mirror of
https://github.com/postgres/postgres.git
synced 2025-05-09 18:21:05 +03:00
Create a selectivity estimation function for the text search @@ operator.
Jan Urbanski
This commit is contained in:
parent
e2b7d0c65c
commit
4e57668da4
@ -1,4 +1,4 @@
|
||||
<!-- $PostgreSQL: pgsql/doc/src/sgml/catalogs.sgml,v 2.174 2008/09/15 18:43:41 tgl Exp $ -->
|
||||
<!-- $PostgreSQL: pgsql/doc/src/sgml/catalogs.sgml,v 2.175 2008/09/19 19:03:40 tgl Exp $ -->
|
||||
<!--
|
||||
Documentation of the system catalogs, directed toward PostgreSQL developers
|
||||
-->
|
||||
@ -6664,6 +6664,9 @@
|
||||
A list of the frequencies of the most common values or elements,
|
||||
i.e., number of occurrences of each divided by total number of rows.
|
||||
(NULL when <structfield>most_common_vals</structfield> is.)
|
||||
For some datatypes such as <type>tsvector</>, it can also store some
|
||||
additional information, making it longer than the
|
||||
<structfield>most_common_vals</> array.
|
||||
</entry>
|
||||
</row>
|
||||
|
||||
|
@ -4,7 +4,7 @@
|
||||
#
|
||||
# Copyright (c) 2006-2008, PostgreSQL Global Development Group
|
||||
#
|
||||
# $PostgreSQL: pgsql/src/backend/tsearch/Makefile,v 1.7 2008/07/14 00:51:45 tgl Exp $
|
||||
# $PostgreSQL: pgsql/src/backend/tsearch/Makefile,v 1.8 2008/09/19 19:03:40 tgl Exp $
|
||||
#
|
||||
#-------------------------------------------------------------------------
|
||||
subdir = src/backend/tsearch
|
||||
@ -19,7 +19,7 @@ DICTFILES=synonym_sample.syn thesaurus_sample.ths hunspell_sample.affix \
|
||||
OBJS = ts_locale.o ts_parse.o wparser.o wparser_def.o dict.o \
|
||||
dict_simple.o dict_synonym.o dict_thesaurus.o \
|
||||
dict_ispell.o regis.o spell.o \
|
||||
to_tsany.o ts_typanalyze.o ts_utils.o
|
||||
to_tsany.o ts_selfuncs.o ts_typanalyze.o ts_utils.o
|
||||
|
||||
include $(top_srcdir)/src/backend/common.mk
|
||||
|
||||
|
363
src/backend/tsearch/ts_selfuncs.c
Normal file
363
src/backend/tsearch/ts_selfuncs.c
Normal file
@ -0,0 +1,363 @@
|
||||
/*-------------------------------------------------------------------------
|
||||
*
|
||||
* ts_selfuncs.c
|
||||
* Selectivity estimation functions for text search operators.
|
||||
*
|
||||
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
|
||||
*
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $PostgreSQL: pgsql/src/backend/tsearch/ts_selfuncs.c,v 1.1 2008/09/19 19:03:40 tgl Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
#include "postgres.h"
|
||||
|
||||
#include "catalog/pg_statistic.h"
|
||||
#include "catalog/pg_type.h"
|
||||
#include "miscadmin.h"
|
||||
#include "nodes/nodes.h"
|
||||
#include "tsearch/ts_type.h"
|
||||
#include "utils/lsyscache.h"
|
||||
#include "utils/selfuncs.h"
|
||||
#include "utils/syscache.h"
|
||||
|
||||
|
||||
/*
|
||||
* The default text search selectivity is chosen to be small enough to
|
||||
* encourage indexscans for typical table densities. See selfuncs.h and
|
||||
* DEFAULT_EQ_SEL for details.
