mirror of
https://github.com/postgres/postgres.git
synced 2025-07-03 20:02:46 +03:00
Separate predicate-testing code out of indxpath.c, making it a module
in its own right. As proposed by Simon Riggs, but with some editorializing of my own.
This commit is contained in:
@ -9,7 +9,7 @@
|
|||||||
*
|
*
|
||||||
*
|
*
|
||||||
* IDENTIFICATION
|
* IDENTIFICATION
|
||||||
* $PostgreSQL: pgsql/src/backend/optimizer/path/indxpath.c,v 1.182 2005/06/09 04:18:59 tgl Exp $
|
* $PostgreSQL: pgsql/src/backend/optimizer/path/indxpath.c,v 1.183 2005/06/10 22:25:36 tgl Exp $
|
||||||
*
|
*
|
||||||
*-------------------------------------------------------------------------
|
*-------------------------------------------------------------------------
|
||||||
*/
|
*/
|
||||||
@ -17,30 +17,22 @@
|
|||||||
|
|
||||||
#include <math.h>
|
#include <math.h>
|
||||||
|
|
||||||
#include "access/nbtree.h"
|
#include "access/skey.h"
|
||||||
#include "catalog/pg_amop.h"
|
|
||||||
#include "catalog/pg_namespace.h"
|
|
||||||
#include "catalog/pg_opclass.h"
|
#include "catalog/pg_opclass.h"
|
||||||
#include "catalog/pg_operator.h"
|
#include "catalog/pg_operator.h"
|
||||||
#include "catalog/pg_proc.h"
|
|
||||||
#include "catalog/pg_type.h"
|
#include "catalog/pg_type.h"
|
||||||
#include "executor/executor.h"
|
|
||||||
#include "nodes/makefuncs.h"
|
#include "nodes/makefuncs.h"
|
||||||
#include "optimizer/clauses.h"
|
#include "optimizer/clauses.h"
|
||||||
#include "optimizer/cost.h"
|
#include "optimizer/cost.h"
|
||||||
#include "optimizer/pathnode.h"
|
#include "optimizer/pathnode.h"
|
||||||
#include "optimizer/paths.h"
|
#include "optimizer/paths.h"
|
||||||
|
#include "optimizer/predtest.h"
|
||||||
#include "optimizer/restrictinfo.h"
|
#include "optimizer/restrictinfo.h"
|
||||||
#include "optimizer/var.h"
|
|
||||||
#include "parser/parse_expr.h"
|
|
||||||
#include "rewrite/rewriteManip.h"
|
|
||||||
#include "utils/builtins.h"
|
#include "utils/builtins.h"
|
||||||
#include "utils/catcache.h"
|
|
||||||
#include "utils/lsyscache.h"
|
#include "utils/lsyscache.h"
|
||||||
#include "utils/memutils.h"
|
#include "utils/memutils.h"
|
||||||
#include "utils/pg_locale.h"
|
#include "utils/pg_locale.h"
|
||||||
#include "utils/selfuncs.h"
|
#include "utils/selfuncs.h"
|
||||||
#include "utils/syscache.h"
|
|
||||||
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
@ -68,8 +60,6 @@ static bool match_clause_to_indexcol(IndexOptInfo *index,
|
|||||||
Relids outer_relids);
|
Relids outer_relids);
|
||||||
static Oid indexable_operator(Expr *clause, Oid opclass,
|
static Oid indexable_operator(Expr *clause, Oid opclass,
|
||||||
bool indexkey_on_left);
|
bool indexkey_on_left);
|
||||||
static bool pred_test_recurse(Node *clause, Node *predicate);
|
|
||||||
static bool pred_test_simple_clause(Expr *predicate, Node *clause);
|
|
||||||
static Relids indexable_outerrelids(RelOptInfo *rel);
|
static Relids indexable_outerrelids(RelOptInfo *rel);
|
||||||
static bool matches_any_index(RestrictInfo *rinfo, RelOptInfo *rel,
|
static bool matches_any_index(RestrictInfo *rinfo, RelOptInfo *rel,
|
||||||
Relids outer_relids);
|
Relids outer_relids);
|
||||||
@ -266,8 +256,8 @@ find_usable_indexes(PlannerInfo *root, RelOptInfo *rel,
|
|||||||
all_clauses = list_concat(list_copy(clauses),
|
all_clauses = list_concat(list_copy(clauses),
|
||||||
outer_clauses);
|
outer_clauses);
|
||||||
|
|
||||||
if (!pred_test(index->indpred, all_clauses) ||
|
if (!predicate_implied_by(index->indpred, all_clauses) ||
|
||||||
pred_test(index->indpred, outer_clauses))
|
predicate_implied_by(index->indpred, outer_clauses))
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -497,9 +487,9 @@ choose_bitmap_and(PlannerInfo *root, RelOptInfo *rel, List *paths)
|
|||||||
* as can happen if there are multiple possibly usable indexes. For
|
* as can happen if there are multiple possibly usable indexes. For
|
||||||
* this we look only at plain IndexPath inputs, not at sub-OR clauses.
|
* this we look only at plain IndexPath inputs, not at sub-OR clauses.
|
||||||
* And we consider an index redundant if all its index conditions were
|
* And we consider an index redundant if all its index conditions were
|
||||||
* already used by earlier indexes. (We could use pred_test() to have
|
* already used by earlier indexes. (We could use predicate_implied_by
|
||||||
* a more intelligent, but much more expensive, check --- but in most
|
* to have a more intelligent, but much more expensive, check --- but in
|
||||||
* cases simple pointer equality should suffice, since after all the
|
* most cases simple pointer equality should suffice, since after all the
|
||||||
* index conditions are all coming from the same RestrictInfo lists.)
|
* index conditions are all coming from the same RestrictInfo lists.)
|
||||||
*
|
*
|
||||||
* XXX is there any risk of throwing away a useful partial index here
|
* XXX is there any risk of throwing away a useful partial index here
|
||||||
@ -867,40 +857,6 @@ check_partial_indexes(PlannerInfo *root, RelOptInfo *rel)
|
|||||||
List *restrictinfo_list = rel->baserestrictinfo;
|
List *restrictinfo_list = rel->baserestrictinfo;
|
||||||
ListCell *ilist;
|
ListCell *ilist;
|
||||||
|
|
||||||
foreach(ilist, rel->indexlist)
|
|
||||||
{
|
|
||||||
IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
|
|
||||||
|
|
||||||
/*
|
|
||||||
* If this is a partial index, we can only use it if it passes the
|
|
||||||
* predicate test.
|
|
||||||
*/
|
|
||||||
if (index->indpred == NIL)
|
|
||||||
continue; /* ignore non-partial indexes */
|
|
||||||
|
|
||||||
index->predOK = pred_test(index->indpred, restrictinfo_list);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
* pred_test
|
|
||||||
* Does the "predicate inclusion test" for partial indexes.
|
|
||||||
*
|
|
||||||
* Recursively checks whether the clauses in restrictinfo_list imply
|
|
||||||
* that the given predicate is true.
|
|
||||||
*
|
|
||||||
* The top-level List structure of each list corresponds to an AND list.
|
|
||||||
* We assume that eval_const_expressions() has been applied and so there
|
|
||||||
* are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
|
|
||||||
* including AND just below the top-level List structure).
|
|
||||||
* If this is not true we might fail to prove an implication that is
|
|
||||||
* valid, but no worse consequences will ensue.
|
|
||||||
*/
|
|
||||||
bool
|
|
||||||
pred_test(List *predicate_list, List *restrictinfo_list)
|
|
||||||
{
|
|
||||||
ListCell *item;
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Note: if Postgres tried to optimize queries by forming equivalence
|
* Note: if Postgres tried to optimize queries by forming equivalence
|
||||||
* classes over equi-joined attributes (i.e., if it recognized that a
|
* classes over equi-joined attributes (i.e., if it recognized that a
|
||||||
@ -908,631 +864,24 @@ pred_test(List *predicate_list, List *restrictinfo_list)
|
|||||||
* an index on c.d), then we could use that equivalence class info
|
* an index on c.d), then we could use that equivalence class info
|
||||||
* here with joininfo lists to do more complete tests for the usability
|
* here with joininfo lists to do more complete tests for the usability
|
||||||
* of a partial index. For now, the test only uses restriction
|
* of a partial index. For now, the test only uses restriction
|
||||||
* clauses (those in restrictinfo_list). --Nels, Dec '92
|
* clauses (those in baserestrictinfo). --Nels, Dec '92
|
||||||
*
|
*
|
||||||
* XXX as of 7.1, equivalence class info *is* available. Consider
|
* XXX as of 7.1, equivalence class info *is* available. Consider
|
||||||
* improving this code as foreseen by Nels.
|
* improving this code as foreseen by Nels.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
if (predicate_list == NIL)
|
foreach(ilist, rel->indexlist)
|
||||||
return true; /* no predicate: the index is usable */
|
|
||||||
if (restrictinfo_list == NIL)
|
|
||||||
return false; /* no restriction clauses: the test must
|
|
||||||
* fail */
|
|
||||||
|
|
||||||
/*
|
|
||||||
* In all cases where the predicate is an AND-clause, pred_test_recurse()
|
|
||||||
* will prefer to iterate over the predicate's components. So we can
|
|
||||||
* just do that to start with here, and eliminate the need for
|
|
||||||
* pred_test_recurse() to handle a bare List on the predicate side.
|
|
||||||
*
|
|
||||||
* Logic is: restriction must imply each of the AND'ed predicate items.
