mirror of
https://github.com/postgres/postgres.git
synced 2025-06-16 06:01:02 +03:00
Fix recently-understood problems with handling of XID freezing, particularly
in PITR scenarios. We now WAL-log the replacement of old XIDs with FrozenTransactionId, so that such replacement is guaranteed to propagate to PITR slave databases. Also, rather than relying on hint-bit updates to be preserved, pg_clog is not truncated until all instances of an XID are known to have been replaced by FrozenTransactionId. Add new GUC variables and pg_autovacuum columns to allow management of the freezing policy, so that users can trade off the size of pg_clog against the amount of freezing work done. Revise the already-existing code that forces autovacuum of tables approaching the wraparound point to make it more bulletproof; also, revise the autovacuum logic so that anti-wraparound vacuuming is done per-table rather than per-database. initdb forced because of changes in pg_class, pg_database, and pg_autovacuum catalogs. Heikki Linnakangas, Simon Riggs, and Tom Lane.
This commit is contained in:
@ -8,7 +8,7 @@
|
||||
*
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $PostgreSQL: pgsql/src/backend/access/heap/heapam.c,v 1.220 2006/10/04 00:29:48 momjian Exp $
|
||||
* $PostgreSQL: pgsql/src/backend/access/heap/heapam.c,v 1.221 2006/11/05 22:42:07 tgl Exp $
|
||||
*
|
||||
*
|
||||
* INTERFACE ROUTINES
|
||||
@ -2809,6 +2809,166 @@ heap_inplace_update(Relation relation, HeapTuple tuple)
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* heap_freeze_tuple
|
||||
*
|
||||
* Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
|
||||
* are older than the specified cutoff XID. If so, replace them with
|
||||
* FrozenTransactionId or InvalidTransactionId as appropriate, and return
|
||||
* TRUE. Return FALSE if nothing was changed.
|
||||
*
|
||||
* It is assumed that the caller has checked the tuple with
|
||||
* HeapTupleSatisfiesVacuum() and determined that it is not HEAPTUPLE_DEAD
|
||||
* (else we should be removing the tuple, not freezing it).
|
||||
*
|
||||
* NB: cutoff_xid *must* be <= the current global xmin, to ensure that any
|
||||
* XID older than it could neither be running nor seen as running by any
|
||||
* open transaction. This ensures that the replacement will not change
|
||||
* anyone's idea of the tuple state. Also, since we assume the tuple is
|
||||
* not HEAPTUPLE_DEAD, the fact that an XID is not still running allows us
|
||||
* to assume that it is either committed good or aborted, as appropriate;
|
||||
* so we need no external state checks to decide what to do. (This is good
|
||||
* because this function is applied during WAL recovery, when we don't have
|
||||
* access to any such state, and can't depend on the hint bits to be set.)
|
||||
*
|
||||
* In lazy VACUUM, we call this while initially holding only a shared lock
|
||||
* on the tuple's buffer. If any change is needed, we trade that in for an
|
||||
* exclusive lock before making the change. Caller should pass the buffer ID
|
||||
* if shared lock is held, InvalidBuffer if exclusive lock is already held.
|
||||
*
|
||||
* Note: it might seem we could make the changes without exclusive lock, since
|
||||
* TransactionId read/write is assumed atomic anyway. However there is a race
|
||||
* condition: someone who just fetched an old XID that we overwrite here could
|
||||
* conceivably not finish checking the XID against pg_clog before we finish
|
||||
* the VACUUM and perhaps truncate off the part of pg_clog he needs. Getting
|
||||
* exclusive lock ensures no other backend is in process of checking the
|
||||
* tuple status. Also, getting exclusive lock makes it safe to adjust the
|
||||
* infomask bits.
|
||||
*/
|
||||
bool
|
||||
heap_freeze_tuple(HeapTupleHeader tuple, TransactionId cutoff_xid,
|
||||
Buffer buf)
|
||||
{
|
||||
bool changed = false;
|
||||
TransactionId xid;
|
||||
|
||||
xid = HeapTupleHeaderGetXmin(tuple);
|
||||
if (TransactionIdIsNormal(xid) &&
|
||||
TransactionIdPrecedes(xid, cutoff_xid))
|
||||
{
|
||||
if (buf != InvalidBuffer)
|
||||
{
|
||||
/* trade in share lock for exclusive lock */
|
||||
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
|
||||
LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
|
||||
buf = InvalidBuffer;
|
||||
}
|
||||
HeapTupleHeaderSetXmin(tuple, FrozenTransactionId);
|
||||
/*
|
||||
* Might as well fix the hint bits too; usually XMIN_COMMITTED will
|
||||
* already be set here, but there's a small chance not.