|
||||
*/
|
||||
#define DEFAULT_TS_MATCH_SEL 0.005
|
||||
|
||||
/* lookup table type for binary searching through MCELEMs */
|
||||
typedef struct
|
||||
{
|
||||
text *element;
|
||||
float4 frequency;
|
||||
} TextFreq;
|
||||
|
||||
/* type of keys for bsearch'ing through an array of TextFreqs */
|
||||
typedef struct
|
||||
{
|
||||
char *lexeme;
|
||||
int length;
|
||||
} LexemeKey;
|
||||
|
||||
static Selectivity tsquerysel(VariableStatData *vardata, Datum constval);
|
||||
static Selectivity mcelem_tsquery_selec(TSQuery query,
|
||||
Datum *mcelem, int nmcelem,
|
||||
float4 *numbers, int nnumbers);
|
||||
static Selectivity tsquery_opr_selec(QueryItem *item, char *operand,
|
||||
TextFreq *lookup, int length, float4 minfreq);
|
||||
static int compare_lexeme_textfreq(const void *e1, const void *e2);
|
||||
|
||||
|
||||
/*
|
||||
* tsmatchsel -- Selectivity of "@@"
|
||||
*
|
||||
* restriction selectivity function for tsvector @@ tsquery and
|
||||
* tsquery @@ tsvector
|
||||
*/
|
||||
Datum
|
||||
tsmatchsel(PG_FUNCTION_ARGS)
|
||||
{
|
||||
PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
|
||||
#ifdef NOT_USED
|
||||
Oid operator = PG_GETARG_OID(1);
|
||||
#endif
|
||||
List *args = (List *) PG_GETARG_POINTER(2);
|
||||
int varRelid = PG_GETARG_INT32(3);
|
||||
VariableStatData vardata;
|
||||
Node *other;
|
||||
bool varonleft;
|
||||
Selectivity selec;
|
||||
|
||||
/*
|
||||
* If expression is not variable = something or something = variable, then
|
||||
* punt and return a default estimate.
|
||||
*/
|
||||
if (!get_restriction_variable(root, args, varRelid,
|
||||
&vardata, &other, &varonleft))
|
||||
PG_RETURN_FLOAT8(DEFAULT_TS_MATCH_SEL);
|
||||
|
||||
/*
|
||||
* Can't do anything useful if the something is not a constant, either.
|
||||
*/
|
||||
if (!IsA(other, Const))
|
||||
{
|
||||
ReleaseVariableStats(vardata);
|
||||
PG_RETURN_FLOAT8(DEFAULT_TS_MATCH_SEL);
|
||||
}
|
||||
|
||||
/*
|
||||
* The "@@" operator is strict, so we can cope with NULL right away
|
||||
*/
|
||||
if (((Const *) other)->constisnull)
|
||||
{
|
||||
ReleaseVariableStats(vardata);
|
||||
PG_RETURN_FLOAT8(0.0);
|
||||
}
|
||||
|
||||
/*
|
||||
* OK, there's a Var and a Const we're dealing with here. We need the Var
|
||||
* to be a TSVector (or else we don't have any useful statistic for it).
|
||||
* We have to check this because the Var might be the TSQuery not the
|
||||
* TSVector.
|
||||
*/
|
||||
if (vardata.vartype == TSVECTOROID)
|
||||
{
|
||||
/* tsvector @@ tsquery or the other way around */
|
||||
Assert(((Const *) other)->consttype == TSQUERYOID);
|
||||
|
||||
selec = tsquerysel(&vardata, ((Const *) other)->constvalue);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* The Var is something we don't have useful statistics for */
|
||||
selec = DEFAULT_TS_MATCH_SEL;
|
||||
}
|
||||
|
||||
ReleaseVariableStats(vardata);
|
||||
|
||||
CLAMP_PROBABILITY(selec);
|
||||
|
||||
PG_RETURN_FLOAT8((float8) selec);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* tsmatchjoinsel -- join selectivity of "@@"
|
||||
*
|
||||
* join selectivity function for tsvector @@ tsquery and tsquery @@ tsvector
|
||||
*/
|
||||
Datum
|
||||
tsmatchjoinsel(PG_FUNCTION_ARGS)
|
||||
{
|
||||
/* for the moment we just punt */
|
||||
PG_RETURN_FLOAT8(DEFAULT_TS_MATCH_SEL);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @@ selectivity for tsvector var vs tsquery constant
|
||||
*/
|
||||
static Selectivity
|
||||
tsquerysel(VariableStatData *vardata, Datum constval)
|
||||
{
|
||||
Selectivity selec;
|
||||
|
||||
if (HeapTupleIsValid(vardata->statsTuple))
|
||||
{
|
||||
TSQuery query;
|
||||
Form_pg_statistic stats;
|
||||
Datum *values;
|
||||
int nvalues;
|
||||
float4 *numbers;
|
||||
int nnumbers;
|
||||
|
||||
/* The caller made sure the const is a TSQuery, so get it now */
|
||||
query = DatumGetTSQuery(constval);
|
||||
|
||||
stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
|
||||
|
||||
/* MCELEM will be an array of TEXT elements for a tsvector column */
|
||||
if (get_attstatsslot(vardata->statsTuple,
|
||||
TEXTOID, -1,
|
||||
STATISTIC_KIND_MCELEM, InvalidOid,
|
||||
&values, &nvalues,
|
||||
&numbers, &nnumbers))
|
||||
{
|
||||
/*
|
||||
* There is a most-common-elements slot for the tsvector Var, so
|
||||
* use that.
