1
0
mirror of https://github.com/postgres/postgres.git synced 2025-09-03 15:22:11 +03:00

Introduce Streaming Replication.

This includes two new kinds of postmaster processes, walsenders and
walreceiver. Walreceiver is responsible for connecting to the primary server
and streaming WAL to disk, while walsender runs in the primary server and
streams WAL from disk to the client.

Documentation still needs work, but the basics are there. We will probably
pull the replication section to a new chapter later on, as well as the
sections describing file-based replication. But let's do that as a separate
patch, so that it's easier to see what has been added/changed. This patch
also adds a new section to the chapter about FE/BE protocol, documenting the
protocol used by walsender/walreceivxer.

Bump catalog version because of two new functions,
pg_last_xlog_receive_location() and pg_last_xlog_replay_location(), for
monitoring the progress of replication.

Fujii Masao, with additional hacking by me
This commit is contained in:
Heikki Linnakangas
2010-01-15 09:19:10 +00:00
parent 4cbe473938
commit 40f908bdcd
53 changed files with 3567 additions and 220 deletions

View File

@@ -0,0 +1,17 @@
#-------------------------------------------------------------------------
#
# Makefile--
# Makefile for src/backend/replication
#
# IDENTIFICATION
# $PostgreSQL: pgsql/src/backend/replication/Makefile,v 1.1 2010/01/15 09:19:03 heikki Exp $
#
#-------------------------------------------------------------------------
subdir = src/backend/replication
top_builddir = ../../..
include $(top_builddir)/src/Makefile.global
OBJS = walsender.o walreceiverfuncs.o
include $(top_srcdir)/src/backend/common.mk

View File

@@ -0,0 +1,58 @@
$PostgreSQL: pgsql/src/backend/replication/README,v 1.1 2010/01/15 09:19:03 heikki Exp $
Walreceiver IPC
---------------
When the WAL replay in startup process has reached the end of archived WAL,
recoverable using recovery_command, it starts up the walreceiver process
to fetch more WAL (if streaming replication is configured).
Walreceiver is a postmaster subprocess, so the startup process can't fork it
directly. Instead, it sends a signal to postmaster, asking postmaster to launch
it. Before that, however, startup process fills in WalRcvData->conninfo,
and initializes the starting point in WalRcvData->receivedUpTo.
As walreceiver receives WAL from the master server, and writes and flushes
it to disk (in pg_xlog), it updates WalRcvData->receivedUpTo. Startup process
polls that to know how far it can proceed with WAL replay.
Walsender IPC
-------------
At shutdown, postmaster handles walsender processes differently from regular
backends. It waits for regular backends to die before writing the
shutdown checkpoint and terminating pgarch and other auxiliary processes, but
that's not desirable for walsenders, because we want the standby servers to
receive all the WAL, including the shutdown checkpoint, before the master
is shut down. Therefore postmaster treats walsenders like the pgarch process,
and instructs them to terminate at PM_SHUTDOWN_2 phase, after all regular
backends have died and bgwriter has written the shutdown checkpoint.
When postmaster accepts a connection, it immediately forks a new process
to handle the handshake and authentication, and the process initializes to
become a backend. Postmaster doesn't know if the process becomes a regular
backend or a walsender process at that time - that's indicated in the
connection handshake - so we need some extra signaling to let postmaster
identify walsender processes.
When walsender process starts up, it marks itself as a walsender process in
the PMSignal array. That way postmaster can tell it apart from regular
backends.
Note that no big harm is done if postmaster thinks that a walsender is a
regular backend; it will just terminate the walsender earlier in the shutdown
phase. A walsenders will look like a regular backends until it's done with the
initialization and has marked itself in PMSignal array, and at process
termination, after unmarking the PMSignal slot.
Each walsender allocates an entry from the WalSndCtl array, and advertises
there how far it has streamed WAL already. This is used at checkpoints, to
avoid recycling WAL that hasn't been streamed to a slave yet. However,
that doesn't stop such WAL from being recycled when the connection is not
established.
Walsender - walreceiver protocol
--------------------------------
See manual.

View File

@@ -0,0 +1,32 @@
#-------------------------------------------------------------------------
#
# Makefile--
# Makefile for src/backend/replication/walreceiver
#
# IDENTIFICATION
# $PostgreSQL: pgsql/src/backend/replication/walreceiver/Makefile,v 1.1 2010/01/15 09:19:03 heikki Exp $
#
#-------------------------------------------------------------------------
subdir = src/backend/postmaster/walreceiver
top_builddir = ../../../..
include $(top_builddir)/src/Makefile.global
override CPPFLAGS := -I$(srcdir) -I$(libpq_srcdir) $(CPPFLAGS)
OBJS = walreceiver.o
SHLIB_LINK = $(libpq)
NAME = walreceiver
all: submake-libpq all-shared-lib
include $(top_srcdir)/src/Makefile.shlib
install: all installdirs install-lib
installdirs: installdirs-lib
uninstall: uninstall-lib
clean distclean maintainer-clean: clean-lib
rm -f $(OBJS)