|
||||
*/
|
||||
Assert(!(tuple->t_infomask & HEAP_XMIN_INVALID));
|
||||
tuple->t_infomask |= HEAP_XMIN_COMMITTED;
|
||||
changed = true;
|
||||
}
|
||||
|
||||
/*
|
||||
* When we release shared lock, it's possible for someone else to change
|
||||
* xmax before we get the lock back, so repeat the check after acquiring
|
||||
* exclusive lock. (We don't need this pushup for xmin, because only
|
||||
* VACUUM could be interested in changing an existing tuple's xmin,
|
||||
* and there's only one VACUUM allowed on a table at a time.)
|
||||
*/
|
||||
recheck_xmax:
|
||||
if (!(tuple->t_infomask & HEAP_XMAX_IS_MULTI))
|
||||
{
|
||||
xid = HeapTupleHeaderGetXmax(tuple);
|
||||
if (TransactionIdIsNormal(xid) &&
|
||||
TransactionIdPrecedes(xid, cutoff_xid))
|
||||
{
|
||||
if (buf != InvalidBuffer)
|
||||
{
|
||||
/* trade in share lock for exclusive lock */
|
||||
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
|
||||
LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
|
||||
buf = InvalidBuffer;
|
||||
goto recheck_xmax; /* see comment above */
|
||||
}
|
||||
HeapTupleHeaderSetXmax(tuple, InvalidTransactionId);
|
||||
/*
|
||||
* The tuple might be marked either XMAX_INVALID or
|
||||
* XMAX_COMMITTED + LOCKED. Normalize to INVALID just to be
|
||||
* sure no one gets confused.
|
||||
*/
|
||||
tuple->t_infomask &= ~HEAP_XMAX_COMMITTED;
|
||||
tuple->t_infomask |= HEAP_XMAX_INVALID;
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/*----------
|
||||
* XXX perhaps someday we should zero out very old MultiXactIds here?
|
||||
*
|
||||
* The only way a stale MultiXactId could pose a problem is if a
|
||||
* tuple, having once been multiply-share-locked, is not touched by
|
||||
* any vacuum or attempted lock or deletion for just over 4G MultiXact
|
||||
* creations, and then in the probably-narrow window where its xmax
|
||||
* is again a live MultiXactId, someone tries to lock or delete it.
|
||||
* Even then, another share-lock attempt would work fine. An
|
||||
* exclusive-lock or delete attempt would face unexpected delay, or
|
||||
* in the very worst case get a deadlock error. This seems an
|
||||
* extremely low-probability scenario with minimal downside even if
|
||||
* it does happen, so for now we don't do the extra bookkeeping that
|
||||
* would be needed to clean out MultiXactIds.
|
||||
*----------
|
||||
*/
|
||||
}
|
||||
|
||||
/*
|
||||
* Although xvac per se could only be set by VACUUM, it shares physical
|
||||
* storage space with cmax, and so could be wiped out by someone setting
|
||||
* xmax. Hence recheck after changing lock, same as for xmax itself.
|
||||
*/
|
||||
recheck_xvac:
|
||||
if (tuple->t_infomask & HEAP_MOVED)
|
||||
{
|
||||
xid = HeapTupleHeaderGetXvac(tuple);
|
||||
if (TransactionIdIsNormal(xid) &&
|
||||
TransactionIdPrecedes(xid, cutoff_xid))
|
||||
{
|
||||
if (buf != InvalidBuffer)
|
||||
{
|
||||
/* trade in share lock for exclusive lock */
|
||||
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
|
||||
LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
|
||||
buf = InvalidBuffer;
|
||||
goto recheck_xvac; /* see comment above */
|
||||
}
|
||||
/*
|
||||
* If a MOVED_OFF tuple is not dead, the xvac transaction must
|
||||
* have failed; whereas a non-dead MOVED_IN tuple must mean the
|
||||
* xvac transaction succeeded.