|
|
||||||
*/
|
|
||||||
foreach(item, predicate_list)
|
|
||||||
{
|
{
|
||||||
if (!pred_test_recurse((Node *) restrictinfo_list, lfirst(item)))
|
IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
|
||||||
return false;
|
|
||||||
}
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
if (index->indpred == NIL)
|
||||||
|
continue; /* ignore non-partial indexes */
|
||||||
|
|
||||||
/*----------
|
index->predOK = predicate_implied_by(index->indpred,
|
||||||
* pred_test_recurse
|
restrictinfo_list);
|
||||||
* Does the "predicate inclusion test" for non-NULL restriction and
|
|
||||||
* predicate clauses.
|
|
||||||
*
|
|
||||||
* The logic followed here is ("=>" means "implies"):
|
|
||||||
* atom A => atom B iff: pred_test_simple_clause says so
|
|
||||||
* atom A => AND-expr B iff: A => each of B's components
|
|
||||||
* atom A => OR-expr B iff: A => any of B's components
|
|
||||||
* AND-expr A => atom B iff: any of A's components => B
|
|
||||||
* AND-expr A => AND-expr B iff: A => each of B's components
|
|
||||||
* AND-expr A => OR-expr B iff: A => any of B's components,
|
|
||||||
* *or* any of A's components => B
|
|
||||||
* OR-expr A => atom B iff: each of A's components => B
|
|
||||||
* OR-expr A => AND-expr B iff: A => each of B's components
|
|
||||||
* OR-expr A => OR-expr B iff: each of A's components => any of B's
|
|
||||||
*
|
|
||||||
* An "atom" is anything other than an AND or OR node. Notice that we don't
|
|
||||||
* have any special logic to handle NOT nodes; these should have been pushed
|
|
||||||
* down or eliminated where feasible by prepqual.c.
|
|
||||||
*
|
|
||||||
* We can't recursively expand either side first, but have to interleave
|
|
||||||
* the expansions per the above rules, to be sure we handle all of these
|
|
||||||
* examples:
|
|
||||||
* (x OR y) => (x OR y OR z)
|
|
||||||
* (x AND y AND z) => (x AND y)
|
|
||||||
* (x AND y) => ((x AND y) OR z)
|
|
||||||
* ((x OR y) AND z) => (x OR y)
|
|
||||||
* This is still not an exhaustive test, but it handles most normal cases
|
|
||||||
* under the assumption that both inputs have been AND/OR flattened.
|
|
||||||
*
|
|
||||||
* A bare List node on the restriction side is interpreted as an AND clause,
|
|
||||||
* in order to handle the top-level restriction List properly. However we
|
|
||||||
* need not consider a List on the predicate side since pred_test() already
|
|
||||||
* expanded it.
|
|
||||||
*
|
|
||||||
* We have to be prepared to handle RestrictInfo nodes in the restrictinfo
|
|
||||||
* tree, though not in the predicate tree.
|
|
||||||
*----------
|
|
||||||
*/
|
|
||||||
static bool
|
|
||||||
pred_test_recurse(Node *clause, Node *predicate)
|
|
||||||
{
|
|
||||||
ListCell *item;
|
|
||||||
|
|
||||||
Assert(clause != NULL);
|
|
||||||
/* skip through RestrictInfo */
|
|
||||||
if (IsA(clause, RestrictInfo))
|
|
||||||
{
|
|
||||||
clause = (Node *) ((RestrictInfo *) clause)->clause;
|
|
||||||
Assert(clause != NULL);
|
|
||||||
Assert(!IsA(clause, RestrictInfo));
|
|
||||||
}
|
|
||||||
Assert(predicate != NULL);
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Since a restriction List clause is handled the same as an AND clause,
|
|
||||||
* we can avoid duplicate code like this:
|
|
||||||
*/
|
|
||||||
if (and_clause(clause))
|
|
||||||
clause = (Node *) ((BoolExpr *) clause)->args;
|
|
||||||
|
|
||||||
if (IsA(clause, List))
|
|
||||||
{
|
|
||||||
if (and_clause(predicate))
|
|
||||||
{
|
|
||||||
/* AND-clause => AND-clause if A implies each of B's items */
|
|
||||||
foreach(item, ((BoolExpr *) predicate)->args)
|
|
||||||
{
|
|
||||||
if (!pred_test_recurse(clause, lfirst(item)))
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
else if (or_clause(predicate))
|
|
||||||
{
|
|
||||||
/* AND-clause => OR-clause if A implies any of B's items */
|
|
||||||
/* Needed to handle (x AND y) => ((x AND y) OR z) */
|
|
||||||
foreach(item, ((BoolExpr *) predicate)->args)
|
|
||||||
{
|
|
||||||
if (pred_test_recurse(clause, lfirst(item)))
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
/* Also check if any of A's items implies B */
|
|
||||||
/* Needed to handle ((x OR y) AND z) => (x OR y) */
|
|
||||||
foreach(item, (List *) clause)
|
|
||||||
{
|
|
||||||
if (pred_test_recurse(lfirst(item), predicate))
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
/* AND-clause => atom if any of A's items implies B */
|
|
||||||
foreach(item, (List *) clause)
|
|
||||||
{
|
|
||||||
if (pred_test_recurse(lfirst(item), predicate))
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else if (or_clause(clause))
|
|
||||||
{
|
|
||||||
if (or_clause(predicate))
|
|
||||||
{
|
|
||||||
/*
|
|
||||||
* OR-clause => OR-clause if each of A's items implies any of
|
|
||||||
* B's items. Messy but can't do it any more simply.
|
|
||||||
*/
|
|
||||||
foreach(item, ((BoolExpr *) clause)->args)
|
|
||||||
{
|
|
||||||
Node *citem = lfirst(item);
|
|
||||||
ListCell *item2;
|
|
||||||
|
|
||||||
foreach(item2, ((BoolExpr *) predicate)->args)
|
|
||||||
{
|
|
||||||
if (pred_test_recurse(citem, lfirst(item2)))
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
if (item2 == NULL)
|
|
||||||
return false; /* doesn't imply any of B's */
|
|
||||||
}
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
/* OR-clause => AND-clause if each of A's items implies B */
|
|
||||||
/* OR-clause => atom if each of A's items implies B */
|
|
||||||
foreach(item, ((BoolExpr *) clause)->args)
|
|
||||||
{
|
|
||||||
if (!pred_test_recurse(lfirst(item), predicate))
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
if (and_clause(predicate))
|
|
||||||
{
|
|
||||||
/* atom => AND-clause if A implies each of B's items */
|
|
||||||
foreach(item, ((BoolExpr *) predicate)->args)
|
|
||||||
{
|
|
||||||
if (!pred_test_recurse(clause, lfirst(item)))
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
else if (or_clause(predicate))
|
|
||||||
{
|
|
||||||
/* atom => OR-clause if A implies any of B's items */
|
|
||||||
foreach(item, ((BoolExpr *) predicate)->args)
|
|
||||||
{
|
|
||||||
if (pred_test_recurse(clause, lfirst(item)))
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
/* atom => atom is the base case */
|
|
||||||
return pred_test_simple_clause((Expr *) predicate, clause);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Define an "operator implication table" for btree operators ("strategies").
|
|
||||||
*
|
|
||||||
* The strategy numbers defined by btree indexes (see access/skey.h) are:
|
|
||||||
* (1) < (2) <= (3) = (4) >= (5) >
|
|
||||||
* and in addition we use (6) to represent <>. <> is not a btree-indexable
|
|
||||||
* operator, but we assume here that if the equality operator of a btree
|
|
||||||
* opclass has a negator operator, the negator behaves as <> for the opclass.
|
|
||||||
*
|
|
||||||
* The interpretation of:
|
|
||||||
*
|
|
||||||
* test_op = BT_implic_table[given_op-1][target_op-1]
|
|
||||||
*
|
|
||||||
* where test_op, given_op and target_op are strategy numbers (from 1 to 6)
|
|
||||||
* of btree operators, is as follows:
|
|
||||||
*
|
|
||||||
* If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
|
|
||||||
* want to determine whether "ATTR target_op CONST2" must also be true, then
|
|
||||||
* you can use "CONST2 test_op CONST1" as a test. If this test returns true,
|
|
||||||
* then the target expression must be true; if the test returns false, then
|
|
||||||
* the target expression may be false.
|
|
||||||
*
|
|
||||||
* An entry where test_op == 0 means the implication cannot be determined,
|
|
||||||
* i.e., this test should always be considered false.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#define BTLT BTLessStrategyNumber
|
|
||||||
#define BTLE BTLessEqualStrategyNumber
|
|
||||||
#define BTEQ BTEqualStrategyNumber
|
|
||||||
#define BTGE BTGreaterEqualStrategyNumber
|
|
||||||
#define BTGT BTGreaterStrategyNumber
|
|
||||||
#define BTNE 6
|
|
||||||
|
|
||||||
static const StrategyNumber
|
|
||||||
BT_implic_table[6][6] = {
|
|
||||||
/*
|
|
||||||
* The target operator:
|
|
||||||
*
|
|
||||||
* LT LE EQ GE GT NE
|
|
||||||
*/
|
|
||||||
{BTGE, BTGE, 0, 0, 0, BTGE}, /* LT */
|
|
||||||
{BTGT, BTGE, 0, 0, 0, BTGT}, /* LE */
|
|
||||||
{BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE}, /* EQ */
|
|
||||||
{0, 0, 0, BTLE, BTLT, BTLT}, /* GE */
|
|
||||||
{0, 0, 0, BTLE, BTLE, BTLE}, /* GT */
|
|
||||||
{0, 0, 0, 0, 0, BTEQ} /* NE */
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
/*----------
|
|
||||||
* pred_test_simple_clause
|
|
||||||
* Does the "predicate inclusion test" for a "simple clause" predicate
|
|
||||||
* and a "simple clause" restriction.