View File

@@ -0,0 +1,796 @@
/*-------------------------------------------------------------------------
*
* walreceiver.c
*
* The WAL receiver process (walreceiver) is new as of Postgres 8.5. It
* is the process in the standby server that takes charge of receiving
* XLOG records from a primary server during streaming replication.
*
* When the startup process determines that it's time to start streaming,
* it instructs postmaster to start walreceiver. Walreceiver first connects
* connects to the primary server (it will be served by a walsender process
* in the primary server), and then keeps receiving XLOG records and
* writing them to the disk as long as the connection is alive. As XLOG
* records are received and flushed to disk, it updates the
* WalRcv->receivedUpTo variable in shared memory, to inform the startup
* process of how far it can proceed with XLOG replay.
*
* Normal termination is by SIGTERM, which instructs the walreceiver to
* exit(0). Emergency termination is by SIGQUIT; like any postmaster child
* process, the walreceiver will simply abort and exit on SIGQUIT. A close
* of the connection and a FATAL error are treated not as a crash but as
* normal operation.
*
* Walreceiver is a postmaster child process like others, but it's compiled
* as a dynamic module to avoid linking libpq with the main server binary.
*
* Portions Copyright (c) 2010-2010, PostgreSQL Global Development Group
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/replication/walreceiver/walreceiver.c,v 1.1 2010/01/15 09:19:03 heikki Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <unistd.h>
#include "access/xlog_internal.h"
#include "libpq-fe.h"
#include "libpq/pqsignal.h"
#include "miscadmin.h"
#include "replication/walreceiver.h"
#include "storage/ipc.h"
#include "storage/pmsignal.h"
#include "utils/builtins.h"
#include "utils/guc.h"
#include "utils/memutils.h"
#include "utils/ps_status.h"
#include "utils/resowner.h"
#ifdef HAVE_POLL_H
#include <poll.h>
#endif
#ifdef HAVE_SYS_POLL_H
#include <sys/poll.h>
#endif
#ifdef HAVE_SYS_SELECT_H
#include <sys/select.h>
#endif
PG_MODULE_MAGIC;
PG_FUNCTION_INFO_V1(WalReceiverMain);
Datum WalReceiverMain(PG_FUNCTION_ARGS);
/* streamConn is a PGconn object of a connection to walsender from walreceiver */
static PGconn *streamConn = NULL;
#define NAPTIME_PER_CYCLE 100 /* max sleep time between cycles (100ms) */
/*
* These variables are used similarly to openLogFile/Id/Seg/Off,
* but for walreceiver to write the XLOG.
*/
static int recvFile = -1;
static uint32 recvId = 0;
static uint32 recvSeg = 0;
static uint32 recvOff = 0;
/* Buffer for currently read records */
static char *recvBuf = NULL;
/* Flags set by interrupt handlers of walreceiver for later service in the main loop */
static volatile sig_atomic_t got_SIGHUP = false;
static volatile sig_atomic_t got_SIGTERM = false;
static void ProcessWalRcvInterrupts(void);
static void EnableImmediateExit(void);
static void DisableImmediateExit(void);
/*
* About SIGTERM handling:
*
* We can't just exit(1) within SIGTERM signal handler, because the signal
* might arrive in the middle of some critical operation, like while we're
* holding a spinlock. We also can't just set a flag in signal handler and
* check it in the main loop, because we perform some blocking libpq
* operations like PQexec(), which can take a long time to finish.
*
* We use a combined approach: When WalRcvImmediateInterruptOK is true, it's
* safe for the signal handler to elog(FATAL) immediately. Otherwise it just
* sets got_SIGTERM flag, which is checked in the main loop when convenient.
*
* This is very much like what regular backends do with ImmediateInterruptOK,
* ProcessInterrupts() etc.
*/
static volatile bool WalRcvImmediateInterruptOK = false;
static void
ProcessWalRcvInterrupts(void)
{
/*
* Although walreceiver interrupt handling doesn't use the same scheme
* as regular backends, call CHECK_FOR_INTERRUPTS() to make sure we
* receive any incoming signals on Win32.
*/
CHECK_FOR_INTERRUPTS();
if (got_SIGTERM)
{
WalRcvImmediateInterruptOK = false;
ereport(FATAL,
(errcode(ERRCODE_ADMIN_SHUTDOWN),
errmsg("terminating walreceiver process due to administrator command")));
}
}
static void
EnableImmediateExit()
{
WalRcvImmediateInterruptOK = true;
ProcessWalRcvInterrupts();
}
static void
DisableImmediateExit()
{
WalRcvImmediateInterruptOK = false;
ProcessWalRcvInterrupts();
}
/* Signal handlers */
static void WalRcvSigHupHandler(SIGNAL_ARGS);
static void WalRcvShutdownHandler(SIGNAL_ARGS);
static void WalRcvQuickDieHandler(SIGNAL_ARGS);
/* Prototypes for private functions */
static void WalRcvLoop(void);
static void InitWalRcv(void);
static void WalRcvConnect(void);
static bool WalRcvWait(int timeout_ms);
static void WalRcvKill(int code, Datum arg);
static void XLogRecv(void);
static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr);
static void XLogWalRcvFlush(void);
/*
* LogstreamResult indicates the byte positions that we have already
* written/fsynced.
*/
static struct
{
XLogRecPtr Write; /* last byte + 1 written out in the standby */
XLogRecPtr Flush; /* last byte + 1 flushed in the standby */
} LogstreamResult;
/* Main entry point for walreceiver process */
Datum
WalReceiverMain(PG_FUNCTION_ARGS)
{
sigjmp_buf local_sigjmp_buf;
MemoryContext walrcv_context;
/* Mark walreceiver in progress */
InitWalRcv();
/*
* If possible, make this process a group leader, so that the postmaster
* can signal any child processes too. (walreceiver probably never has
* any child processes, but for consistency we make all postmaster child
* processes do this.)
*/
#ifdef HAVE_SETSID
if (setsid() < 0)
elog(FATAL, "setsid() failed: %m");
#endif
/* Properly accept or ignore signals the postmaster might send us */
pqsignal(SIGHUP, WalRcvSigHupHandler); /* set flag to read config file */
pqsignal(SIGINT, SIG_IGN);
pqsignal(SIGTERM, WalRcvShutdownHandler); /* request shutdown */
pqsignal(SIGQUIT, WalRcvQuickDieHandler); /* hard crash time */
pqsignal(SIGALRM, SIG_IGN);
pqsignal(SIGPIPE, SIG_IGN);
pqsignal(SIGUSR1, SIG_IGN);
pqsignal(SIGUSR2, SIG_IGN);
/* Reset some signals that are accepted by postmaster but not here */
pqsignal(SIGCHLD, SIG_DFL);
pqsignal(SIGTTIN, SIG_DFL);
pqsignal(SIGTTOU, SIG_DFL);
pqsignal(SIGCONT, SIG_DFL);
pqsignal(SIGWINCH, SIG_DFL);
/* We allow SIGQUIT (quickdie) at all times */
sigdelset(&BlockSig, SIGQUIT);
/*
* Create a resource owner to keep track of our resources (not clear that
* we need this, but may as well have one).
*/
CurrentResourceOwner = ResourceOwnerCreate(NULL, "Wal Receiver");
/*
* Create a memory context that we will do all our work in. We do this so
* that we can reset the context during error recovery and thereby avoid
* possible memory leaks.
*/
walrcv_context = AllocSetContextCreate(TopMemoryContext,