|
||||
*/
|
||||
if (tuple->t_infomask & HEAP_MOVED_OFF)
|
||||
HeapTupleHeaderSetXvac(tuple, InvalidTransactionId);
|
||||
else
|
||||
HeapTupleHeaderSetXvac(tuple, FrozenTransactionId);
|
||||
/*
|
||||
* Might as well fix the hint bits too; usually XMIN_COMMITTED will
|
||||
* already be set here, but there's a small chance not.
|
||||
*/
|
||||
Assert(!(tuple->t_infomask & HEAP_XMIN_INVALID));
|
||||
tuple->t_infomask |= HEAP_XMIN_COMMITTED;
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
|
||||
/* ----------------
|
||||
* heap_markpos - mark scan position
|
||||
* ----------------
|
||||
@ -2877,6 +3037,9 @@ heap_restrpos(HeapScanDesc scan)
|
||||
/*
|
||||
* Perform XLogInsert for a heap-clean operation. Caller must already
|
||||
* have modified the buffer and marked it dirty.
|
||||
*
|
||||
* Note: for historical reasons, the entries in the unused[] array should
|
||||
* be zero-based tuple indexes, not one-based.
|
||||
*/
|
||||
XLogRecPtr
|
||||
log_heap_clean(Relation reln, Buffer buffer, OffsetNumber *unused, int uncnt)
|
||||
@ -2920,6 +3083,57 @@ log_heap_clean(Relation reln, Buffer buffer, OffsetNumber *unused, int uncnt)
|
||||
return recptr;
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform XLogInsert for a heap-freeze operation. Caller must already
|
||||
* have modified the buffer and marked it dirty.
|
||||
*
|
||||
* Unlike log_heap_clean(), the offsets[] entries are one-based.
|
||||
*/
|
||||
XLogRecPtr
|
||||
log_heap_freeze(Relation reln, Buffer buffer,
|
||||
TransactionId cutoff_xid,
|
||||
OffsetNumber *offsets, int offcnt)
|
||||
{
|
||||
xl_heap_freeze xlrec;
|
||||
XLogRecPtr recptr;
|
||||
XLogRecData rdata[2];
|
||||
|
||||
/* Caller should not call me on a temp relation */
|
||||
Assert(!reln->rd_istemp);
|
||||
|
||||
xlrec.node = reln->rd_node;
|
||||
xlrec.block = BufferGetBlockNumber(buffer);
|
||||
xlrec.cutoff_xid = cutoff_xid;
|
||||
|
||||
rdata[0].data = (char *) &xlrec;
|
||||
rdata[0].len = SizeOfHeapFreeze;
|
||||
rdata[0].buffer = InvalidBuffer;
|
||||
rdata[0].next = &(rdata[1]);
|
||||
|
||||
/*
|
||||
* The tuple-offsets array is not actually in the buffer, but pretend
|
||||
* that it is. When XLogInsert stores the whole buffer, the offsets array
|
||||
* need not be stored too.
|
||||
*/
|
||||
if (offcnt > 0)
|
||||
{
|
||||
rdata[1].data = (char *) offsets;
|
||||
rdata[1].len = offcnt * sizeof(OffsetNumber);
|
||||
}
|
||||
else
|
||||
{
|
||||
rdata[1].data = NULL;
|
||||
rdata[1].len = 0;
|
||||
}
|
||||
rdata[1].buffer = buffer;
|
||||
rdata[1].buffer_std = true;
|
||||
rdata[1].next = NULL;
|
||||
|
||||
recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_FREEZE, rdata);
|
||||
|
||||
return recptr;
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform XLogInsert for a heap-update operation. Caller must already
|
||||
* have modified the buffer(s) and marked them dirty.