|
|
||||||
*
|
|
||||||
* We have three strategies for determining whether one simple clause
|
|
||||||
* implies another:
|
|
||||||
*
|
|
||||||
* A simple and general way is to see if they are equal(); this works for any
|
|
||||||
* kind of expression. (Actually, there is an implied assumption that the
|
|
||||||
* functions in the expression are immutable, ie dependent only on their input
|
|
||||||
* arguments --- but this was checked for the predicate by CheckPredicate().)
|
|
||||||
*
|
|
||||||
* When the predicate is of the form "foo IS NOT NULL", we can conclude that
|
|
||||||
* the predicate is implied if the clause is a strict operator or function
|
|
||||||
* that has "foo" as an input. In this case the clause must yield NULL when
|
|
||||||
* "foo" is NULL, which we can take as equivalent to FALSE because we know
|
|
||||||
* we are within an AND/OR subtree of a WHERE clause. (Again, "foo" is
|
|
||||||
* already known immutable, so the clause will certainly always fail.)
|
|
||||||
*
|
|
||||||
* Our other way works only for binary boolean opclauses of the form
|
|
||||||
* "foo op constant", where "foo" is the same in both clauses. The operators
|
|
||||||
* and constants can be different but the operators must be in the same btree
|
|
||||||
* operator class. We use the above operator implication table to be able to
|
|
||||||
* derive implications between nonidentical clauses. (Note: "foo" is known
|
|
||||||
* immutable, and constants are surely immutable, but we have to check that
|
|
||||||
* the operators are too. As of 8.0 it's possible for opclasses to contain
|
|
||||||
* operators that are merely stable, and we dare not make deductions with
|
|
||||||
* these.)
|
|
||||||
*
|
|
||||||
* Eventually, rtree operators could also be handled by defining an
|
|
||||||
* appropriate "RT_implic_table" array.
|
|
||||||
*----------
|
|
||||||
*/
|
|
||||||
static bool
|
|
||||||
pred_test_simple_clause(Expr *predicate, Node *clause)
|
|
||||||
{
|
|
||||||
Node *leftop,
|
|
||||||
*rightop;
|
|
||||||
Node *pred_var,
|
|
||||||
*clause_var;
|
|
||||||
Const *pred_const,
|
|
||||||
*clause_const;
|
|
||||||
bool pred_var_on_left,
|
|
||||||
clause_var_on_left,
|
|
||||||
pred_op_negated;
|
|
||||||
Oid pred_op,
|
|
||||||
clause_op,
|
|
||||||
pred_op_negator,
|
|
||||||
clause_op_negator,
|
|
||||||
test_op = InvalidOid;
|
|
||||||
Oid opclass_id;
|
|
||||||
bool found = false;
|
|
||||||
StrategyNumber pred_strategy,
|
|
||||||
clause_strategy,
|
|
||||||
test_strategy;
|
|
||||||
Oid clause_subtype;
|
|
||||||
Expr *test_expr;
|
|
||||||
ExprState *test_exprstate;
|
|
||||||
Datum test_result;
|
|
||||||
bool isNull;
|
|
||||||
CatCList *catlist;
|
|
||||||
int i;
|
|
||||||
EState *estate;
|
|
||||||
MemoryContext oldcontext;
|
|
||||||
|
|
||||||
/* First try the equal() test */
|
|
||||||
if (equal((Node *) predicate, clause))
|
|
||||||
return true;
|
|
||||||
|
|
||||||
/* Next try the IS NOT NULL case */
|
|
||||||
if (predicate && IsA(predicate, NullTest) &&
|
|
||||||
((NullTest *) predicate)->nulltesttype == IS_NOT_NULL)
|
|
||||||
{
|
|
||||||
Expr *nonnullarg = ((NullTest *) predicate)->arg;
|
|
||||||
|
|
||||||
if (is_opclause(clause) &&
|
|
||||||
list_member(((OpExpr *) clause)->args, nonnullarg) &&
|
|
||||||
op_strict(((OpExpr *) clause)->opno))
|
|
||||||
return true;
|
|
||||||
if (is_funcclause(clause) &&
|
|
||||||
list_member(((FuncExpr *) clause)->args, nonnullarg) &&
|
|
||||||
func_strict(((FuncExpr *) clause)->funcid))
|
|
||||||
return true;
|
|
||||||
return false; /* we can't succeed below... */
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Can't do anything more unless they are both binary opclauses with a
|
|
||||||
* Const on one side, and identical subexpressions on the other sides.
|
|
||||||
* Note we don't have to think about binary relabeling of the Const
|
|
||||||
* node, since that would have been folded right into the Const.
|
|
||||||
*
|
|
||||||
* If either Const is null, we also fail right away; this assumes that
|
|
||||||
* the test operator will always be strict.
|
|
||||||
*/
|
|
||||||
if (!is_opclause(predicate))
|
|
||||||
return false;
|
|
||||||
leftop = get_leftop(predicate);
|
|
||||||
rightop = get_rightop(predicate);
|
|
||||||
if (rightop == NULL)
|
|
||||||
return false; /* not a binary opclause */
|
|
||||||
if (IsA(rightop, Const))
|
|
||||||
{
|
|
||||||
pred_var = leftop;
|
|
||||||
pred_const = (Const *) rightop;
|
|
||||||
pred_var_on_left = true;
|
|
||||||
}
|
|
||||||
else if (IsA(leftop, Const))
|
|
||||||
{
|
|
||||||
pred_var = rightop;
|
|
||||||
pred_const = (Const *) leftop;
|
|
||||||
pred_var_on_left = false;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
return false; /* no Const to be found */
|
|
||||||
if (pred_const->constisnull)
|
|
||||||
return false;
|
|
||||||
|
|
||||||
if (!is_opclause(clause))
|
|
||||||
return false;
|
|
||||||
leftop = get_leftop((Expr *) clause);
|
|
||||||
rightop = get_rightop((Expr *) clause);
|
|
||||||
if (rightop == NULL)
|
|
||||||
return false; /* not a binary opclause */
|
|
||||||
if (IsA(rightop, Const))
|
|
||||||
{
|
|
||||||
clause_var = leftop;
|
|
||||||
clause_const = (Const *) rightop;
|
|
||||||
clause_var_on_left = true;
|
|
||||||
}
|
|
||||||
else if (IsA(leftop, Const))
|
|
||||||
{
|
|
||||||
clause_var = rightop;
|
|
||||||
clause_const = (Const *) leftop;
|
|
||||||
clause_var_on_left = false;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
return false; /* no Const to be found */
|
|
||||||
if (clause_const->constisnull)
|
|
||||||
return false;
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Check for matching subexpressions on the non-Const sides. We used
|
|
||||||
* to only allow a simple Var, but it's about as easy to allow any
|
|
||||||
* expression. Remember we already know that the pred expression does
|
|
||||||
* not contain any non-immutable functions, so identical expressions
|
|
||||||
* should yield identical results.
|
|
||||||
*/
|
|
||||||
if (!equal(pred_var, clause_var))
|
|
||||||
return false;
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Okay, get the operators in the two clauses we're comparing. Commute
|
|
||||||
* them if needed so that we can assume the variables are on the left.
|
|
||||||
*/
|
|
||||||
pred_op = ((OpExpr *) predicate)->opno;
|
|
||||||
if (!pred_var_on_left)
|
|
||||||
{
|
|
||||||
pred_op = get_commutator(pred_op);
|
|
||||||
if (!OidIsValid(pred_op))
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
clause_op = ((OpExpr *) clause)->opno;
|
|
||||||
if (!clause_var_on_left)
|
|
||||||
{
|
|
||||||
clause_op = get_commutator(clause_op);
|
|
||||||
if (!OidIsValid(clause_op))
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Try to find a btree opclass containing the needed operators.
|
|
||||||
*
|
|
||||||
* We must find a btree opclass that contains both operators, else the
|
|
||||||
* implication can't be determined. Also, the pred_op has to be of
|
|
||||||
* default subtype (implying left and right input datatypes are the
|
|
||||||
* same); otherwise it's unsafe to put the pred_const on the left side
|
|
||||||
* of the test. Also, the opclass must contain a suitable test
|
|
||||||
* operator matching the clause_const's type (which we take to mean
|
|
||||||
* that it has the same subtype as the original clause_operator).
|
|
||||||
*
|
|
||||||
* If there are multiple matching opclasses, assume we can use any one to
|
|
||||||
* determine the logical relationship of the two operators and the
|
|
||||||
* correct corresponding test operator. This should work for any
|
|
||||||
* logically consistent opclasses.
|
|
||||||
*/
|
|
||||||
catlist = SearchSysCacheList(AMOPOPID, 1,
|
|
||||||
ObjectIdGetDatum(pred_op),
|
|
||||||
0, 0, 0);
|
|
||||||
|
|
||||||
/*
|
|
||||||
* If we couldn't find any opclass containing the pred_op, perhaps it
|
|
||||||
* is a <> operator. See if it has a negator that is in an opclass.