"Wal Receiver",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
MemoryContextSwitchTo(walrcv_context);
/*
* If an exception is encountered, processing resumes here.
*
* This code is heavily based on bgwriter.c, q.v.
*/
if (sigsetjmp(local_sigjmp_buf, 1) != 0)
{
/* Since not using PG_TRY, must reset error stack by hand */
error_context_stack = NULL;
/* Reset WalRcvImmediateInterruptOK */
DisableImmediateExit();
/* Prevent interrupts while cleaning up */
HOLD_INTERRUPTS();
/* Report the error to the server log */
EmitErrorReport();
/* Free the data structure related to a connection */
PQfinish(streamConn);
streamConn = NULL;
if (recvBuf != NULL)
PQfreemem(recvBuf);
recvBuf = NULL;
/*
* Now return to normal top-level context and clear ErrorContext for
* next time.
*/
MemoryContextSwitchTo(walrcv_context);
FlushErrorState();
/* Flush any leaked data in the top-level context */
MemoryContextResetAndDeleteChildren(walrcv_context);
/* Now we can allow interrupts again */
RESUME_INTERRUPTS();
/*
* Sleep at least 1 second after any error. A write error is likely
* to be repeated, and we don't want to be filling the error logs as
* fast as we can.
*/
pg_usleep(1000000L);
}
/* We can now handle ereport(ERROR) */
PG_exception_stack = &local_sigjmp_buf;
/* Unblock signals (they were blocked when the postmaster forked us) */
PG_SETMASK(&UnBlockSig);
/* Establish the connection to the primary for XLOG streaming */
WalRcvConnect();
/* Main loop of walreceiver */
WalRcvLoop();
PG_RETURN_VOID(); /* WalRcvLoop() never returns, but keep compiler quiet */
}
/* Main loop of walreceiver process */
static void
WalRcvLoop(void)
{
/* Loop until end-of-streaming or error */
for (;;)
{
/*
* Emergency bailout if postmaster has died. This is to avoid the
* necessity for manual cleanup of all postmaster children.
*/
if (!PostmasterIsAlive(true))
exit(1);
/*
* Exit walreceiver if we're not in recovery. This should not happen,
* but cross-check the status here.
*/
if (!RecoveryInProgress())
ereport(FATAL,
(errmsg("cannot continue XLOG streaming, recovery has already ended")));
/* Process any requests or signals received recently */
ProcessWalRcvInterrupts();
if (got_SIGHUP)
{
got_SIGHUP = false;
ProcessConfigFile(PGC_SIGHUP);
}
/* Wait a while for data to arrive */
if (WalRcvWait(NAPTIME_PER_CYCLE))
{
/* data has arrived. Process it */
if (PQconsumeInput(streamConn) == 0)
ereport(ERROR,
(errmsg("could not read xlog records: %s",
PQerrorMessage(streamConn))));
XLogRecv();
}
}
}
/* Advertise our pid in shared memory, so that startup process can kill us. */
static void
InitWalRcv(void)
{
/* use volatile pointer to prevent code rearrangement */
volatile WalRcvData *walrcv = WalRcv;
/*
* WalRcv should be set up already (if we are a backend, we inherit
* this by fork() or EXEC_BACKEND mechanism from the postmaster).
*/
if (walrcv == NULL)
elog(PANIC, "walreceiver control data uninitialized");
/* If we've already been requested to stop, don't start up */
SpinLockAcquire(&walrcv->mutex);
Assert(walrcv->pid == 0);
if (walrcv->walRcvState == WALRCV_STOPPED ||
walrcv->walRcvState == WALRCV_STOPPING)
{
walrcv->walRcvState = WALRCV_STOPPED;
SpinLockRelease(&walrcv->mutex);
proc_exit(1);
}
walrcv->pid = MyProcPid;
SpinLockRelease(&walrcv->mutex);
/* Arrange to clean up at walreceiver exit */
on_shmem_exit(WalRcvKill, 0);
}
/*
* Establish the connection to the primary server for XLOG streaming
*/
static void
WalRcvConnect(void)
{
char conninfo[MAXCONNINFO + 14];
char *primary_sysid;
char standby_sysid[32];
TimeLineID primary_tli;
TimeLineID standby_tli;
PGresult *res;
XLogRecPtr recptr;
char cmd[64];
/* use volatile pointer to prevent code rearrangement */
volatile WalRcvData *walrcv = WalRcv;
/*
* Set up a connection for XLOG streaming
*/
SpinLockAcquire(&walrcv->mutex);
snprintf(conninfo, sizeof(conninfo), "%s replication=true", walrcv->conninfo);
recptr = walrcv->receivedUpto;
SpinLockRelease(&walrcv->mutex);
/* initialize local XLOG pointers */
LogstreamResult.Write = LogstreamResult.Flush = recptr;
Assert(recptr.xlogid != 0 || recptr.xrecoff != 0);
EnableImmediateExit();
streamConn = PQconnectdb(conninfo);
DisableImmediateExit();
if (PQstatus(streamConn) != CONNECTION_OK)
ereport(ERROR,
(errmsg("could not connect to the primary server : %s",
PQerrorMessage(streamConn))));
/*
* Get the system identifier and timeline ID as a DataRow message
* from the primary server.
*/
EnableImmediateExit();
res = PQexec(streamConn, "IDENTIFY_SYSTEM");
DisableImmediateExit();
if (PQresultStatus(res) != PGRES_TUPLES_OK)
{
PQclear(res);
ereport(ERROR,
(errmsg("could not receive the SYSID and timeline ID from "
"the primary server: %s",
PQerrorMessage(streamConn))));
}
if (PQnfields(res) != 2 || PQntuples(res) != 1)
{
int ntuples = PQntuples(res);
int nfields = PQnfields(res);
PQclear(res);
ereport(ERROR,
(errmsg("invalid response from primary server"),
errdetail("expected 1 tuple with 2 fields, got %d tuples with %d fields",
ntuples, nfields)));
}
primary_sysid = PQgetvalue(res, 0, 0);
primary_tli = pg_atoi(PQgetvalue(res, 0, 1), 4, 0);
/*
* Confirm that the system identifier of the primary is the same
* as ours.
*/
snprintf(standby_sysid, sizeof(standby_sysid), UINT64_FORMAT,
GetSystemIdentifier());
if (strcmp(primary_sysid, standby_sysid) != 0)
{
PQclear(res);
ereport(ERROR,
(errmsg("system differs between the primary and standby"),
errdetail("the primary SYSID is %s, standby SYSID is %s",
primary_sysid, standby_sysid)));
}
/*
* Confirm that the current timeline of the primary is the same
* as the recovery target timeline.
*/
standby_tli = GetRecoveryTargetTLI();
PQclear(res);
if (primary_tli != standby_tli)
ereport(ERROR,
(errmsg("timeline %u of the primary does not match recovery target timeline %u",
primary_tli, standby_tli)));
ThisTimeLineID = primary_tli;
/* Start streaming from the point requested by startup process */
snprintf(cmd, sizeof(cmd), "START_REPLICATION %X/%X", recptr.xlogid, recptr.xrecoff);
EnableImmediateExit();
res = PQexec(streamConn, cmd);
DisableImmediateExit();
if (PQresultStatus(res) != PGRES_COPY_OUT)
ereport(ERROR,
(errmsg("could not start XLOG streaming: %s",
PQerrorMessage(streamConn))));
PQclear(res);
/*
* Process the outstanding messages before beginning to wait for
* new message to arrive.
*/
XLogRecv();
}
/*
* Wait until we can read WAL stream, or timeout.
*
* Returns true if data has become available for reading, false if timed out
* or interrupted by signal.
*
* This is based on pqSocketCheck.
*/
static bool
WalRcvWait(int timeout_ms)
{
int ret;
Assert(streamConn != NULL);
if (PQsocket(streamConn) < 0)
ereport(ERROR,
(errcode_for_socket_access(),
errmsg("socket not open")));
/* We use poll(2) if available, otherwise select(2) */
{
#ifdef HAVE_POLL
struct pollfd input_fd;
input_fd.fd = PQsocket(streamConn);