|
||||
*/
|
||||
selec = mcelem_tsquery_selec(query, values, nvalues,
|
||||
numbers, nnumbers);
|
||||
free_attstatsslot(TEXTOID, values, nvalues, numbers, nnumbers);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* No most-common-elements info, so we must punt */
|
||||
selec = (Selectivity) DEFAULT_TS_MATCH_SEL;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* No stats at all, so we must punt */
|
||||
selec = (Selectivity) DEFAULT_TS_MATCH_SEL;
|
||||
}
|
||||
|
||||
return selec;
|
||||
}
|
||||
|
||||
/*
|
||||
* Extract data from the pg_statistic arrays into useful format.
|
||||
*/
|
||||
static Selectivity
|
||||
mcelem_tsquery_selec(TSQuery query, Datum *mcelem, int nmcelem,
|
||||
float4 *numbers, int nnumbers)
|
||||
{
|
||||
float4 minfreq;
|
||||
TextFreq *lookup;
|
||||
Selectivity selec;
|
||||
int i;
|
||||
|
||||
/*
|
||||
* There should be two more Numbers than Values, because the last two
|
||||
* cells are taken for minimal and maximal frequency. Punt if not.
|
||||
*/
|
||||
if (nnumbers != nmcelem + 2)
|
||||
return DEFAULT_TS_MATCH_SEL;
|
||||
|
||||
/*
|
||||
* Transpose the data into a single array so we can use bsearch().
|
||||
*/
|
||||
lookup = (TextFreq *) palloc(sizeof(TextFreq) * nmcelem);
|
||||
for (i = 0; i < nmcelem; i++)
|
||||
{
|
||||
/*
|
||||
* The text Datums came from an array, so it cannot be compressed
|
||||
* or stored out-of-line -- it's safe to use VARSIZE_ANY*.
|
||||
*/
|
||||
Assert(!VARATT_IS_COMPRESSED(mcelem[i]) && !VARATT_IS_EXTERNAL(mcelem[i]));
|
||||
lookup[i].element = (text *) DatumGetPointer(mcelem[i]);
|
||||
lookup[i].frequency = numbers[i];
|
||||
}
|
||||
|
||||
/*
|
||||
* Grab the lowest frequency. compute_tsvector_stats() stored it for us in
|
||||
* the one before the last cell of the Numbers array. See ts_typanalyze.c
|
||||
*/
|
||||
minfreq = numbers[nnumbers - 2];
|
||||
|
||||
selec = tsquery_opr_selec(GETQUERY(query), GETOPERAND(query), lookup,
|
||||
nmcelem, minfreq);
|
||||
|
||||
pfree(lookup);
|
||||
|
||||
return selec;
|
||||
}
|
||||
|
||||
/*
|
||||
* Traverse the tsquery in preorder, calculating selectivity as:
|
||||
*
|
||||
* selec(left_oper) * selec(right_oper) in AND nodes,
|
||||
*
|
||||
* selec(left_oper) + selec(right_oper) -
|
||||
* selec(left_oper) * selec(right_oper) in OR nodes,
|
||||
*
|
||||
* 1 - select(oper) in NOT nodes
|
||||
*
|
||||
* freq[val] in VAL nodes, if the value is in MCELEM
|
||||
* min(freq[MCELEM]) / 2 in VAL nodes, if it is not
|
||||
*
|
||||
*
|
||||
* The MCELEM array is already sorted (see ts_typanalyze.c), so we can use
|
||||
* binary search for determining freq[MCELEM].