|
|
||||||
*/
|
|
||||||
pred_op_negated = false;
|
|
||||||
if (catlist->n_members == 0)
|
|
||||||
{
|
|
||||||
pred_op_negator = get_negator(pred_op);
|
|
||||||
if (OidIsValid(pred_op_negator))
|
|
||||||
{
|
|
||||||
pred_op_negated = true;
|
|
||||||
ReleaseSysCacheList(catlist);
|
|
||||||
catlist = SearchSysCacheList(AMOPOPID, 1,
|
|
||||||
ObjectIdGetDatum(pred_op_negator),
|
|
||||||
0, 0, 0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Also may need the clause_op's negator */
|
|
||||||
clause_op_negator = get_negator(clause_op);
|
|
||||||
|
|
||||||
/* Now search the opclasses */
|
|
||||||
for (i = 0; i < catlist->n_members; i++)
|
|
||||||
{
|
|
||||||
HeapTuple pred_tuple = &catlist->members[i]->tuple;
|
|
||||||
Form_pg_amop pred_form = (Form_pg_amop) GETSTRUCT(pred_tuple);
|
|
||||||
HeapTuple clause_tuple;
|
|
||||||
|
|
||||||
opclass_id = pred_form->amopclaid;
|
|
||||||
|
|
||||||
/* must be btree */
|
|
||||||
if (!opclass_is_btree(opclass_id))
|
|
||||||
continue;
|
|
||||||
/* predicate operator must be default within this opclass */
|
|
||||||
if (pred_form->amopsubtype != InvalidOid)
|
|
||||||
continue;
|
|
||||||
|
|
||||||
/* Get the predicate operator's btree strategy number */
|
|
||||||
pred_strategy = (StrategyNumber) pred_form->amopstrategy;
|
|
||||||
Assert(pred_strategy >= 1 && pred_strategy <= 5);
|
|
||||||
|
|
||||||
if (pred_op_negated)
|
|
||||||
{
|
|
||||||
/* Only consider negators that are = */
|
|
||||||
if (pred_strategy != BTEqualStrategyNumber)
|
|
||||||
continue;
|
|
||||||
pred_strategy = BTNE;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
* From the same opclass, find a strategy number for the
|
|
||||||
* clause_op, if possible
|
|
||||||
*/
|
|
||||||
clause_tuple = SearchSysCache(AMOPOPID,
|
|
||||||
ObjectIdGetDatum(clause_op),
|
|
||||||
ObjectIdGetDatum(opclass_id),
|
|
||||||
0, 0);
|
|
||||||
if (HeapTupleIsValid(clause_tuple))
|
|
||||||
{
|
|
||||||
Form_pg_amop clause_form = (Form_pg_amop) GETSTRUCT(clause_tuple);
|
|
||||||
|
|
||||||
/* Get the restriction clause operator's strategy/subtype */
|
|
||||||
clause_strategy = (StrategyNumber) clause_form->amopstrategy;
|
|
||||||
Assert(clause_strategy >= 1 && clause_strategy <= 5);
|
|
||||||
clause_subtype = clause_form->amopsubtype;
|
|
||||||
ReleaseSysCache(clause_tuple);
|
|
||||||
}
|
|
||||||
else if (OidIsValid(clause_op_negator))
|
|
||||||
{
|
|
||||||
clause_tuple = SearchSysCache(AMOPOPID,
|
|
||||||
ObjectIdGetDatum(clause_op_negator),
|
|
||||||
ObjectIdGetDatum(opclass_id),
|
|
||||||
0, 0);
|
|
||||||
if (HeapTupleIsValid(clause_tuple))
|
|
||||||
{
|
|
||||||
Form_pg_amop clause_form = (Form_pg_amop) GETSTRUCT(clause_tuple);
|
|
||||||
|
|
||||||
/* Get the restriction clause operator's strategy/subtype */
|
|
||||||
clause_strategy = (StrategyNumber) clause_form->amopstrategy;
|
|
||||||
Assert(clause_strategy >= 1 && clause_strategy <= 5);
|
|
||||||
clause_subtype = clause_form->amopsubtype;
|
|
||||||
ReleaseSysCache(clause_tuple);
|
|
||||||
|
|
||||||
/* Only consider negators that are = */
|
|
||||||
if (clause_strategy != BTEqualStrategyNumber)
|
|
||||||
continue;
|
|
||||||
clause_strategy = BTNE;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
continue;
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Look up the "test" strategy number in the implication table
|
|
||||||
*/
|
|
||||||
test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];
|
|
||||||
if (test_strategy == 0)
|
|
||||||
{
|
|
||||||
/* Can't determine implication using this interpretation */
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
* See if opclass has an operator for the test strategy and the
|
|
||||||
* clause datatype.
|
|
||||||
*/
|
|
||||||
if (test_strategy == BTNE)
|
|
||||||
{
|
|
||||||
test_op = get_opclass_member(opclass_id, clause_subtype,
|
|
||||||
BTEqualStrategyNumber);
|
|
||||||
if (OidIsValid(test_op))
|
|
||||||
test_op = get_negator(test_op);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
test_op = get_opclass_member(opclass_id, clause_subtype,
|
|
||||||
test_strategy);
|
|
||||||
}
|
|
||||||
if (OidIsValid(test_op))
|
|
||||||
{
|
|
||||||
/*
|
|
||||||
* Last check: test_op must be immutable.
|
|
||||||
*
|
|
||||||
* Note that we require only the test_op to be immutable, not the
|
|
||||||
* original clause_op. (pred_op must be immutable, else it
|
|
||||||
* would not be allowed in an index predicate.) Essentially
|
|
||||||
* we are assuming that the opclass is consistent even if it
|
|
||||||
* contains operators that are merely stable.
|
|
||||||
*/
|
|
||||||
if (op_volatile(test_op) == PROVOLATILE_IMMUTABLE)
|
|
||||||
{
|
|
||||||
found = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
ReleaseSysCacheList(catlist);
|
|
||||||
|
|
||||||
if (!found)
|
|
||||||
{
|
|
||||||
/* couldn't find a btree opclass to interpret the operators */
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Evaluate the test. For this we need an EState.
|
|
||||||
*/
|
|
||||||
estate = CreateExecutorState();
|
|
||||||
|
|
||||||
/* We can use the estate's working context to avoid memory leaks. */
|
|
||||||
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
||||||
|
|
||||||
/* Build expression tree */
|
|
||||||
test_expr = make_opclause(test_op,
|
|
||||||
BOOLOID,
|
|
||||||
false,
|
|
||||||
(Expr *) pred_const,
|
|
||||||
(Expr *) clause_const);
|
|
||||||
|
|
||||||
/* Prepare it for execution */
|
|
||||||
test_exprstate = ExecPrepareExpr(test_expr, estate);
|
|
||||||
|
|
||||||
/* And execute it. */
|
|
||||||
test_result = ExecEvalExprSwitchContext(test_exprstate,
|
|
||||||
GetPerTupleExprContext(estate),
|
|
||||||
&isNull, NULL);
|
|
||||||
|
|
||||||
/* Get back to outer memory context */
|
|
||||||
MemoryContextSwitchTo(oldcontext);
|
|
||||||
|
|
||||||
/* Release all the junk we just created */
|
|
||||||
FreeExecutorState(estate);
|
|
||||||
|
|
||||||
if (isNull)
|
|
||||||
{
|
|
||||||
/* Treat a null result as false ... but it's a tad fishy ... */
|
|
||||||
elog(DEBUG2, "null predicate test result");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
return DatumGetBool(test_result);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
/****************************************************************************
|
/****************************************************************************
|
||||||
* ---- ROUTINES TO CHECK JOIN CLAUSES ----
|
* ---- ROUTINES TO CHECK JOIN CLAUSES ----
|
||||||
****************************************************************************/
|
****************************************************************************/
|
||||||
|
@ -10,7 +10,7 @@
|
|||||||
*
|
*
|
||||||
*
|
*
|
||||||
* IDENTIFICATION
|
* IDENTIFICATION
|
||||||
* $PostgreSQL: pgsql/src/backend/optimizer/plan/createplan.c,v 1.191 2005/06/05 22:32:55 tgl Exp $
|
* $PostgreSQL: pgsql/src/backend/optimizer/plan/createplan.c,v 1.192 2005/06/10 22:25:36 tgl Exp $
|
||||||
*
|
*
|
||||||
*-------------------------------------------------------------------------
|
*-------------------------------------------------------------------------
|
||||||
*/
|
*/
|
||||||
@ -22,9 +22,9 @@
|
|||||||
#include "nodes/nodeFuncs.h"
|
#include "nodes/nodeFuncs.h"
|
||||||
#include "optimizer/clauses.h"
|
#include "optimizer/clauses.h"
|
||||||
#include "optimizer/cost.h"
|
#include "optimizer/cost.h"
|
||||||
#include "optimizer/paths.h"
|
|
||||||
#include "optimizer/plancat.h"
|
#include "optimizer/plancat.h"
|
||||||
#include "optimizer/planmain.h"
|
#include "optimizer/planmain.h"
|
||||||
|
#include "optimizer/predtest.h"
|
||||||
#include "optimizer/restrictinfo.h"
|
#include "optimizer/restrictinfo.h"
|
||||||
#include "optimizer/tlist.h"
|
#include "optimizer/tlist.h"
|
||||||
#include "optimizer/var.h"
|
#include "optimizer/var.h"
|
||||||
@ -782,8 +782,8 @@ create_indexscan_plan(PlannerInfo *root,
|
|||||||
* spot duplicate RestrictInfos, so we try that first. In some situations
|
* spot duplicate RestrictInfos, so we try that first. In some situations
|
||||||
* (particularly with OR'd index conditions) we may have scan_clauses
|
* (particularly with OR'd index conditions) we may have scan_clauses
|
||||||
* that are not equal to, but are logically implied by, the index quals;
|
* that are not equal to, but are logically implied by, the index quals;
|
||||||
* so we also try a pred_test() check to see if we can discard quals
|
* so we also try a predicate_implied_by() check to see if we can discard
|
||||||
* that way.