input_fd.events = POLLIN | POLLERR;
input_fd.revents = 0;
ret = poll(&input_fd, 1, timeout_ms);
#else /* !HAVE_POLL */
fd_set input_mask;
struct timeval timeout;
struct timeval *ptr_timeout;
FD_ZERO(&input_mask);
FD_SET(PQsocket(streamConn), &input_mask);
if (timeout_ms < 0)
ptr_timeout = NULL;
else
{
timeout.tv_sec = timeout_ms / 1000;
timeout.tv_usec = (timeout_ms % 1000) * 1000;
ptr_timeout = &timeout;
}
ret = select(PQsocket(streamConn) + 1, &input_mask,
NULL, NULL, ptr_timeout);
#endif /* HAVE_POLL */
}
if (ret == 0 || (ret < 0 && errno == EINTR))
return false;
if (ret < 0)
ereport(ERROR,
(errcode_for_socket_access(),
errmsg("select() failed: %m")));
return true;
}
/*
* Clear our pid from shared memory at exit.
*/
static void
WalRcvKill(int code, Datum arg)
{
/* use volatile pointer to prevent code rearrangement */
volatile WalRcvData *walrcv = WalRcv;
bool stopped = false;
SpinLockAcquire(&walrcv->mutex);
if (walrcv->walRcvState == WALRCV_STOPPING ||
walrcv->walRcvState == WALRCV_STOPPED)
{
walrcv->walRcvState = WALRCV_STOPPED;
stopped = true;
elog(LOG, "walreceiver stopped");
}
walrcv->pid = 0;
SpinLockRelease(&walrcv->mutex);
PQfinish(streamConn);
/* If requested to stop, tell postmaster to not restart us. */
if (stopped)
SendPostmasterSignal(PMSIGNAL_SHUTDOWN_WALRECEIVER);
}
/* SIGHUP: set flag to re-read config file at next convenient time */
static void
WalRcvSigHupHandler(SIGNAL_ARGS)
{
got_SIGHUP = true;
}
/* SIGTERM: set flag for main loop, or shutdown immediately if safe */
static void
WalRcvShutdownHandler(SIGNAL_ARGS)
{
got_SIGTERM = true;
/* Don't joggle the elbow of proc_exit */
if (!proc_exit_inprogress && WalRcvImmediateInterruptOK)
ProcessWalRcvInterrupts();
}
/*
* WalRcvQuickDieHandler() occurs when signalled SIGQUIT by the postmaster.
*
* Some backend has bought the farm, so we need to stop what we're doing and
* exit.
*/
static void
WalRcvQuickDieHandler(SIGNAL_ARGS)
{
PG_SETMASK(&BlockSig);
/*
* We DO NOT want to run proc_exit() callbacks -- we're here because
* shared memory may be corrupted, so we don't want to try to clean up our
* transaction. Just nail the windows shut and get out of town. Now that
* there's an atexit callback to prevent third-party code from breaking
* things by calling exit() directly, we have to reset the callbacks
* explicitly to make this work as intended.
*/
on_exit_reset();
/*
* Note we do exit(2) not exit(0). This is to force the postmaster into a
* system reset cycle if some idiot DBA sends a manual SIGQUIT to a random
* backend. This is necessary precisely because we don't clean up our
* shared memory state. (The "dead man switch" mechanism in pmsignal.c
* should ensure the postmaster sees this as a crash, too, but no harm
* in being doubly sure.)
*/
exit(2);
}
/*
* Receive any WAL records available without blocking from XLOG stream and
* write it to the disk.
*/
static void
XLogRecv(void)
{
XLogRecPtr *recptr;
int len;
for (;;)
{
/* Receive CopyData message */
len = PQgetCopyData(streamConn, &recvBuf, 1);
if (len == 0) /* no records available yet, then return */
break;
if (len == -1) /* end-of-streaming or error */
{
PGresult *res;
res = PQgetResult(streamConn);
if (PQresultStatus(res) == PGRES_COMMAND_OK)
{
PQclear(res);
ereport(ERROR,
(errmsg("replication terminated by primary server")));
}
PQclear(res);
ereport(ERROR,
(errmsg("could not read xlog records: %s",
PQerrorMessage(streamConn))));
}
if (len < -1)
ereport(ERROR,
(errmsg("could not read xlog records: %s",
PQerrorMessage(streamConn))));
if (len < sizeof(XLogRecPtr))
ereport(ERROR,
(errmsg("invalid WAL message received from primary")));
/* Write received WAL records to disk */
recptr = (XLogRecPtr *) recvBuf;
XLogWalRcvWrite(recvBuf + sizeof(XLogRecPtr),
len - sizeof(XLogRecPtr), *recptr);
if (recvBuf != NULL)
PQfreemem(recvBuf);
recvBuf = NULL;
}
/*
* Now that we've written some records, flush them to disk and let the
* startup process know about them.
*/
XLogWalRcvFlush();
}
/*
* Write XLOG data to disk.
*/
static void
XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr)
{
int startoff;
int byteswritten;
while (nbytes > 0)
{
int segbytes;
if (recvFile < 0 || !XLByteInSeg(recptr, recvId, recvSeg))
{
bool use_existent;
/*
* XLOG segment files will be re-read in recovery operation soon,
* so we don't need to advise the OS to release any cache page.
*/
if (recvFile >= 0)
{
/*
* fsync() before we switch to next file. We would otherwise
* have to reopen this file to fsync it later
*/
XLogWalRcvFlush();
if (close(recvFile) != 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not close log file %u, segment %u: %m",
recvId, recvSeg)));
}
recvFile = -1;
/* Create/use new log file */
XLByteToSeg(recptr, recvId, recvSeg);
use_existent = true;
recvFile = XLogFileInit(recvId, recvSeg,
&use_existent, true);
recvOff = 0;
}
/* Calculate the start offset of the received logs */
startoff = recptr.xrecoff % XLogSegSize;
if (startoff + nbytes > XLogSegSize)
segbytes = XLogSegSize - startoff;
else
segbytes = nbytes;
/* Need to seek in the file? */
if (recvOff != startoff)
{
if (lseek(recvFile, (off_t) startoff, SEEK_SET) < 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not seek in log file %u, "
"segment %u to offset %u: %m",
recvId, recvSeg, startoff)));
recvOff = startoff;
}
/* OK to write the logs */
errno = 0;
byteswritten = write(recvFile, buf, segbytes);
if (byteswritten <= 0)
{
/* if write didn't set errno, assume no disk space */
if (errno == 0)
errno = ENOSPC;
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not write to log file %u, segment %u "
"at offset %u, length %lu: %m",
recvId, recvSeg,
recvOff, (unsigned long) segbytes)));
}
/* Update state for write */
XLByteAdvance(recptr, byteswritten);
recvOff += byteswritten;
nbytes -= byteswritten;
buf += byteswritten;
LogstreamResult.Write = recptr;
/*
* XXX: Should we signal bgwriter to start a restartpoint
* if we've consumed too much xlog since the last one, like
* in normal processing? But this is not worth doing unless
* a restartpoint can be created independently from a
* checkpoint record.
*/
}
}
/* Flush the log to disk */
static void
XLogWalRcvFlush(void)
{
if (XLByteLT(LogstreamResult.Flush, LogstreamResult.Write))
{
/* use volatile pointer to prevent code rearrangement */
volatile WalRcvData *walrcv = WalRcv;
char activitymsg[50];
issue_xlog_fsync(recvFile, recvId, recvSeg);
LogstreamResult.Flush = LogstreamResult.Write;
/* Update shared-memory status */
SpinLockAcquire(&walrcv->mutex);
walrcv->receivedUpto = LogstreamResult.Flush;
SpinLockRelease(&walrcv->mutex);
/* Report XLOG streaming progress in PS display */
snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X",
LogstreamResult.Write.xlogid, LogstreamResult.Write.xrecoff);
set_ps_display(activitymsg, false);
}
}