|
||||
*/
|
||||
static Selectivity
|
||||
tsquery_opr_selec(QueryItem *item, char *operand,
|
||||
TextFreq *lookup, int length, float4 minfreq)
|
||||
{
|
||||
LexemeKey key;
|
||||
TextFreq *searchres;
|
||||
Selectivity selec, s1, s2;
|
||||
|
||||
/* since this function recurses, it could be driven to stack overflow */
|
||||
check_stack_depth();
|
||||
|
||||
if (item->type == QI_VAL)
|
||||
{
|
||||
QueryOperand *oper = (QueryOperand *) item;
|
||||
|
||||
/*
|
||||
* Prepare the key for bsearch().
|
||||
*/
|
||||
key.lexeme = operand + oper->distance;
|
||||
key.length = oper->length;
|
||||
|
||||
searchres = (TextFreq *) bsearch(&key, lookup, length,
|
||||
sizeof(TextFreq),
|
||||
compare_lexeme_textfreq);
|
||||
|
||||
if (searchres)
|
||||
{
|
||||
/*
|
||||
* The element is in MCELEM. Return precise selectivity (or at
|
||||
* least as precise as ANALYZE could find out).
|
||||
*/
|
||||
return (Selectivity) searchres->frequency;
|
||||
}
|
||||
else
|
||||
{
|
||||
/*
|
||||
* The element is not in MCELEM. Punt, but assert that the
|
||||
* selectivity cannot be more than minfreq / 2.
|
||||
*/
|
||||
return (Selectivity) Min(DEFAULT_TS_MATCH_SEL, minfreq / 2);
|
||||
}
|
||||
}
|
||||
|
||||
/* Current TSQuery node is an operator */
|
||||
switch (item->operator.oper)
|
||||
{
|
||||
case OP_NOT:
|
||||
selec = 1.0 - tsquery_opr_selec(item + 1, operand,
|
||||
lookup, length, minfreq);
|
||||
break;
|
||||
|
||||
case OP_AND:
|
||||
s1 = tsquery_opr_selec(item + 1, operand,
|
||||
lookup, length, minfreq);
|
||||
s2 = tsquery_opr_selec(item + item->operator.left, operand,
|
||||
lookup, length, minfreq);
|
||||
selec = s1 * s2;
|
||||
break;
|
||||
|
||||
case OP_OR:
|
||||
s1 = tsquery_opr_selec(item + 1, operand,
|
||||
lookup, length, minfreq);
|
||||
s2 = tsquery_opr_selec(item + item->operator.left, operand,
|
||||
lookup, length, minfreq);
|
||||
selec = s1 + s2 - s1 * s2;
|
||||
break;
|
||||
|
||||
default:
|
||||
elog(ERROR, "unrecognized operator: %d", item->operator.oper);
|
||||
selec = 0; /* keep compiler quiet */
|
||||
break;
|
||||
}
|
||||
|
||||
/* Clamp intermediate results to stay sane despite roundoff error */
|
||||
CLAMP_PROBABILITY(selec);
|
||||
|
||||
return selec;
|
||||
}
|
||||
|
||||
/*
|
||||
* bsearch() comparator for a lexeme (non-NULL terminated string with length)
|
||||
* and a TextFreq. Use length, then byte-for-byte comparison, because that's
|
||||
* how ANALYZE code sorted data before storing it in a statistic tuple.
|
||||
* See ts_typanalyze.c for details.