|
* quals that way.
|
||||||
*
|
*
|
||||||
* While at it, we strip off the RestrictInfos to produce a list of
|
* While at it, we strip off the RestrictInfos to produce a list of
|
||||||
* plain expressions.
|
* plain expressions.
|
||||||
@ -796,7 +796,8 @@ create_indexscan_plan(PlannerInfo *root,
|
|||||||
Assert(IsA(rinfo, RestrictInfo));
|
Assert(IsA(rinfo, RestrictInfo));
|
||||||
if (list_member_ptr(nonlossy_indexquals, rinfo))
|
if (list_member_ptr(nonlossy_indexquals, rinfo))
|
||||||
continue;
|
continue;
|
||||||
if (pred_test(list_make1(rinfo->clause), nonlossy_indexquals))
|
if (predicate_implied_by(list_make1(rinfo->clause),
|
||||||
|
nonlossy_indexquals))
|
||||||
continue;
|
continue;
|
||||||
qpqual = lappend(qpqual, rinfo->clause);
|
qpqual = lappend(qpqual, rinfo->clause);
|
||||||
}
|
}
|
||||||
@ -878,7 +879,7 @@ create_bitmap_scan_plan(PlannerInfo *root,
|
|||||||
* clauses, so we try that first. In some situations (particularly with
|
* clauses, so we try that first. In some situations (particularly with
|
||||||
* OR'd index conditions) we may have scan_clauses that are not equal to,
|
* OR'd index conditions) we may have scan_clauses that are not equal to,
|
||||||
* but are logically implied by, the index quals; so we also try a
|
* but are logically implied by, the index quals; so we also try a
|
||||||
* pred_test() check to see if we can discard quals that way.
|
* predicate_implied_by() check to see if we can discard quals that way.
|
||||||
*/
|
*/
|
||||||
qpqual = NIL;
|
qpqual = NIL;
|
||||||
foreach(l, scan_clauses)
|
foreach(l, scan_clauses)
|
||||||
@ -887,7 +888,8 @@ create_bitmap_scan_plan(PlannerInfo *root,
|
|||||||
|
|
||||||
if (list_member(indexquals, clause))
|
if (list_member(indexquals, clause))
|
||||||
continue;
|
continue;
|
||||||
if (pred_test(list_make1(clause), indexquals))
|
if (predicate_implied_by(list_make1(clause),
|
||||||
|
indexquals))
|
||||||
continue;
|
continue;
|
||||||
qpqual = lappend(qpqual, clause);
|
qpqual = lappend(qpqual, clause);
|
||||||
}
|
}
|
||||||
|
@ -4,7 +4,7 @@
|
|||||||
# Makefile for optimizer/util
|
# Makefile for optimizer/util
|
||||||
#
|
#
|
||||||
# IDENTIFICATION
|
# IDENTIFICATION
|
||||||
# $PostgreSQL: pgsql/src/backend/optimizer/util/Makefile,v 1.15 2003/11/29 19:51:51 pgsql Exp $
|
# $PostgreSQL: pgsql/src/backend/optimizer/util/Makefile,v 1.16 2005/06/10 22:25:36 tgl Exp $
|
||||||
#
|
#
|
||||||
#-------------------------------------------------------------------------
|
#-------------------------------------------------------------------------
|
||||||
|
|
||||||
@ -12,8 +12,8 @@ subdir = src/backend/optimizer/util
|
|||||||
top_builddir = ../../../..
|
top_builddir = ../../../..
|
||||||
include $(top_builddir)/src/Makefile.global
|
include $(top_builddir)/src/Makefile.global
|
||||||
|
|
||||||
OBJS = restrictinfo.o clauses.o plancat.o \
|
OBJS = clauses.o joininfo.o pathnode.o plancat.o predtest.o \
|
||||||
joininfo.o pathnode.o relnode.o tlist.o var.o
|
relnode.o restrictinfo.o tlist.o var.o
|
||||||
|
|
||||||
all: SUBSYS.o
|
all: SUBSYS.o
|
||||||
|
|
||||||
|
671
src/backend/optimizer/util/predtest.c
Normal file
671
src/backend/optimizer/util/predtest.c
Normal file
@ -0,0 +1,671 @@
|
|||||||
|
/*-------------------------------------------------------------------------
|
||||||
|
*
|
||||||
|
* predtest.c
|
||||||
|
* Routines to attempt to prove logical implications between predicate
|
||||||
|
* expressions.
|
||||||
|
*
|
||||||
|
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
|
||||||
|
* Portions Copyright (c) 1994, Regents of the University of California
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* IDENTIFICATION
|
||||||
|
* $PostgreSQL: pgsql/src/backend/optimizer/util/predtest.c,v 1.1 2005/06/10 22:25:36 tgl Exp $
|
||||||
|
*
|
||||||
|
*-------------------------------------------------------------------------
|
||||||
|
*/
|
||||||
|
#include "postgres.h"
|
||||||
|
|
||||||
|
#include "catalog/pg_amop.h"
|
||||||
|
#include "catalog/pg_proc.h"
|
||||||
|
#include "catalog/pg_type.h"
|
||||||
|
#include "executor/executor.h"
|
||||||
|
#include "optimizer/clauses.h"
|
||||||
|
#include "optimizer/predtest.h"
|
||||||
|
#include "utils/catcache.h"
|
||||||
|
#include "utils/lsyscache.h"
|
||||||
|
#include "utils/syscache.h"
|
||||||
|
|
||||||
|
|
||||||
|
static bool predicate_implied_by_recurse(Node *clause, Node *predicate);
|
||||||
|
static bool predicate_implied_by_simple_clause(Expr *predicate, Node *clause);
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* predicate_implied_by
|
||||||
|
* Recursively checks whether the clauses in restrictinfo_list imply
|
||||||
|
* that the given predicate is true.
|
||||||
|
*
|
||||||
|
* The top-level List structure of each list corresponds to an AND list.
|
||||||
|
* We assume that eval_const_expressions() has been applied and so there
|
||||||
|
* are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
|
||||||
|
* including AND just below the top-level List structure).
|
||||||
|
* If this is not true we might fail to prove an implication that is
|
||||||
|
* valid, but no worse consequences will ensue.
|
||||||
|
*/
|
||||||
|
bool
|
||||||
|
predicate_implied_by(List *predicate_list, List *restrictinfo_list)
|
||||||
|
{
|
||||||
|
ListCell *item;
|
||||||
|
|
||||||
|
if (predicate_list == NIL)
|
||||||
|
return true; /* no predicate: implication is vacuous */
|
||||||
|
if (restrictinfo_list == NIL)
|
||||||
|
return false; /* no restriction: implication must fail */
|
||||||
|
|
||||||
|
/*
|
||||||
|
* In all cases where the predicate is an AND-clause,
|
||||||
|
* predicate_implied_by_recurse() will prefer to iterate over the
|
||||||
|
* predicate's components. So we can just do that to start with here,
|
||||||
|
* and eliminate the need for predicate_implied_by_recurse() to handle
|
||||||
|
* a bare List on the predicate side.
|
||||||
|
*
|
||||||
|
* Logic is: restriction must imply each of the AND'ed predicate items.
|
||||||
|
*/
|
||||||
|
foreach(item, predicate_list)
|
||||||
|
{
|
||||||
|
if (!predicate_implied_by_recurse((Node *) restrictinfo_list,
|
||||||
|
lfirst(item)))
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*----------
|
||||||
|
* predicate_implied_by_recurse
|
||||||
|
* Does the predicate implication test for non-NULL restriction and
|
||||||
|
* predicate clauses.
|
||||||
|
*
|
||||||
|
* The logic followed here is ("=>" means "implies"):
|
||||||
|
* atom A => atom B iff: predicate_implied_by_simple_clause says so
|
||||||
|
* atom A => AND-expr B iff: A => each of B's components
|
||||||
|
* atom A => OR-expr B iff: A => any of B's components
|
||||||
|
* AND-expr A => atom B iff: any of A's components => B
|
||||||
|
* AND-expr A => AND-expr B iff: A => each of B's components
|
||||||
|
* AND-expr A => OR-expr B iff: A => any of B's components,
|
||||||
|
* *or* any of A's components => B
|
||||||
|
* OR-expr A => atom B iff: each of A's components => B
|
||||||
|
* OR-expr A => AND-expr B iff: A => each of B's components
|
||||||
|
* OR-expr A => OR-expr B iff: each of A's components => any of B's
|
||||||
|
*
|
||||||
|
* An "atom" is anything other than an AND or OR node. Notice that we don't
|
||||||
|
* have any special logic to handle NOT nodes; these should have been pushed
|
||||||
|
* down or eliminated where feasible by prepqual.c.
|
||||||
|
*
|
||||||
|
* We can't recursively expand either side first, but have to interleave
|
||||||
|
* the expansions per the above rules, to be sure we handle all of these
|
||||||
|
* examples:
|
||||||
|
* (x OR y) => (x OR y OR z)
|
||||||
|
* (x AND y AND z) => (x AND y)
|
||||||
|
* (x AND y) => ((x AND y) OR z)
|
||||||
|
* ((x OR y) AND z) => (x OR y)
|
||||||
|
* This is still not an exhaustive test, but it handles most normal cases
|
||||||
|
* under the assumption that both inputs have been AND/OR flattened.