View File

@@ -0,0 +1,262 @@
/*-------------------------------------------------------------------------
*
* walreceiverfuncs.c
*
* This file contains functions used by the startup process to communicate
* with the walreceiver process. Functions implementing walreceiver itself
* are in src/backend/replication/walreceiver subdirectory.
*
* Portions Copyright (c) 2010-2010, PostgreSQL Global Development Group
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/replication/walreceiverfuncs.c,v 1.1 2010/01/15 09:19:03 heikki Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <signal.h>
#include "access/xlog_internal.h"
#include "replication/walreceiver.h"
#include "storage/fd.h"
#include "storage/pmsignal.h"
#include "storage/shmem.h"
#include "utils/guc.h"
WalRcvData *WalRcv = NULL;
static bool CheckForStandbyTrigger(void);
static void ShutdownWalRcv(void);
/* Report shared memory space needed by WalRcvShmemInit */
Size
WalRcvShmemSize(void)
{
Size size = 0;
size = add_size(size, sizeof(WalRcvData));
return size;
}
/* Allocate and initialize walreceiver-related shared memory */
void
WalRcvShmemInit(void)
{
bool found;
WalRcv = (WalRcvData *)
ShmemInitStruct("Wal Receiver Ctl", WalRcvShmemSize(), &found);
if (WalRcv == NULL)
ereport(FATAL,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("not enough shared memory for walreceiver")));
if (found)
return; /* already initialized */
/* Initialize the data structures */
MemSet(WalRcv, 0, WalRcvShmemSize());
WalRcv->walRcvState = WALRCV_NOT_STARTED;
SpinLockInit(&WalRcv->mutex);
}
/* Is walreceiver in progress (or starting up)? */
bool
WalRcvInProgress(void)
{
/* use volatile pointer to prevent code rearrangement */
volatile WalRcvData *walrcv = WalRcv;
WalRcvState state;
SpinLockAcquire(&walrcv->mutex);
state = walrcv->walRcvState;
SpinLockRelease(&walrcv->mutex);
if (state == WALRCV_RUNNING || state == WALRCV_STOPPING)
return true;
else
return false;
}
/*
* Wait for the XLOG record at given position to become available.
*
* 'recptr' indicates the byte position which caller wants to read the
* XLOG record up to. The byte position actually written and flushed
* by walreceiver is returned. It can be higher than the requested
* location, and the caller can safely read up to that point without
* calling WaitNextXLogAvailable() again.
*
* If WAL streaming is ended (because a trigger file is found), *finished
* is set to true and function returns immediately. The returned position
* can be lower than requested in that case.
*
* Called by the startup process during streaming recovery.
*/
XLogRecPtr
WaitNextXLogAvailable(XLogRecPtr recptr, bool *finished)
{
static XLogRecPtr receivedUpto = {0, 0};
*finished = false;
/* Quick exit if already known available */
if (XLByteLT(recptr, receivedUpto))
return receivedUpto;
for (;;)
{
/* use volatile pointer to prevent code rearrangement */
volatile WalRcvData *walrcv = WalRcv;
/* Update local status */
SpinLockAcquire(&walrcv->mutex);
receivedUpto = walrcv->receivedUpto;
SpinLockRelease(&walrcv->mutex);
/* If available already, leave here */
if (XLByteLT(recptr, receivedUpto))
return receivedUpto;
/* Check to see if the trigger file exists */
if (CheckForStandbyTrigger())
{
*finished = true;
return receivedUpto;
}
pg_usleep(100000L); /* 100ms */
/*
* This possibly-long loop needs to handle interrupts of startup
* process.
*/
HandleStartupProcInterrupts();
/*
* Emergency bailout if postmaster has died. This is to avoid the
* necessity for manual cleanup of all postmaster children.
*/
if (!PostmasterIsAlive(true))
exit(1);
}
}
/*
* Stop walreceiver and wait for it to die.
*/
static void
ShutdownWalRcv(void)
{
/* use volatile pointer to prevent code rearrangement */
volatile WalRcvData *walrcv = WalRcv;
pid_t walrcvpid;
/*
* Request walreceiver to stop. Walreceiver will switch to WALRCV_STOPPED
* mode once it's finished, and will also request postmaster to not
* restart itself.
*/
SpinLockAcquire(&walrcv->mutex);
Assert(walrcv->walRcvState == WALRCV_RUNNING);
walrcv->walRcvState = WALRCV_STOPPING;
walrcvpid = walrcv->pid;
SpinLockRelease(&walrcv->mutex);
/*
* Pid can be 0, if no walreceiver process is active right now.
* Postmaster should restart it, and when it does, it will see the
* STOPPING state.
*/
if (walrcvpid != 0)
kill(walrcvpid, SIGTERM);
/*
* Wait for walreceiver to acknowledge its death by setting state to
* WALRCV_STOPPED.
*/
while (WalRcvInProgress())
{
/*
* This possibly-long loop needs to handle interrupts of startup
* process.
*/
HandleStartupProcInterrupts();
pg_usleep(100000); /* 100ms */
}
}
/*
* Check to see if the trigger file exists. If it does, request postmaster
* to shut down walreceiver and wait for it to exit, and remove the trigger
* file.
*/
static bool
CheckForStandbyTrigger(void)
{
struct stat stat_buf;
if (TriggerFile == NULL)
return false;
if (stat(TriggerFile, &stat_buf) == 0)
{
ereport(LOG,
(errmsg("trigger file found: %s", TriggerFile)));
ShutdownWalRcv();
unlink(TriggerFile);
return true;
}
return false;
}
/*
* Request postmaster to start walreceiver.
*
* recptr indicates the position where streaming should begin, and conninfo
* is a libpq connection string to use.
*/
void
RequestXLogStreaming(XLogRecPtr recptr, const char *conninfo)
{
/* use volatile pointer to prevent code rearrangement */
volatile WalRcvData *walrcv = WalRcv;
Assert(walrcv->walRcvState == WALRCV_NOT_STARTED);
/* locking is just pro forma here; walreceiver isn't started yet */
SpinLockAcquire(&walrcv->mutex);
walrcv->receivedUpto = recptr;
if (conninfo != NULL)
strlcpy((char *) walrcv->conninfo, conninfo, MAXCONNINFO);
else
walrcv->conninfo[0] = '\0';
walrcv->walRcvState = WALRCV_RUNNING;
SpinLockRelease(&walrcv->mutex);
SendPostmasterSignal(PMSIGNAL_START_WALRECEIVER);
}
/*
* Returns the byte position that walreceiver has written
*/
XLogRecPtr
GetWalRcvWriteRecPtr(void)
{
/* use volatile pointer to prevent code rearrangement */
volatile WalRcvData *walrcv = WalRcv;
XLogRecPtr recptr;
SpinLockAcquire(&walrcv->mutex);
recptr = walrcv->receivedUpto;
SpinLockRelease(&walrcv->mutex);
return recptr;
}