|
||||
*/
|
||||
static int
|
||||
compare_lexeme_textfreq(const void *e1, const void *e2)
|
||||
{
|
||||
const LexemeKey *key = (const LexemeKey *) e1;
|
||||
const TextFreq *t = (const TextFreq *) e2;
|
||||
int len1,
|
||||
len2;
|
||||
|
||||
len1 = key->length;
|
||||
len2 = VARSIZE_ANY_EXHDR(t->element);
|
||||
|
||||
/* Compare lengths first, possibly avoiding a strncmp call */
|
||||
if (len1 > len2)
|
||||
return 1;
|
||||
else if (len1 < len2)
|
||||
return -1;
|
||||
|
||||
/* Fall back on byte-for-byte comparison */
|
||||
return strncmp(key->lexeme, VARDATA_ANY(t->element), len1);
|
||||
}
|
@ -7,7 +7,7 @@
|
||||
*
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $PostgreSQL: pgsql/src/backend/tsearch/ts_typanalyze.c,v 1.1 2008/07/14 00:51:45 tgl Exp $
|
||||
* $PostgreSQL: pgsql/src/backend/tsearch/ts_typanalyze.c,v 1.2 2008/09/19 19:03:40 tgl Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -43,7 +43,9 @@ static void compute_tsvector_stats(VacAttrStats *stats,
|
||||
static void prune_lexemes_hashtable(HTAB *lexemes_tab, int b_current);
|
||||
static uint32 lexeme_hash(const void *key, Size keysize);
|
||||
static int lexeme_match(const void *key1, const void *key2, Size keysize);
|
||||
static int trackitem_compare_desc(const void *e1, const void *e2);
|
||||
static int lexeme_compare(const void *key1, const void *key2);
|
||||
static int trackitem_compare_frequencies_desc(const void *e1, const void *e2);
|
||||
static int trackitem_compare_lexemes(const void *e1, const void *e2);
|
||||
|
||||
|
||||
/*
|
||||
@ -247,6 +249,7 @@ compute_tsvector_stats(VacAttrStats *stats,
|
||||
int i;
|
||||
TrackItem **sort_table;
|
||||
int track_len;
|
||||
int minfreq, maxfreq;
|
||||
|
||||
stats->stats_valid = true;
|
||||
/* Do the simple null-frac and average width stats */
|
||||
@ -273,7 +276,7 @@ compute_tsvector_stats(VacAttrStats *stats,
|
||||
Assert(i == track_len);
|
||||
|
||||
qsort(sort_table, track_len, sizeof(TrackItem *),
|
||||
trackitem_compare_desc);
|
||||
trackitem_compare_frequencies_desc);
|
||||
|
||||
/* Suppress any single-occurrence items */
|
||||
while (track_len > 0)
|
||||
@ -287,6 +290,26 @@ compute_tsvector_stats(VacAttrStats *stats,
|
||||
if (num_mcelem > track_len)
|
||||
num_mcelem = track_len;
|
||||
|
||||
/* Grab the minimal and maximal frequencies that will get stored */
|
||||
minfreq = sort_table[num_mcelem - 1]->frequency;
|
||||
maxfreq = sort_table[0]->frequency;
|
||||
|
||||
/*
|
||||
* We want to store statistics sorted on the lexeme value using first
|
||||
* length, then byte-for-byte comparison. The reason for doing length
|
||||
* comparison first is that we don't care about the ordering so long
|
||||
* as it's consistent, and comparing lengths first gives us a chance
|
||||
* to avoid a strncmp() call.
|
||||
*
|
||||
* This is different from what we do with scalar statistics -- they get
|
||||
* sorted on frequencies. The rationale is that we usually search
|
||||
* through most common elements looking for a specific value, so we can
|
||||
* grab its frequency. When values are presorted we can employ binary
|
||||
* search for that. See ts_selfuncs.c for a real usage scenario.
|
||||
*/
|
||||
qsort(sort_table, num_mcelem, sizeof(TrackItem *),
|
||||
trackitem_compare_lexemes);
|
||||
|
||||
/* Generate MCELEM slot entry */
|
||||
if (num_mcelem > 0)
|
||||
{
|
||||
@ -296,8 +319,15 @@ compute_tsvector_stats(VacAttrStats *stats,
|
||||
|
||||
/* Must copy the target values into anl_context */
|
||||
old_context = MemoryContextSwitchTo(stats->anl_context);
|
||||
|
||||
/*
|
||||
* We sorted statistics on the lexeme value, but we want to be
|
||||
* able to find out the minimal and maximal frequency without
|
||||
* going through all the values. We keep those two extra
|
||||
* frequencies in two extra cells in mcelem_freqs.