|
||||
@ -3057,6 +3271,7 @@ heap_xlog_clean(XLogRecPtr lsn, XLogRecord *record)
|
||||
|
||||
while (unused < unend)
|
||||
{
|
||||
/* unused[] entries are zero-based */
|
||||
lp = PageGetItemId(page, *unused + 1);
|
||||
lp->lp_flags &= ~LP_USED;
|
||||
unused++;
|
||||
@ -3071,6 +3286,55 @@ heap_xlog_clean(XLogRecPtr lsn, XLogRecord *record)
|
||||
UnlockReleaseBuffer(buffer);
|
||||
}
|
||||
|
||||
static void
|
||||
heap_xlog_freeze(XLogRecPtr lsn, XLogRecord *record)
|
||||
{
|
||||
xl_heap_freeze *xlrec = (xl_heap_freeze *) XLogRecGetData(record);
|
||||
TransactionId cutoff_xid = xlrec->cutoff_xid;
|
||||
Relation reln;
|
||||
Buffer buffer;
|
||||
Page page;
|
||||
|
||||
if (record->xl_info & XLR_BKP_BLOCK_1)
|
||||
return;
|
||||
|
||||
reln = XLogOpenRelation(xlrec->node);
|
||||
buffer = XLogReadBuffer(reln, xlrec->block, false);
|
||||
if (!BufferIsValid(buffer))
|
||||
return;
|
||||
page = (Page) BufferGetPage(buffer);
|
||||
|
||||
if (XLByteLE(lsn, PageGetLSN(page)))
|
||||
{
|
||||
UnlockReleaseBuffer(buffer);
|
||||
return;
|
||||
}
|
||||
|
||||
if (record->xl_len > SizeOfHeapFreeze)
|
||||
{
|
||||
OffsetNumber *offsets;
|
||||
OffsetNumber *offsets_end;
|
||||
|
||||
offsets = (OffsetNumber *) ((char *) xlrec + SizeOfHeapFreeze);
|
||||
offsets_end = (OffsetNumber *) ((char *) xlrec + record->xl_len);
|
||||
|
||||
while (offsets < offsets_end)
|
||||
{
|
||||
/* offsets[] entries are one-based */
|
||||
ItemId lp = PageGetItemId(page, *offsets);
|
||||
HeapTupleHeader tuple = (HeapTupleHeader) PageGetItem(page, lp);
|
||||
|
||||
(void) heap_freeze_tuple(tuple, cutoff_xid, InvalidBuffer);
|
||||
offsets++;
|
||||
}
|
||||
}
|
||||
|
||||
PageSetLSN(page, lsn);
|
||||
PageSetTLI(page, ThisTimeLineID);
|
||||
MarkBufferDirty(buffer);
|
||||
UnlockReleaseBuffer(buffer);
|
||||
}
|
||||
|
||||
static void
|
||||
heap_xlog_newpage(XLogRecPtr lsn, XLogRecord *record)
|
||||
{
|
||||
@ -3546,6 +3810,18 @@ heap_redo(XLogRecPtr lsn, XLogRecord *record)
|
||||
elog(PANIC, "heap_redo: unknown op code %u", info);
|
||||
}
|
||||
|
||||
void
|
||||
heap2_redo(XLogRecPtr lsn, XLogRecord *record)
|
||||
{
|
||||
uint8 info = record->xl_info & ~XLR_INFO_MASK;
|
||||
|
||||
info &= XLOG_HEAP_OPMASK;
|
||||
if (info == XLOG_HEAP2_FREEZE)
|
||||
heap_xlog_freeze(lsn, record);
|
||||
else
|
||||
elog(PANIC, "heap2_redo: unknown op code %u", info);
|
||||
}
|
||||
|
||||
static void
|
||||
out_target(StringInfo buf, xl_heaptid *target)
|
||||
{
|
||||
@ -3645,3 +3921,22 @@ heap_desc(StringInfo buf, uint8 xl_info, char *rec)
|
||||
else
|
||||
appendStringInfo(buf, "UNKNOWN");
|
||||
}
|
||||
|
||||
void
|
||||
heap2_desc(StringInfo buf, uint8 xl_info, char *rec)
|
||||
{
|
||||
uint8 info = xl_info & ~XLR_INFO_MASK;
|
||||
|
||||
info &= XLOG_HEAP_OPMASK;
|
||||
if (info == XLOG_HEAP2_FREEZE)
|
||||
{
|
||||
xl_heap_freeze *xlrec = (xl_heap_freeze *) rec;
|
||||
|
||||
appendStringInfo(buf, "freeze: rel %u/%u/%u; blk %u; cutoff %u",
|
||||
xlrec->node.spcNode, xlrec->node.dbNode,
|
||||
xlrec->node.relNode, xlrec->block,
|
||||
xlrec->cutoff_xid);
|
||||
}
|
||||
else
|
||||
appendStringInfo(buf, "UNKNOWN");
|
||||
}
|
||||
|
Reference in New Issue
Block a user