View File

@@ -0,0 +1,851 @@
/*-------------------------------------------------------------------------
*
* walsender.c
*
* The WAL sender process (walsender) is new as of Postgres 8.5. It takes
* charge of XLOG streaming sender in the primary server. At first, it is
* started by the postmaster when the walreceiver in the standby server
* connects to the primary server and requests XLOG streaming replication,
* i.e., unlike any auxiliary process, it is not an always-running process.
* It attempts to keep reading XLOG records from the disk and sending them
* to the standby server, as long as the connection is alive (i.e., like
* any backend, there is an one to one relationship between a connection
* and a walsender process).
*
* Normal termination is by SIGTERM, which instructs the walsender to
* close the connection and exit(0) at next convenient moment. Emergency
* termination is by SIGQUIT; like any backend, the walsender will simply
* abort and exit on SIGQUIT. A close of the connection and a FATAL error
* are treated as not a crash but approximately normal termination;
* the walsender will exit quickly without sending any more XLOG records.
*
* If the server is shut down, postmaster sends us SIGUSR2 after all
* regular backends have exited and the shutdown checkpoint has been written.
* This instruct walsender to send any outstanding WAL, including the
* shutdown checkpoint record, and then exit.
*
* Note that there can be more than one walsender process concurrently.
*
* Portions Copyright (c) 2010-2010, PostgreSQL Global Development Group
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/replication/walsender.c,v 1.1 2010/01/15 09:19:03 heikki Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <unistd.h>
#include "access/xlog_internal.h"
#include "catalog/pg_type.h"
#include "libpq/libpq.h"
#include "libpq/pqformat.h"
#include "libpq/pqsignal.h"
#include "miscadmin.h"
#include "replication/walsender.h"
#include "storage/fd.h"
#include "storage/ipc.h"
#include "storage/lock.h"
#include "storage/pmsignal.h"
#include "tcop/tcopprot.h"
#include "utils/guc.h"
#include "utils/memutils.h"
#include "utils/ps_status.h"
/* Array of WalSnds in shared memory */
WalSndCtlData *WalSndCtl = NULL;
/* My slot in the shared memory array */
static WalSnd *MyWalSnd = NULL;
/* Global state */
bool am_walsender = false; /* Am I a walsender process ? */
/* User-settable parameters for walsender */
int MaxWalSenders = 0; /* the maximum number of concurrent walsenders */
int WalSndDelay = 200; /* max sleep time between some actions */
#define NAPTIME_PER_CYCLE 100 /* max sleep time between cycles (100ms) */
/*
* These variables are used similarly to openLogFile/Id/Seg/Off,
* but for walsender to read the XLOG.
*/
static int sendFile = -1;
static uint32 sendId = 0;
static uint32 sendSeg = 0;
static uint32 sendOff = 0;
/*
* How far have we sent WAL already? This is also advertised in
* MyWalSnd->sentPtr.
*/
static XLogRecPtr sentPtr = {0, 0};
/* Flags set by signal handlers for later service in main loop */
static volatile sig_atomic_t got_SIGHUP = false;
static volatile sig_atomic_t shutdown_requested = false;
static volatile sig_atomic_t ready_to_stop = false;
/* Signal handlers */
static void WalSndSigHupHandler(SIGNAL_ARGS);
static void WalSndShutdownHandler(SIGNAL_ARGS);
static void WalSndQuickDieHandler(SIGNAL_ARGS);
/* Prototypes for private functions */
static int WalSndLoop(void);
static void InitWalSnd(void);
static void WalSndHandshake(void);
static void WalSndKill(int code, Datum arg);
static void XLogRead(char *buf, XLogRecPtr recptr, Size nbytes);
static bool XLogSend(StringInfo outMsg);
static void CheckClosedConnection(void);
/*
* How much WAL to send in one message? Must be >= XLOG_BLCKSZ.
*/
#define MAX_SEND_SIZE (XLOG_SEG_SIZE / 2)
/* Main entry point for walsender process */
int
WalSenderMain(void)
{
MemoryContext walsnd_context;
if (!superuser())
ereport(FATAL,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("must be superuser to start walsender")));
/* Create a per-walsender data structure in shared memory */
InitWalSnd();
/*
* Create a memory context that we will do all our work in. We do this so
* that we can reset the context during error recovery and thereby avoid
* possible memory leaks. Formerly this code just ran in
* TopMemoryContext, but resetting that would be a really bad idea.
*
* XXX: we don't actually attempt error recovery in walsender, we just
* close the connection and exit.
*/
walsnd_context = AllocSetContextCreate(TopMemoryContext,
"Wal Sender",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
MemoryContextSwitchTo(walsnd_context);
/* Unblock signals (they were blocked when the postmaster forked us) */
PG_SETMASK(&UnBlockSig);
/* Tell the standby that walsender is ready for receiving commands */
ReadyForQuery(DestRemote);
/* Handle handshake messages before streaming */
WalSndHandshake();
/* Main loop of walsender */
return WalSndLoop();
}
static void
WalSndHandshake(void)
{
StringInfoData input_message;
bool replication_started = false;
initStringInfo(&input_message);
while (!replication_started)
{
int firstchar;
/* Wait for a command to arrive */
firstchar = pq_getbyte();
/*
* Check for any other interesting events that happened while we
* slept.
*/
if (got_SIGHUP)
{
got_SIGHUP = false;
ProcessConfigFile(PGC_SIGHUP);
}
if (firstchar == EOF)
{
/* standby disconnected */
ereport(COMMERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("unexpected EOF on standby connection")));
}
else
{
/*
* Read the message contents. This is expected to be done without
* blocking because we've been able to get message type code.
*/
if (pq_getmessage(&input_message, 0))
firstchar = EOF; /* suitable message already logged */
}
/* Handle the very limited subset of commands expected in this phase */
switch (firstchar)
{
case 'Q': /* Query message */
{
const char *query_string;
XLogRecPtr recptr;
query_string = pq_getmsgstring(&input_message);
pq_getmsgend(&input_message);
if (strcmp(query_string, "IDENTIFY_SYSTEM") == 0)
{
StringInfoData buf;
char sysid[32];
char tli[11];
/*
* Reply with a result set with one row, two columns.
* First col is system ID, and second if timeline ID
*/
snprintf(sysid, sizeof(sysid), UINT64_FORMAT,
GetSystemIdentifier());
snprintf(tli, sizeof(tli), "%u", ThisTimeLineID);
/* Send a RowDescription message */
pq_beginmessage(&buf, 'T');
pq_sendint(&buf, 2, 2); /* 2 fields */
/* first field */
pq_sendstring(&buf, "systemid"); /* col name */
pq_sendint(&buf, 0, 4); /* table oid */
pq_sendint(&buf, 0, 2); /* attnum */
pq_sendint(&buf, TEXTOID, 4); /* type oid */
pq_sendint(&buf, -1, 2); /* typlen */
pq_sendint(&buf, 0, 4); /* typmod */
pq_sendint(&buf, 0, 2); /* format code */
/* second field */
pq_sendstring(&buf, "timeline"); /* col name */
pq_sendint(&buf, 0, 4); /* table oid */
pq_sendint(&buf, 0, 2); /* attnum */
pq_sendint(&buf, INT4OID, 4); /* type oid */
pq_sendint(&buf, 4, 2); /* typlen */
pq_sendint(&buf, 0, 4); /* typmod */
pq_sendint(&buf, 0, 2); /* format code */
pq_endmessage(&buf);
/* Send a DataRow message */