|
||||
*/
|
||||
mcelem_values = (Datum *) palloc(num_mcelem * sizeof(Datum));
|
||||
mcelem_freqs = (float4 *) palloc(num_mcelem * sizeof(float4));
|
||||
mcelem_freqs = (float4 *) palloc((num_mcelem + 2) * sizeof(float4));
|
||||
|
||||
for (i = 0; i < num_mcelem; i++)
|
||||
{
|
||||
@ -308,12 +338,15 @@ compute_tsvector_stats(VacAttrStats *stats,
|
||||
item->key.length));
|
||||
mcelem_freqs[i] = (double) item->frequency / (double) nonnull_cnt;
|
||||
}
|
||||
mcelem_freqs[i++] = (double) minfreq / (double) nonnull_cnt;
|
||||
mcelem_freqs[i] = (double) maxfreq / (double) nonnull_cnt;
|
||||
MemoryContextSwitchTo(old_context);
|
||||
|
||||
stats->stakind[0] = STATISTIC_KIND_MCELEM;
|
||||
stats->staop[0] = TextEqualOperator;
|
||||
stats->stanumbers[0] = mcelem_freqs;
|
||||
stats->numnumbers[0] = num_mcelem;
|
||||
/* See above comment about two extra frequency fields */
|
||||
stats->numnumbers[0] = num_mcelem + 2;
|
||||
stats->stavalues[0] = mcelem_values;
|
||||
stats->numvalues[0] = num_mcelem;
|
||||
/* We are storing text values */
|
||||
@ -379,25 +412,48 @@ lexeme_hash(const void *key, Size keysize)
|
||||
static int
|
||||
lexeme_match(const void *key1, const void *key2, Size keysize)
|
||||
{
|
||||
const LexemeHashKey *d1 = (const LexemeHashKey *) key1;
|
||||
const LexemeHashKey *d2 = (const LexemeHashKey *) key2;
|
||||
|
||||
/* The lexemes need to have the same length, and be memcmp-equal */
|
||||
if (d1->length == d2->length &&
|
||||
memcmp(d1->lexeme, d2->lexeme, d1->length) == 0)
|
||||
return 0;
|
||||
else
|
||||
return 1;
|
||||
/* The keysize parameter is superfluous, the keys store their lengths */
|
||||
return lexeme_compare(key1, key2);
|
||||
}
|
||||
|
||||
/*
|
||||
* qsort() comparator for TrackItems - LC style (descending sort)
|
||||
* Comparison function for lexemes.
|
||||
*/
|
||||
static int
|
||||
trackitem_compare_desc(const void *e1, const void *e2)
|
||||
lexeme_compare(const void *key1, const void *key2)
|
||||
{
|
||||
const LexemeHashKey *d1 = (const LexemeHashKey *) key1;
|
||||
const LexemeHashKey *d2 = (const LexemeHashKey *) key2;
|
||||
|
||||
/* First, compare by length */
|
||||
if (d1->length > d2->length)
|
||||
return 1;
|
||||
else if (d1->length < d2->length)
|
||||
return -1;
|
||||
/* Lengths are equal, do a byte-by-byte comparison */
|
||||
return strncmp(d1->lexeme, d2->lexeme, d1->length);
|
||||
}
|
||||
|
||||
/*
|
||||
* qsort() comparator for sorting TrackItems on frequencies (descending sort)
|
||||
*/
|
||||
static int
|
||||
trackitem_compare_frequencies_desc(const void *e1, const void *e2)
|
||||
{
|
||||
const TrackItem * const *t1 = (const TrackItem * const *) e1;
|
||||
const TrackItem * const *t2 = (const TrackItem * const *) e2;
|
||||
|
||||
return (*t2)->frequency - (*t1)->frequency;
|
||||
}
|
||||
|
||||
/*
|
||||
* qsort() comparator for sorting TrackItems on lexemes
|
||||
*/
|
||||
static int
|
||||
trackitem_compare_lexemes(const void *e1, const void *e2)
|
||||
{
|
||||
const TrackItem * const *t1 = (const TrackItem * const *) e1;
|
||||
const TrackItem * const *t2 = (const TrackItem * const *) e2;
|
||||
|
||||
return lexeme_compare(&(*t1)->key, &(*t2)->key);
|
||||
}
|
||||
|
@ -37,7 +37,7 @@
|
||||
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