|
||||||
|
*
|
||||||
|
* A bare List node on the restriction side is interpreted as an AND clause,
|
||||||
|
* in order to handle the top-level restriction List properly. However we
|
||||||
|
* need not consider a List on the predicate side since predicate_implied_by()
|
||||||
|
* already expanded it.
|
||||||
|
*
|
||||||
|
* We have to be prepared to handle RestrictInfo nodes in the restrictinfo
|
||||||
|
* tree, though not in the predicate tree.
|
||||||
|
*----------
|
||||||
|
*/
|
||||||
|
static bool
|
||||||
|
predicate_implied_by_recurse(Node *clause, Node *predicate)
|
||||||
|
{
|
||||||
|
ListCell *item;
|
||||||
|
|
||||||
|
Assert(clause != NULL);
|
||||||
|
/* skip through RestrictInfo */
|
||||||
|
if (IsA(clause, RestrictInfo))
|
||||||
|
{
|
||||||
|
clause = (Node *) ((RestrictInfo *) clause)->clause;
|
||||||
|
Assert(clause != NULL);
|
||||||
|
Assert(!IsA(clause, RestrictInfo));
|
||||||
|
}
|
||||||
|
Assert(predicate != NULL);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Since a restriction List clause is handled the same as an AND clause,
|
||||||
|
* we can avoid duplicate code like this:
|
||||||
|
*/
|
||||||
|
if (and_clause(clause))
|
||||||
|
clause = (Node *) ((BoolExpr *) clause)->args;
|
||||||
|
|
||||||
|
if (IsA(clause, List))
|
||||||
|
{
|
||||||
|
if (and_clause(predicate))
|
||||||
|
{
|
||||||
|
/* AND-clause => AND-clause if A implies each of B's items */
|
||||||
|
foreach(item, ((BoolExpr *) predicate)->args)
|
||||||
|
{
|
||||||
|
if (!predicate_implied_by_recurse(clause, lfirst(item)))
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
else if (or_clause(predicate))
|
||||||
|
{
|
||||||
|
/* AND-clause => OR-clause if A implies any of B's items */
|
||||||
|
/* Needed to handle (x AND y) => ((x AND y) OR z) */
|
||||||
|
foreach(item, ((BoolExpr *) predicate)->args)
|
||||||
|
{
|
||||||
|
if (predicate_implied_by_recurse(clause, lfirst(item)))
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
/* Also check if any of A's items implies B */
|
||||||
|
/* Needed to handle ((x OR y) AND z) => (x OR y) */
|
||||||
|
foreach(item, (List *) clause)
|
||||||
|
{
|
||||||
|
if (predicate_implied_by_recurse(lfirst(item), predicate))
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
/* AND-clause => atom if any of A's items implies B */
|
||||||
|
foreach(item, (List *) clause)
|
||||||
|
{
|
||||||
|
if (predicate_implied_by_recurse(lfirst(item), predicate))
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else if (or_clause(clause))
|
||||||
|
{
|
||||||
|
if (or_clause(predicate))
|
||||||
|
{
|
||||||
|
/*
|
||||||
|
* OR-clause => OR-clause if each of A's items implies any of
|
||||||
|
* B's items. Messy but can't do it any more simply.
|
||||||
|
*/
|
||||||
|
foreach(item, ((BoolExpr *) clause)->args)
|
||||||
|
{
|
||||||
|
Node *citem = lfirst(item);
|
||||||
|
ListCell *item2;
|
||||||
|
|
||||||
|
foreach(item2, ((BoolExpr *) predicate)->args)
|
||||||
|
{
|
||||||
|
if (predicate_implied_by_recurse(citem, lfirst(item2)))
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if (item2 == NULL)
|
||||||
|
return false; /* doesn't imply any of B's */
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
/* OR-clause => AND-clause if each of A's items implies B */
|
||||||
|
/* OR-clause => atom if each of A's items implies B */
|
||||||
|
foreach(item, ((BoolExpr *) clause)->args)
|
||||||
|
{
|
||||||
|
if (!predicate_implied_by_recurse(lfirst(item), predicate))
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
if (and_clause(predicate))
|
||||||
|
{
|
||||||
|
/* atom => AND-clause if A implies each of B's items */
|
||||||
|
foreach(item, ((BoolExpr *) predicate)->args)
|
||||||
|
{
|
||||||
|
if (!predicate_implied_by_recurse(clause, lfirst(item)))
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
else if (or_clause(predicate))
|
||||||
|
{
|
||||||
|
/* atom => OR-clause if A implies any of B's items */
|
||||||
|
foreach(item, ((BoolExpr *) predicate)->args)
|
||||||
|
{
|
||||||
|
if (predicate_implied_by_recurse(clause, lfirst(item)))
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
/* atom => atom is the base case */
|
||||||
|
return predicate_implied_by_simple_clause((Expr *) predicate,
|
||||||
|
clause);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Define an "operator implication table" for btree operators ("strategies").
|
||||||
|
*
|
||||||
|
* The strategy numbers defined by btree indexes (see access/skey.h) are:
|
||||||
|
* (1) < (2) <= (3) = (4) >= (5) >
|
||||||
|
* and in addition we use (6) to represent <>. <> is not a btree-indexable
|
||||||
|
* operator, but we assume here that if the equality operator of a btree
|
||||||
|
* opclass has a negator operator, the negator behaves as <> for the opclass.
|
||||||
|
*
|
||||||
|
* The interpretation of:
|
||||||
|
*
|
||||||
|
* test_op = BT_implic_table[given_op-1][target_op-1]
|
||||||
|
*
|
||||||
|
* where test_op, given_op and target_op are strategy numbers (from 1 to 6)
|
||||||
|
* of btree operators, is as follows:
|
||||||
|
*
|
||||||
|
* If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
|
||||||
|
* want to determine whether "ATTR target_op CONST2" must also be true, then
|
||||||
|
* you can use "CONST2 test_op CONST1" as a test. If this test returns true,
|
||||||
|
* then the target expression must be true; if the test returns false, then
|
||||||
|
* the target expression may be false.
|
||||||
|
*
|
||||||
|
* An entry where test_op == 0 means the implication cannot be determined,
|
||||||
|
* i.e., this test should always be considered false.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define BTLT BTLessStrategyNumber
|
||||||
|
#define BTLE BTLessEqualStrategyNumber
|
||||||
|
#define BTEQ BTEqualStrategyNumber
|
||||||
|
#define BTGE BTGreaterEqualStrategyNumber
|
||||||
|
#define BTGT BTGreaterStrategyNumber
|
||||||
|
#define BTNE 6
|
||||||
|
|
||||||
|
static const StrategyNumber
|
||||||
|
BT_implic_table[6][6] = {
|
||||||
|
/*
|
||||||
|
* The target operator:
|
||||||
|
*
|
||||||
|
* LT LE EQ GE GT NE
|
||||||
|
*/
|
||||||
|
{BTGE, BTGE, 0, 0, 0, BTGE}, /* LT */
|
||||||
|
{BTGT, BTGE, 0, 0, 0, BTGT}, /* LE */
|
||||||
|
{BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE}, /* EQ */
|
||||||
|
{0, 0, 0, BTLE, BTLT, BTLT}, /* GE */
|
||||||
|
{0, 0, 0, BTLE, BTLE, BTLE}, /* GT */
|
||||||
|
{0, 0, 0, 0, 0, BTEQ} /* NE */
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/*----------
|
||||||
|
* predicate_implied_by_simple_clause
|
||||||
|
* Does the predicate implication test for a "simple clause" predicate
|
||||||
|
* and a "simple clause" restriction.
|
||||||
|
*
|
||||||
|
* We have three strategies for determining whether one simple clause
|
||||||
|
* implies another:
|
||||||
|
*
|
||||||
|
* A simple and general way is to see if they are equal(); this works for any
|
||||||
|
* kind of expression. (Actually, there is an implied assumption that the
|
||||||
|
* functions in the expression are immutable, ie dependent only on their input
|
||||||
|
* arguments --- but this was checked for the predicate by CheckPredicate().)
|
||||||
|
*
|
||||||
|
* When the predicate is of the form "foo IS NOT NULL", we can conclude that
|
||||||
|
* the predicate is implied if the clause is a strict operator or function
|
||||||
|
* that has "foo" as an input. In this case the clause must yield NULL when
|
||||||
|
* "foo" is NULL, which we can take as equivalent to FALSE because we know
|
||||||
|
* we are within an AND/OR subtree of a WHERE clause. (Again, "foo" is
|
||||||
|
* already known immutable, so the clause will certainly always fail.)
|
||||||
|
*
|
||||||
|
* Our other way works only for binary boolean opclauses of the form
|
||||||
|
* "foo op constant", where "foo" is the same in both clauses. The operators
|
||||||
|
* and constants can be different but the operators must be in the same btree
|
||||||
|
* operator class. We use the above operator implication table to be able to
|
||||||
|
* derive implications between nonidentical clauses. (Note: "foo" is known
|
||||||
|
* immutable, and constants are surely immutable, but we have to check that
|
||||||
|
* the operators are too. As of 8.0 it's possible for opclasses to contain
|
||||||
|
* operators that are merely stable, and we dare not make deductions with
|
||||||
|
* these.)
|
||||||
|
*
|
||||||
|
* Eventually, rtree operators could also be handled by defining an
|
||||||
|
* appropriate "RT_implic_table" array.