pq_beginmessage(&buf, 'D');
pq_sendint(&buf, 2, 2); /* # of columns */
pq_sendint(&buf, strlen(sysid), 4); /* col1 len */
pq_sendbytes(&buf, (char *) &sysid, strlen(sysid));
pq_sendint(&buf, strlen(tli), 4); /* col2 len */
pq_sendbytes(&buf, (char *) tli, strlen(tli));
pq_endmessage(&buf);
/* Send CommandComplete and ReadyForQuery messages */
EndCommand("SELECT", DestRemote);
ReadyForQuery(DestRemote);
}
else if (sscanf(query_string, "START_REPLICATION %X/%X",
&recptr.xlogid, &recptr.xrecoff) == 2)
{
StringInfoData buf;
/* Send a CopyOutResponse message, and start streaming */
pq_beginmessage(&buf, 'H');
pq_sendbyte(&buf, 0);
pq_sendint(&buf, 0, 2);
pq_endmessage(&buf);
/*
* Initialize position to the received one, then
* the xlog records begin to be shipped from that position
*/
sentPtr = recptr;
/* break out of the loop */
replication_started = true;
}
else
{
ereport(FATAL,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("invalid standby query string: %s", query_string)));
}
break;
}
/* 'X' means that the standby is closing the connection */
case 'X':
proc_exit(0);
case EOF:
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("unexpected EOF on standby connection")));
default:
ereport(FATAL,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("invalid standby handshake message type %d", firstchar)));
}
}
}
/*
* Check if the remote end has closed the connection.
*/
static void
CheckClosedConnection(void)
{
unsigned char firstchar;
int r;
r = pq_getbyte_if_available(&firstchar);
if (r < 0)
{
/* no data available */
if (errno == EAGAIN || errno == EWOULDBLOCK)
return;
/*
* Ok if interrupted, though it shouldn't really happen with
* a non-blocking operation.
*/
if (errno == EINTR)
return;
ereport(COMMERROR,
(errcode_for_socket_access(),
errmsg("could not receive data from client: %m")));
}
if (r == 0)
{
/* standby disconnected unexpectedly */
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("unexpected EOF on standby connection")));
}
/* Handle the very limited subset of commands expected in this phase */
switch (firstchar)
{
/*
* 'X' means that the standby is closing down the socket. EOF means
* unexpected loss of standby connection. Either way, perform normal
* shutdown.
*/
case 'X':
proc_exit(0);
default:
ereport(FATAL,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("invalid standby closing message type %d",
firstchar)));
}
}
/* Main loop of walsender process */
static int
WalSndLoop(void)
{
StringInfoData output_message;
initStringInfo(&output_message);
/* Loop forever */
for (;;)
{
int remain; /* remaining time (ms) */
/*
* Emergency bailout if postmaster has died. This is to avoid the
* necessity for manual cleanup of all postmaster children.
*/
if (!PostmasterIsAlive(true))
exit(1);
/* Process any requests or signals received recently */
if (got_SIGHUP)
{
got_SIGHUP = false;
ProcessConfigFile(PGC_SIGHUP);
}
/*
* When SIGUSR2 arrives, we send all outstanding logs up to the
* shutdown checkpoint record (i.e., the latest record) and exit.
*/
if (ready_to_stop)
{
XLogSend(&output_message);
shutdown_requested = true;
}
/* Normal exit from the walsender is here */
if (shutdown_requested)
{
/* Inform the standby that XLOG streaming was done */
pq_puttextmessage('C', "COPY 0");
pq_flush();
proc_exit(0);
}
/*
* Nap for the configured time or until a message arrives.
*
* On some platforms, signals won't interrupt the sleep. To ensure we
* respond reasonably promptly when someone signals us, break down the
* sleep into NAPTIME_PER_CYCLE (ms) increments, and check for
* interrupts after each nap.
*/
remain = WalSndDelay;
while (remain > 0)
{
if (got_SIGHUP || shutdown_requested || ready_to_stop)
break;
/*
* Check to see whether a message from the standby or an interrupt
* from other processes has arrived.
*/
pg_usleep(remain > NAPTIME_PER_CYCLE ? NAPTIME_PER_CYCLE : remain);
CheckClosedConnection();
remain -= NAPTIME_PER_CYCLE;
}
/* Attempt to send the log once every loop */
if (!XLogSend(&output_message))
goto eof;
}
/* can't get here because the above loop never exits */
return 1;
eof:
/*
* Reset whereToSendOutput to prevent ereport from attempting
* to send any more messages to the standby.
*/
if (whereToSendOutput == DestRemote)
whereToSendOutput = DestNone;
proc_exit(0);
return 1; /* keep the compiler quiet */
}
/* Initialize a per-walsender data structure for this walsender process */
static void
InitWalSnd(void)
{
/* use volatile pointer to prevent code rearrangement */
volatile WalSndCtlData *walsndctl = WalSndCtl;
int i;
/*
* WalSndCtl should be set up already (we inherit this by fork() or
* EXEC_BACKEND mechanism from the postmaster).
*/
Assert(walsndctl != NULL);
Assert(MyWalSnd == NULL);
/*
* Find a free walsender slot and reserve it. If this fails, we must be
* out of WalSnd structures.
*/
for (i = 0; i < MaxWalSenders; i++)
{
volatile WalSnd *walsnd = &WalSndCtl->walsnds[i];
SpinLockAcquire(&walsnd->mutex);
if (walsnd->pid != 0)
{
SpinLockRelease(&walsnd->mutex);
continue;
}
else
{
/* found */
MyWalSnd = (WalSnd *) walsnd;
walsnd->pid = MyProcPid;
MemSet(&MyWalSnd->sentPtr, 0, sizeof(XLogRecPtr));
SpinLockRelease(&walsnd->mutex);
break;
}
}
if (MyWalSnd == NULL)
ereport(FATAL,
(errcode(ERRCODE_TOO_MANY_CONNECTIONS),
errmsg("sorry, too many standbys already")));
/* Arrange to clean up at walsender exit */
on_shmem_exit(WalSndKill, 0);
}
/* Destroy the per-walsender data structure for this walsender process */
static void
WalSndKill(int code, Datum arg)
{
Assert(MyWalSnd != NULL);
/*
* Mark WalSnd struct no longer in use. Assume that no lock is required
* for this.
*/
MyWalSnd->pid = 0;
/* WalSnd struct isn't mine anymore */
MyWalSnd = NULL;
}
/*
* Read 'nbytes' bytes from WAL into 'buf', starting at location 'recptr'
*/
void
XLogRead(char *buf, XLogRecPtr recptr, Size nbytes)
{
char path[MAXPGPATH];
uint32 startoff;
while (nbytes > 0)
{
int segbytes;
int readbytes;
startoff = recptr.xrecoff % XLogSegSize;
if (sendFile < 0 || !XLByteInSeg(recptr, sendId, sendSeg))
{
/* Switch to another logfile segment */
if (sendFile >= 0)
close(sendFile);
XLByteToSeg(recptr, sendId, sendSeg);
XLogFilePath(path, ThisTimeLineID, sendId, sendSeg);
sendFile = BasicOpenFile(path, O_RDONLY | PG_BINARY, 0);
if (sendFile < 0)
ereport(FATAL, /* XXX: Why FATAL? */
(errcode_for_file_access(),
errmsg("could not open file \"%s\" (log file %u, segment %u): %m",
path, sendId, sendSeg)));
sendOff = 0;
}
/* Need to seek in the file? */
if (sendOff != startoff)
{
if (lseek(sendFile, (off_t) startoff, SEEK_SET) < 0)
ereport(FATAL,
(errcode_for_file_access(),
errmsg("could not seek in log file %u, segment %u to offset %u: %m",
sendId, sendSeg, startoff)));
sendOff = startoff;
}
/* How many bytes are within this segment? */
if (nbytes > (XLogSegSize - startoff))
segbytes = XLogSegSize - startoff;
else
segbytes = nbytes;
readbytes = read(sendFile, buf, segbytes);
if (readbytes <= 0)
ereport(FATAL,
(errcode_for_file_access(),
errmsg("could not read from log file %u, segment %u, offset %u, "
"length %lu: %m",
sendId, sendSeg, sendOff, (unsigned long) segbytes)));
/* Update state for read */