|
||||
* Portions Copyright (c) 1994, Regents of the University of California
|
||||
*
|
||||
* $PostgreSQL: pgsql/src/include/catalog/catversion.h,v 1.486 2008/09/15 18:43:41 tgl Exp $
|
||||
* $PostgreSQL: pgsql/src/include/catalog/catversion.h,v 1.487 2008/09/19 19:03:40 tgl Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -53,6 +53,6 @@
|
||||
*/
|
||||
|
||||
/* yyyymmddN */
|
||||
#define CATALOG_VERSION_NO 200809151
|
||||
#define CATALOG_VERSION_NO 200809191
|
||||
|
||||
#endif
|
||||
|
@ -8,7 +8,7 @@
|
||||
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
|
||||
* Portions Copyright (c) 1994, Regents of the University of California
|
||||
*
|
||||
* $PostgreSQL: pgsql/src/include/catalog/pg_operator.h,v 1.162 2008/08/16 00:01:37 tgl Exp $
|
||||
* $PostgreSQL: pgsql/src/include/catalog/pg_operator.h,v 1.163 2008/09/19 19:03:40 tgl Exp $
|
||||
*
|
||||
* NOTES
|
||||
* the genbki.sh script reads this file and generates .bki
|
||||
@ -915,10 +915,10 @@ DATA(insert OID = 3630 ( "<>" PGNSP PGUID b f f 3614 3614 16 3630 3629 ts
|
||||
DATA(insert OID = 3631 ( ">=" PGNSP PGUID b f f 3614 3614 16 3628 3627 tsvector_ge scalargtsel scalargtjoinsel ));
|
||||
DATA(insert OID = 3632 ( ">" PGNSP PGUID b f f 3614 3614 16 3627 3628 tsvector_gt scalargtsel scalargtjoinsel ));
|
||||
DATA(insert OID = 3633 ( "||" PGNSP PGUID b f f 3614 3614 3614 0 0 tsvector_concat - - ));
|
||||
DATA(insert OID = 3636 ( "@@" PGNSP PGUID b f f 3614 3615 16 3637 0 ts_match_vq contsel contjoinsel ));
|
||||
DATA(insert OID = 3637 ( "@@" PGNSP PGUID b f f 3615 3614 16 3636 0 ts_match_qv contsel contjoinsel ));
|
||||
DATA(insert OID = 3660 ( "@@@" PGNSP PGUID b f f 3614 3615 16 3661 0 ts_match_vq contsel contjoinsel ));
|
||||
DATA(insert OID = 3661 ( "@@@" PGNSP PGUID b f f 3615 3614 16 3660 0 ts_match_qv contsel contjoinsel ));
|
||||
DATA(insert OID = 3636 ( "@@" PGNSP PGUID b f f 3614 3615 16 3637 0 ts_match_vq tsmatchsel tsmatchjoinsel ));
|
||||
DATA(insert OID = 3637 ( "@@" PGNSP PGUID b f f 3615 3614 16 3636 0 ts_match_qv tsmatchsel tsmatchjoinsel ));
|
||||
DATA(insert OID = 3660 ( "@@@" PGNSP PGUID b f f 3614 3615 16 3661 0 ts_match_vq tsmatchsel tsmatchjoinsel ));
|
||||
DATA(insert OID = 3661 ( "@@@" PGNSP PGUID b f f 3615 3614 16 3660 0 ts_match_qv tsmatchsel tsmatchjoinsel ));
|
||||
DATA(insert OID = 3674 ( "<" PGNSP PGUID b f f 3615 3615 16 3679 3678 tsquery_lt scalarltsel scalarltjoinsel ));
|
||||
DATA(insert OID = 3675 ( "<=" PGNSP PGUID b f f 3615 3615 16 3678 3679 tsquery_le scalarltsel scalarltjoinsel ));
|
||||
DATA(insert OID = 3676 ( "=" PGNSP PGUID b t f 3615 3615 16 3676 3677 tsquery_eq eqsel eqjoinsel ));
|
||||
|
@ -7,7 +7,7 @@
|
||||
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
|
||||
* Portions Copyright (c) 1994, Regents of the University of California
|
||||
*
|
||||
* $PostgreSQL: pgsql/src/include/catalog/pg_proc.h,v 1.514 2008/09/10 18:09:20 alvherre Exp $
|
||||
* $PostgreSQL: pgsql/src/include/catalog/pg_proc.h,v 1.515 2008/09/19 19:03:40 tgl Exp $
|
||||
*
|
||||
* NOTES
|
||||
* The script catalog/genbki.sh reads this file and generates .bki
|
||||
@ -4434,7 +4434,11 @@ DESCR("GiST tsquery support");
|
||||
DATA(insert OID = 3701 ( gtsquery_consistent PGNSP PGUID 12 1 0 0 f f t f i 5 16 "2281 2281 23 26 2281" _null_ _null_ _null_ gtsquery_consistent _null_ _null_ _null_ ));