|
||||||
|
*----------
|
||||||
|
*/
|
||||||
|
static bool
|
||||||
|
predicate_implied_by_simple_clause(Expr *predicate, Node *clause)
|
||||||
|
{
|
||||||
|
Node *leftop,
|
||||||
|
*rightop;
|
||||||
|
Node *pred_var,
|
||||||
|
*clause_var;
|
||||||
|
Const *pred_const,
|
||||||
|
*clause_const;
|
||||||
|
bool pred_var_on_left,
|
||||||
|
clause_var_on_left,
|
||||||
|
pred_op_negated;
|
||||||
|
Oid pred_op,
|
||||||
|
clause_op,
|
||||||
|
pred_op_negator,
|
||||||
|
clause_op_negator,
|
||||||
|
test_op = InvalidOid;
|
||||||
|
Oid opclass_id;
|
||||||
|
bool found = false;
|
||||||
|
StrategyNumber pred_strategy,
|
||||||
|
clause_strategy,
|
||||||
|
test_strategy;
|
||||||
|
Oid clause_subtype;
|
||||||
|
Expr *test_expr;
|
||||||
|
ExprState *test_exprstate;
|
||||||
|
Datum test_result;
|
||||||
|
bool isNull;
|
||||||
|
CatCList *catlist;
|
||||||
|
int i;
|
||||||
|
EState *estate;
|
||||||
|
MemoryContext oldcontext;
|
||||||
|
|
||||||
|
/* First try the equal() test */
|
||||||
|
if (equal((Node *) predicate, clause))
|
||||||
|
return true;
|
||||||
|
|
||||||
|
/* Next try the IS NOT NULL case */
|
||||||
|
if (predicate && IsA(predicate, NullTest) &&
|
||||||
|
((NullTest *) predicate)->nulltesttype == IS_NOT_NULL)
|
||||||
|
{
|
||||||
|
Expr *nonnullarg = ((NullTest *) predicate)->arg;
|
||||||
|
|
||||||
|
if (is_opclause(clause) &&
|
||||||
|
list_member(((OpExpr *) clause)->args, nonnullarg) &&
|
||||||
|
op_strict(((OpExpr *) clause)->opno))
|
||||||
|
return true;
|
||||||
|
if (is_funcclause(clause) &&
|
||||||
|
list_member(((FuncExpr *) clause)->args, nonnullarg) &&
|
||||||
|
func_strict(((FuncExpr *) clause)->funcid))
|
||||||
|
return true;
|
||||||
|
return false; /* we can't succeed below... */
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Can't do anything more unless they are both binary opclauses with a
|
||||||
|
* Const on one side, and identical subexpressions on the other sides.
|
||||||
|
* Note we don't have to think about binary relabeling of the Const
|
||||||
|
* node, since that would have been folded right into the Const.
|
||||||
|
*
|
||||||
|
* If either Const is null, we also fail right away; this assumes that
|
||||||
|
* the test operator will always be strict.
|
||||||
|
*/
|
||||||
|
if (!is_opclause(predicate))
|
||||||
|
return false;
|
||||||
|
leftop = get_leftop(predicate);
|
||||||
|
rightop = get_rightop(predicate);
|
||||||
|
if (rightop == NULL)
|
||||||
|
return false; /* not a binary opclause */
|
||||||
|
if (IsA(rightop, Const))
|
||||||
|
{
|
||||||
|
pred_var = leftop;
|
||||||
|
pred_const = (Const *) rightop;
|
||||||
|
pred_var_on_left = true;
|
||||||
|
}
|
||||||
|
else if (IsA(leftop, Const))
|
||||||
|
{
|
||||||
|
pred_var = rightop;
|
||||||
|
pred_const = (Const *) leftop;
|
||||||
|
pred_var_on_left = false;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
return false; /* no Const to be found */
|
||||||
|
if (pred_const->constisnull)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
if (!is_opclause(clause))
|
||||||
|
return false;
|
||||||
|
leftop = get_leftop((Expr *) clause);
|
||||||
|
rightop = get_rightop((Expr *) clause);
|
||||||
|
if (rightop == NULL)
|
||||||
|
return false; /* not a binary opclause */
|
||||||
|
if (IsA(rightop, Const))
|
||||||
|
{
|
||||||
|
clause_var = leftop;
|
||||||
|
clause_const = (Const *) rightop;
|
||||||
|
clause_var_on_left = true;
|
||||||
|
}
|
||||||
|
else if (IsA(leftop, Const))
|
||||||
|
{
|
||||||
|
clause_var = rightop;
|
||||||
|
clause_const = (Const *) leftop;
|
||||||
|
clause_var_on_left = false;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
return false; /* no Const to be found */
|
||||||
|
if (clause_const->constisnull)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Check for matching subexpressions on the non-Const sides. We used
|
||||||
|
* to only allow a simple Var, but it's about as easy to allow any
|
||||||
|
* expression. Remember we already know that the pred expression does
|
||||||
|
* not contain any non-immutable functions, so identical expressions
|
||||||
|
* should yield identical results.
|
||||||
|
*/
|
||||||
|
if (!equal(pred_var, clause_var))
|
||||||
|
return false;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Okay, get the operators in the two clauses we're comparing. Commute
|
||||||
|
* them if needed so that we can assume the variables are on the left.
|
||||||
|
*/
|
||||||
|
pred_op = ((OpExpr *) predicate)->opno;
|
||||||
|
if (!pred_var_on_left)
|
||||||
|
{
|
||||||
|
pred_op = get_commutator(pred_op);
|
||||||
|
if (!OidIsValid(pred_op))
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
clause_op = ((OpExpr *) clause)->opno;
|
||||||
|
if (!clause_var_on_left)
|
||||||
|
{
|
||||||
|
clause_op = get_commutator(clause_op);
|
||||||
|
if (!OidIsValid(clause_op))
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Try to find a btree opclass containing the needed operators.
|
||||||
|
*
|
||||||
|
* We must find a btree opclass that contains both operators, else the
|
||||||
|
* implication can't be determined. Also, the pred_op has to be of
|
||||||
|
* default subtype (implying left and right input datatypes are the
|
||||||
|
* same); otherwise it's unsafe to put the pred_const on the left side
|
||||||
|
* of the test. Also, the opclass must contain a suitable test
|
||||||
|
* operator matching the clause_const's type (which we take to mean
|
||||||
|
* that it has the same subtype as the original clause_operator).
|
||||||
|
*
|
||||||
|
* If there are multiple matching opclasses, assume we can use any one to
|
||||||
|
* determine the logical relationship of the two operators and the
|
||||||
|
* correct corresponding test operator. This should work for any
|
||||||
|
* logically consistent opclasses.
|
||||||
|
*/
|
||||||
|
catlist = SearchSysCacheList(AMOPOPID, 1,
|
||||||
|
ObjectIdGetDatum(pred_op),
|
||||||
|
0, 0, 0);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* If we couldn't find any opclass containing the pred_op, perhaps it
|
||||||
|
* is a <> operator. See if it has a negator that is in an opclass.
|
||||||
|
*/
|
||||||
|
pred_op_negated = false;
|
||||||
|
if (catlist->n_members == 0)
|
||||||
|
{
|
||||||
|
pred_op_negator = get_negator(pred_op);
|
||||||
|
if (OidIsValid(pred_op_negator))
|
||||||
|
{
|
||||||
|
pred_op_negated = true;
|
||||||
|
ReleaseSysCacheList(catlist);
|
||||||
|
catlist = SearchSysCacheList(AMOPOPID, 1,
|
||||||
|
ObjectIdGetDatum(pred_op_negator),
|
||||||
|
0, 0, 0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Also may need the clause_op's negator */
|
||||||
|
clause_op_negator = get_negator(clause_op);
|
||||||
|
|
||||||
|
/* Now search the opclasses */
|
||||||
|
for (i = 0; i < catlist->n_members; i++)
|
||||||
|
{
|
||||||
|
HeapTuple pred_tuple = &catlist->members[i]->tuple;
|
||||||
|
Form_pg_amop pred_form = (Form_pg_amop) GETSTRUCT(pred_tuple);
|
||||||
|
HeapTuple clause_tuple;
|
||||||
|
|
||||||
|
opclass_id = pred_form->amopclaid;
|
||||||
|
|
||||||
|
/* must be btree */
|
||||||
|
if (!opclass_is_btree(opclass_id))
|
||||||
|
continue;
|
||||||
|
/* predicate operator must be default within this opclass */
|
||||||
|
if (pred_form->amopsubtype != InvalidOid)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
/* Get the predicate operator's btree strategy number */
|
||||||
|
pred_strategy = (StrategyNumber) pred_form->amopstrategy;
|
||||||
|
Assert(pred_strategy >= 1 && pred_strategy <= 5);
|
||||||
|
|
||||||
|
if (pred_op_negated)
|
||||||
|
{
|
||||||
|
/* Only consider negators that are = */
|
||||||
|
if (pred_strategy != BTEqualStrategyNumber)
|
||||||
|
continue;
|
||||||
|
pred_strategy = BTNE;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* From the same opclass, find a strategy number for the
|
||||||
|
* clause_op, if possible
|
||||||
|
*/
|
||||||
|
clause_tuple = SearchSysCache(AMOPOPID,
|
||||||
|
ObjectIdGetDatum(clause_op),
|
||||||
|
ObjectIdGetDatum(opclass_id),
|
||||||
|
0, 0);
|
||||||
|
if (HeapTupleIsValid(clause_tuple))
|
||||||
|
{
|
||||||
|
Form_pg_amop clause_form = (Form_pg_amop) GETSTRUCT(clause_tuple);
|
||||||
|
|
||||||
|
/* Get the restriction clause operator's strategy/subtype */
|
||||||
|
clause_strategy = (StrategyNumber) clause_form->amopstrategy;
|
||||||
|
Assert(clause_strategy >= 1 && clause_strategy <= 5);
|
||||||
|
clause_subtype = clause_form->amopsubtype;
|
||||||
|
ReleaseSysCache(clause_tuple);
|
||||||
|
}
|
||||||
|
else if (OidIsValid(clause_op_negator))
|
||||||
|
{
|
||||||
|
clause_tuple = SearchSysCache(AMOPOPID,
|
||||||
|
ObjectIdGetDatum(clause_op_negator),
|
||||||
|
ObjectIdGetDatum(opclass_id),
|
||||||
|
0, 0);
|
||||||
|
if (HeapTupleIsValid(clause_tuple))
|
||||||
|
{
|
||||||
|
Form_pg_amop clause_form = (Form_pg_amop) GETSTRUCT(clause_tuple);
|
||||||
|
|
||||||
|
/* Get the restriction clause operator's strategy/subtype */
|
||||||
|
clause_strategy = (StrategyNumber) clause_form->amopstrategy;
|
||||||
|
Assert(clause_strategy >= 1 && clause_strategy <= 5);
|
||||||
|
clause_subtype = clause_form->amopsubtype;
|
||||||
|
ReleaseSysCache(clause_tuple);
|
||||||
|
|
||||||
|
/* Only consider negators that are = */
|
||||||
|
if (clause_strategy != BTEqualStrategyNumber)
|
||||||
|
continue;
|
||||||
|
clause_strategy = BTNE;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
continue;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Look up the "test" strategy number in the implication table
|
||||||
|
*/
|
||||||
|
test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];
|
||||||
|
if (test_strategy == 0)
|
||||||
|
{
|
||||||
|
/* Can't determine implication using this interpretation */
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* See if opclass has an operator for the test strategy and the
|
||||||
|
* clause datatype.