XLByteAdvance(recptr, readbytes);
sendOff += readbytes;
nbytes -= readbytes;
buf += readbytes;
}
}
/*
* Read all WAL that's been written (and flushed) since last cycle, and send
* it to client.
*
* Returns true if OK, false if trouble.
*/
static bool
XLogSend(StringInfo outMsg)
{
XLogRecPtr SendRqstPtr;
char activitymsg[50];
/* use volatile pointer to prevent code rearrangement */
volatile WalSnd *walsnd = MyWalSnd;
/*
* Invalid position means that we have not yet received the initial
* CopyData message from the slave that indicates where to start the
* streaming.
*/
if (sentPtr.xlogid == 0 &&
sentPtr.xrecoff == 0)
return true;
/* Attempt to send all the records which were written to the disk */
SendRqstPtr = GetWriteRecPtr();
/* Quick exit if nothing to do */
if (!XLByteLT(sentPtr, SendRqstPtr))
return true;
/*
* Since successive pages in a segment are consecutively written,
* we can gather multiple records together by issuing just one
* read() call, and send them as one CopyData message at one time;
* nmsgs is the number of CopyData messages sent in this XLogSend;
* npages is the number of pages we have determined can be read and
* sent together; startpos is the starting position of reading and
* sending in the first page, startoff is the file offset at which
* it should go and endpos is the end position of reading and
* sending in the last page. We must initialize all of them to
* keep the compiler quiet.
*/
while (XLByteLT(sentPtr, SendRqstPtr))
{
XLogRecPtr startptr;
XLogRecPtr endptr;
Size nbytes;
/*
* Figure out how much to send in one message. If there's less than
* MAX_SEND_SIZE bytes to send, send everything. Otherwise send
* MAX_SEND_SIZE bytes, but round to page boundary for efficiency.
*/
startptr = sentPtr;
endptr = startptr;
XLByteAdvance(endptr, MAX_SEND_SIZE);
/*
* Round down to page boundary. This is not only for performance
* reasons, walreceiver relies on the fact that we never split a WAL
* record across two messages. Since a long WAL record is split at
* page boundary into continuation records, page boundary is always
* safe cut-off point. We also assume that SendRqstPtr never points
* in the middle of a WAL record.
*/
endptr.xrecoff -= (endptr.xrecoff % XLOG_BLCKSZ);
if (XLByteLT(SendRqstPtr, endptr))
endptr = SendRqstPtr;
/*
* OK to read and send the log.
*
* We don't need to convert the xlogid/xrecoff from host byte order
* to network byte order because the both server can be expected to
* have the same byte order. If they have the different order, we
* don't reach here.
*/
pq_sendbytes(outMsg, (char *) &startptr, sizeof(startptr));
if (endptr.xlogid != startptr.xlogid)
{
Assert(endptr.xlogid == startptr.xlogid + 1);
nbytes = endptr.xrecoff + XLogFileSize - startptr.xrecoff;
}
else
nbytes = endptr.xrecoff - startptr.xrecoff;
sentPtr = endptr;
/*
* Read the log into the output buffer directly to prevent
* extra memcpy calls.
*/
enlargeStringInfo(outMsg, nbytes);
XLogRead(&outMsg->data[outMsg->len], startptr, nbytes);
outMsg->len += nbytes;
outMsg->data[outMsg->len] = '\0';
pq_putmessage('d', outMsg->data, outMsg->len);
resetStringInfo(outMsg);
}
/* Update shared memory status */
SpinLockAcquire(&walsnd->mutex);
walsnd->sentPtr = sentPtr;
SpinLockRelease(&walsnd->mutex);
/* Flush pending output */
if (pq_flush())
return false;
/* Report progress of XLOG streaming in PS display */
snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X",
sentPtr.xlogid, sentPtr.xrecoff);
set_ps_display(activitymsg, false);
return true;
}
/* SIGHUP: set flag to re-read config file at next convenient time */
static void
WalSndSigHupHandler(SIGNAL_ARGS)
{
got_SIGHUP = true;
}
/* SIGTERM: set flag to shut down */
static void
WalSndShutdownHandler(SIGNAL_ARGS)
{
shutdown_requested = true;
}
/*
* WalSndQuickDieHandler() occurs when signalled SIGQUIT by the postmaster.
*
* Some backend has bought the farm,
* so we need to stop what we're doing and exit.
*/
static void
WalSndQuickDieHandler(SIGNAL_ARGS)
{
PG_SETMASK(&BlockSig);
/*
* We DO NOT want to run proc_exit() callbacks -- we're here because
* shared memory may be corrupted, so we don't want to try to clean up our
* transaction. Just nail the windows shut and get out of town. Now that
* there's an atexit callback to prevent third-party code from breaking
* things by calling exit() directly, we have to reset the callbacks
* explicitly to make this work as intended.
*/
on_exit_reset();
/*
* Note we do exit(2) not exit(0). This is to force the postmaster into a
* system reset cycle if some idiot DBA sends a manual SIGQUIT to a random
* backend. This is necessary precisely because we don't clean up our
* shared memory state. (The "dead man switch" mechanism in pmsignal.c
* should ensure the postmaster sees this as a crash, too, but no harm
* in being doubly sure.)
*/
exit(2);
}
/* SIGUSR2: set flag to do a last cycle and shut down afterwards */
static void
WalSndLastCycleHandler(SIGNAL_ARGS)
{
ready_to_stop = true;
}
/* Set up signal handlers */
void
WalSndSignals(void)
{
/* Set up signal handlers */
pqsignal(SIGHUP, WalSndSigHupHandler); /* set flag to read config file */
pqsignal(SIGINT, SIG_IGN); /* not used */
pqsignal(SIGTERM, WalSndShutdownHandler); /* request shutdown */
pqsignal(SIGQUIT, WalSndQuickDieHandler); /* hard crash time */
pqsignal(SIGALRM, SIG_IGN);
pqsignal(SIGPIPE, SIG_IGN);
pqsignal(SIGUSR1, SIG_IGN); /* not used */
pqsignal(SIGUSR2, WalSndLastCycleHandler); /* request a last cycle and shutdown */
/* Reset some signals that are accepted by postmaster but not here */
pqsignal(SIGCHLD, SIG_DFL);
pqsignal(SIGTTIN, SIG_DFL);
pqsignal(SIGTTOU, SIG_DFL);
pqsignal(SIGCONT, SIG_DFL);
pqsignal(SIGWINCH, SIG_DFL);
}
/* Report shared-memory space needed by WalSndShmemInit */
Size
WalSndShmemSize(void)
{
Size size = 0;
size = offsetof(WalSndCtlData, walsnds);
size = add_size(size, mul_size(MaxWalSenders, sizeof(WalSnd)));
return size;
}
/* Allocate and initialize walsender-related shared memory */
void
WalSndShmemInit(void)
{
bool found;
int i;
WalSndCtl = (WalSndCtlData *)
ShmemInitStruct("Wal Sender Ctl", WalSndShmemSize(), &found);
if (WalSndCtl == NULL)
ereport(FATAL,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("not enough shared memory for walsender")));
if (found)
return; /* already initialized */
/* Initialize the data structures */
MemSet(WalSndCtl, 0, WalSndShmemSize());
for (i = 0; i < MaxWalSenders; i++)
{
WalSnd *walsnd = &WalSndCtl->walsnds[i];
SpinLockInit(&walsnd->mutex);
}
}
/*
* Returns the oldest Send position among walsenders. Or InvalidXLogRecPtr
* if none.
*/
XLogRecPtr
GetOldestWALSendPointer(void)
{
XLogRecPtr oldest = {0, 0};
int i;
bool found = false;
for (i = 0; i < MaxWalSenders; i++)
{
/* use volatile pointer to prevent code rearrangement */
volatile WalSnd *walsnd = &WalSndCtl->walsnds[i];
XLogRecPtr recptr;
if (walsnd->pid == 0)
continue;
SpinLockAcquire(&walsnd->mutex);
recptr = walsnd->sentPtr;
SpinLockRelease(&walsnd->mutex);
if (recptr.xlogid == 0 && recptr.xrecoff == 0)
continue;
if (!found || XLByteLT(recptr, oldest))
oldest = recptr;
found = true;
}
return oldest;
}