|
||||
DESCR("GiST tsquery support");
|
||||
|
||||
DATA(insert OID = 3688 ( ts_typanalyze PGNSP PGUID 12 1 0 0 f f t f s 1 16 "2281" _null_ _null_ _null_ ts_typanalyze _null_ _null_ _null_ ));
|
||||
DATA(insert OID = 3686 ( tsmatchsel PGNSP PGUID 12 1 0 0 f f t f s 4 701 "2281 26 2281 23" _null_ _null_ _null_ tsmatchsel _null_ _null_ _null_ ));
|
||||
DESCR("restriction selectivity of tsvector @@ tsquery");
|
||||
DATA(insert OID = 3687 ( tsmatchjoinsel PGNSP PGUID 12 1 0 0 f f t f s 5 701 "2281 26 2281 21 2281" _null_ _null_ _null_ tsmatchjoinsel _null_ _null_ _null_ ));
|
||||
DESCR("join selectivity of tsvector @@ tsquery");
|
||||
DATA(insert OID = 3688 ( ts_typanalyze PGNSP PGUID 12 1 0 0 f f t f s 1 16 "2281" _null_ _null_ _null_ ts_typanalyze _null_ _null_ _null_ ));
|
||||
DESCR("tsvector typanalyze");
|
||||
|
||||
DATA(insert OID = 3689 ( ts_stat PGNSP PGUID 12 10 10000 0 f f t t v 1 2249 "25" "{25,25,23,23}" "{i,o,o,o}" "{query,word,ndoc,nentry}" ts_stat1 _null_ _null_ _null_ ));
|
||||
|
@ -8,7 +8,7 @@
|
||||
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
|
||||
* Portions Copyright (c) 1994, Regents of the University of California
|
||||
*
|
||||
* $PostgreSQL: pgsql/src/include/catalog/pg_statistic.h,v 1.36 2008/07/14 00:51:45 tgl Exp $
|
||||
* $PostgreSQL: pgsql/src/include/catalog/pg_statistic.h,v 1.37 2008/09/19 19:03:41 tgl Exp $
|
||||
*
|
||||
* NOTES
|
||||
* the genbki.sh script reads this file and generates .bki
|
||||
@ -243,8 +243,12 @@ typedef FormData_pg_statistic *Form_pg_statistic;
|
||||
* values. This is useful when the column datatype is an array or some other
|
||||
* type with identifiable elements (for instance, tsvector). staop contains
|
||||
* the equality operator appropriate to the element type. stavalues contains
|
||||
* the most common element values, and stanumbers their frequencies, with the
|
||||
* same rules as for MCV slots.
|
||||
* the most common element values, and stanumbers their frequencies. Unlike
|
||||
* MCV slots, the values are sorted into order (to support binary search
|
||||
* for a particular value). Since this puts the minimum and maximum
|
||||
* frequencies at unpredictable spots in stanumbers, there are two extra
|
||||
* members of stanumbers, holding copies of the minimum and maximum
|
||||
* frequencies.
|
||||
*
|
||||
* Note: in current usage for tsvector columns, the stavalues elements are of
|
||||
* type text, even though their representation within tsvector is not
|
||||
|
@ -5,7 +5,7 @@
|
||||
*
|
||||
* Copyright (c) 1998-2008, PostgreSQL Global Development Group
|
||||
*
|
||||
* $PostgreSQL: pgsql/src/include/tsearch/ts_type.h,v 1.13 2008/07/14 00:51:45 tgl Exp $
|
||||
* $PostgreSQL: pgsql/src/include/tsearch/ts_type.h,v 1.14 2008/09/19 19:03:41 tgl Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -153,6 +153,9 @@ extern Datum ts_rankcd_wtt(PG_FUNCTION_ARGS);
|
||||
extern Datum ts_rankcd_ttf(PG_FUNCTION_ARGS);
|
||||
extern Datum ts_rankcd_wttf(PG_FUNCTION_ARGS);
|
||||
|
||||
extern Datum tsmatchsel(PG_FUNCTION_ARGS);
|
||||
extern Datum tsmatchjoinsel(PG_FUNCTION_ARGS);
|
||||
|
||||
extern Datum ts_typanalyze(PG_FUNCTION_ARGS);
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user