|
||||||
|
*/
|
||||||
|
if (test_strategy == BTNE)
|
||||||
|
{
|
||||||
|
test_op = get_opclass_member(opclass_id, clause_subtype,
|
||||||
|
BTEqualStrategyNumber);
|
||||||
|
if (OidIsValid(test_op))
|
||||||
|
test_op = get_negator(test_op);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
test_op = get_opclass_member(opclass_id, clause_subtype,
|
||||||
|
test_strategy);
|
||||||
|
}
|
||||||
|
if (OidIsValid(test_op))
|
||||||
|
{
|
||||||
|
/*
|
||||||
|
* Last check: test_op must be immutable.
|
||||||
|
*
|
||||||
|
* Note that we require only the test_op to be immutable, not the
|
||||||
|
* original clause_op. (pred_op must be immutable, else it
|
||||||
|
* would not be allowed in an index predicate.) Essentially
|
||||||
|
* we are assuming that the opclass is consistent even if it
|
||||||
|
* contains operators that are merely stable.
|
||||||
|
*
|
||||||
|
* XXX the above reasoning doesn't hold anymore if this routine
|
||||||
|
* is used to prove things that are not index predicates ...
|
||||||
|
*/
|
||||||
|
if (op_volatile(test_op) == PROVOLATILE_IMMUTABLE)
|
||||||
|
{
|
||||||
|
found = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
ReleaseSysCacheList(catlist);
|
||||||
|
|
||||||
|
if (!found)
|
||||||
|
{
|
||||||
|
/* couldn't find a btree opclass to interpret the operators */
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Evaluate the test. For this we need an EState.
|
||||||
|
*/
|
||||||
|
estate = CreateExecutorState();
|
||||||
|
|
||||||
|
/* We can use the estate's working context to avoid memory leaks. */
|
||||||
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
||||||
|
|
||||||
|
/* Build expression tree */
|
||||||
|
test_expr = make_opclause(test_op,
|
||||||
|
BOOLOID,
|
||||||
|
false,
|
||||||
|
(Expr *) pred_const,
|
||||||
|
(Expr *) clause_const);
|
||||||
|
|
||||||
|
/* Prepare it for execution */
|
||||||
|
test_exprstate = ExecPrepareExpr(test_expr, estate);
|
||||||
|
|
||||||
|
/* And execute it. */
|
||||||
|
test_result = ExecEvalExprSwitchContext(test_exprstate,
|
||||||
|
GetPerTupleExprContext(estate),
|
||||||
|
&isNull, NULL);
|
||||||
|
|
||||||
|
/* Get back to outer memory context */
|
||||||
|
MemoryContextSwitchTo(oldcontext);
|
||||||
|
|
||||||
|
/* Release all the junk we just created */
|
||||||
|
FreeExecutorState(estate);
|
||||||
|
|
||||||
|
if (isNull)
|
||||||
|
{
|
||||||
|
/* Treat a null result as false ... but it's a tad fishy ... */
|
||||||
|
elog(DEBUG2, "null predicate test result");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
return DatumGetBool(test_result);
|
||||||
|
}
|
@ -15,7 +15,7 @@
|
|||||||
*
|
*
|
||||||
*
|
*
|
||||||
* IDENTIFICATION
|
* IDENTIFICATION
|
||||||
* $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.180 2005/06/05 22:32:57 tgl Exp $
|
* $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.181 2005/06/10 22:25:36 tgl Exp $
|
||||||
*
|
*
|
||||||
*-------------------------------------------------------------------------
|
*-------------------------------------------------------------------------
|
||||||
*/
|
*/
|
||||||
@ -4221,12 +4221,11 @@ genericcostestimate(PlannerInfo *root,
|
|||||||
* of partial redundancy (such as "x < 4" from the qual and "x < 5"
|
* of partial redundancy (such as "x < 4" from the qual and "x < 5"
|
||||||
* from the predicate) will be recognized and handled correctly by
|
* from the predicate) will be recognized and handled correctly by
|
||||||
* clauselist_selectivity(). This assumption is somewhat fragile,
|
* clauselist_selectivity(). This assumption is somewhat fragile,
|
||||||
* since it depends on pred_test() and clauselist_selectivity() having
|
* since it depends on predicate_implied_by() and clauselist_selectivity()
|
||||||
* similar capabilities, and there are certainly many cases where we
|
* having similar capabilities, and there are certainly many cases where
|
||||||
* will end up with a too-low selectivity estimate. This will bias
|
* we will end up with a too-low selectivity estimate. This will bias the
|
||||||
* the system in favor of using partial indexes where possible, which
|
* system in favor of using partial indexes where possible, which is not
|
||||||
* is not necessarily a bad thing. But it'd be nice to do better
|
* necessarily a bad thing. But it'd be nice to do better someday.
|
||||||
* someday.
|
|
||||||
*
|
*
|
||||||
* Note that index->indpred and indexQuals are both in implicit-AND form,
|
* Note that index->indpred and indexQuals are both in implicit-AND form,
|
||||||
* so ANDing them together just takes merging the lists. However,
|
* so ANDing them together just takes merging the lists. However,
|
||||||
|
@ -7,7 +7,7 @@
|
|||||||
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
|
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
|
||||||
* Portions Copyright (c) 1994, Regents of the University of California
|
* Portions Copyright (c) 1994, Regents of the University of California
|
||||||
*
|
*
|
||||||
* $PostgreSQL: pgsql/src/include/optimizer/paths.h,v 1.84 2005/06/05 22:32:58 tgl Exp $
|
* $PostgreSQL: pgsql/src/include/optimizer/paths.h,v 1.85 2005/06/10 22:25:37 tgl Exp $
|
||||||
*
|
*
|
||||||
*-------------------------------------------------------------------------
|
*-------------------------------------------------------------------------
|
||||||
*/
|
*/
|
||||||
@ -49,7 +49,6 @@ extern bool match_index_to_operand(Node *operand, int indexcol,
|
|||||||
extern List *expand_indexqual_conditions(IndexOptInfo *index,
|
extern List *expand_indexqual_conditions(IndexOptInfo *index,
|
||||||
List *clausegroups);
|
List *clausegroups);
|
||||||
extern void check_partial_indexes(PlannerInfo *root, RelOptInfo *rel);
|
extern void check_partial_indexes(PlannerInfo *root, RelOptInfo *rel);
|
||||||
extern bool pred_test(List *predicate_list, List *restrictinfo_list);
|
|
||||||
extern List *flatten_clausegroups_list(List *clausegroups);
|
extern List *flatten_clausegroups_list(List *clausegroups);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
|
23
src/include/optimizer/predtest.h
Normal file
23
src/include/optimizer/predtest.h
Normal file
@ -0,0 +1,23 @@
|
|||||||
|
/*-------------------------------------------------------------------------
|
||||||
|
*
|
||||||
|
* predtest.h
|
||||||
|
* prototypes for predtest.c
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
|
||||||
|
* Portions Copyright (c) 1994, Regents of the University of California
|
||||||
|
*
|
||||||
|
* $PostgreSQL: pgsql/src/include/optimizer/predtest.h,v 1.1 2005/06/10 22:25:37 tgl Exp $
|
||||||
|
*
|
||||||
|
*-------------------------------------------------------------------------
|
||||||
|
*/
|
||||||
|
#ifndef PREDTEST_H
|
||||||
|
#define PREDTEST_H
|
||||||
|
|
||||||
|
#include "nodes/primnodes.h"
|
||||||
|
|
||||||
|
|
||||||
|
extern bool predicate_implied_by(List *predicate_list,
|
||||||
|
List *restrictinfo_list);
|
||||||
|
|
||||||
|
#endif /* PREDTEST_H */
|
Reference in New Issue
Block a user