
|
||||
return rb_next_node(iterator, node->right);
|
||||
}
|
||||
case FirstStepDone:
|
||||
node->iteratorState = SecondStepDone;
|
||||
return node->data;
|
||||
case SecondStepDone:
|
||||
if (node->left != RBNIL)
|
||||
{
|
||||
node->iteratorState = ThirdStepDone;
|
||||
return rb_next_node(iterator, node->left);
|
||||
}
|
||||
case ThirdStepDone:
|
||||
if (node->parent)
|
||||
{
|
||||
iterator->node = node->parent;
|
||||
return iterator->iterate(iterator);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
elog(ERROR, "Unknow node state: %d", node->iteratorState);
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void *
|
||||
rb_direct_iterator(RBTreeIterator *iterator)
|
||||
{
|
||||
RBNode *node = iterator->node;
|
||||
|
||||
switch (node->iteratorState)
|
||||
{
|
||||
case InitialState:
|
||||
node->iteratorState = FirstStepDone;
|
||||
return node->data;
|
||||
case FirstStepDone:
|
||||
if (node->left != RBNIL)
|
||||
{
|
||||
node->iteratorState = SecondStepDone;
|
||||
return rb_next_node(iterator, node->left);
|
||||
}
|
||||
case SecondStepDone:
|
||||
if (node->right != RBNIL)
|
||||
{
|
||||
node->iteratorState = ThirdStepDone;
|
||||
return rb_next_node(iterator, node->right);
|
||||
}
|
||||
case ThirdStepDone:
|
||||
if (node->parent)
|
||||
{
|
||||
iterator->node = node->parent;
|
||||
return iterator->iterate(iterator);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
elog(ERROR, "Unknow node state: %d", node->iteratorState);
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void *
|
||||
rb_inverted_iterator(RBTreeIterator *iterator)
|
||||
{
|
||||
RBNode *node = iterator->node;
|
||||
|
||||
switch (node->iteratorState)
|
||||
{
|
||||
case InitialState:
|
||||
if (node->left != RBNIL)
|
||||
{
|
||||
node->iteratorState = FirstStepDone;
|
||||
return rb_next_node(iterator, node->left);
|
||||
}
|
||||
case FirstStepDone:
|
||||
if (node->right != RBNIL)
|
||||
{
|
||||
node->iteratorState = SecondStepDone;
|
||||
return rb_next_node(iterator, node->right);
|
||||
}
|
||||
case SecondStepDone:
|
||||
node->iteratorState = ThirdStepDone;
|
||||
return node->data;
|
||||
case ThirdStepDone:
|
||||
if (node->parent)
|
||||
{
|
||||
iterator->node = node->parent;
|
||||
return iterator->iterate(iterator);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
elog(ERROR, "Unknow node state: %d", node->iteratorState);
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
RBTreeIterator *
|
||||
rb_begin_iterate(RBTree *rb, RBOrderControl ctrl)
|
||||
{
|
||||
RBTreeIterator *iterator = palloc(sizeof(RBTreeIterator));
|
||||
|
||||
iterator->node = rb->root;
|
||||
if (iterator->node != RBNIL)
|
||||
iterator->node->iteratorState = InitialState;
|
||||
|
||||
switch (ctrl)
|
||||
{
|
||||
case LeftRightWalk: /* visit left, then self, then right */
|
||||
iterator->iterate = rb_left_right_iterator;
|
||||
break;
|
||||
case RightLeftWalk: /* visit right, then self, then left */
|
||||
iterator->iterate = rb_right_left_iterator;
|
||||
break;
|
||||
case DirectWalk: /* visit self, then left, then right */
|
||||
iterator->iterate = rb_direct_iterator;
|
||||
break;
|
||||
case InvertedWalk: /* visit left, then right, then self */
|
||||
iterator->iterate = rb_inverted_iterator;
|
||||
break;
|
||||
default:
|
||||
elog(ERROR, "Unknown iterator order: %d", ctrl);
|
||||
}
|
||||
|
||||
return iterator;
|
||||
}
|
||||
|
||||
void *
|
||||
rb_iterate(RBTreeIterator *iterator)
|
||||
{
|
||||
if (iterator->node == RBNIL)
|
||||
return NULL;
|
||||
|
||||
return iterator->iterate(iterator);
|
||||
}
|
||||
|
||||
void
|
||||
rb_free_iterator(RBTreeIterator *iterator)
|
||||
{
|
||||
pfree(iterator);
|
||||
}
|
Reference in New Issue
Block a user