1
0
mirror of https://github.com/postgres/postgres.git synced 2025-06-13 07:41:39 +03:00

Introduce "anycompatible" family of polymorphic types.

This patch adds the pseudo-types anycompatible, anycompatiblearray,
anycompatiblenonarray, and anycompatiblerange.  They work much like
anyelement, anyarray, anynonarray, and anyrange respectively, except
that the actual input values need not match precisely in type.
Instead, if we can find a common supertype (using the same rules
as for UNION/CASE type resolution), then the parser automatically
promotes the input values to that type.  For example,
"myfunc(anycompatible, anycompatible)" can match a call with one
integer and one bigint argument, with the integer automatically
promoted to bigint.  With anyelement in the definition, the user
would have had to cast the integer explicitly.

The new types also provide a second, independent set of type variables
for function matching; thus with "myfunc(anyelement, anyelement,
anycompatible) returns anycompatible" the first two arguments are
constrained to be the same type, but the third can be some other
type, and the result has the type of the third argument.  The need
for more than one set of type variables was foreseen back when we
first invented the polymorphic types, but we never did anything
about it.

Pavel Stehule, revised a bit by me

Discussion: https://postgr.es/m/CAFj8pRDna7VqNi8gR+Tt2Ktmz0cq5G93guc3Sbn_NVPLdXAkqA@mail.gmail.com
This commit is contained in:
Tom Lane
2020-03-19 11:43:11 -04:00
parent fab13dc50b
commit 24e2885ee3
33 changed files with 2046 additions and 131 deletions

View File

@ -4798,6 +4798,22 @@ SELECT * FROM pg_attribute
<primary>anyrange</primary>
</indexterm>
<indexterm zone="datatype-pseudo">
<primary>anycompatible</primary>
</indexterm>
<indexterm zone="datatype-pseudo">
<primary>anycompatiblearray</primary>
</indexterm>
<indexterm zone="datatype-pseudo">
<primary>anycompatiblenonarray</primary>
</indexterm>
<indexterm zone="datatype-pseudo">
<primary>anycompatiblerange</primary>
</indexterm>
<indexterm zone="datatype-pseudo">
<primary>void</primary>
</indexterm>
@ -4822,6 +4838,10 @@ SELECT * FROM pg_attribute
<primary>fdw_handler</primary>
</indexterm>
<indexterm zone="datatype-pseudo">
<primary>table_am_handler</primary>
</indexterm>
<indexterm zone="datatype-pseudo">
<primary>index_am_handler</primary>
</indexterm>
@ -4903,6 +4923,35 @@ SELECT * FROM pg_attribute
<xref linkend="rangetypes"/>).</entry>
</row>
<row>
<entry><type>anycompatible</type></entry>
<entry>Indicates that a function accepts any data type,
with automatic promotion of multiple arguments to a common data type
(see <xref linkend="extend-types-polymorphic"/>).</entry>
</row>
<row>
<entry><type>anycompatiblearray</type></entry>
<entry>Indicates that a function accepts any array data type,
with automatic promotion of multiple arguments to a common data type
(see <xref linkend="extend-types-polymorphic"/>).</entry>
</row>
<row>
<entry><type>anycompatiblenonarray</type></entry>
<entry>Indicates that a function accepts any non-array data type,
with automatic promotion of multiple arguments to a common data type
(see <xref linkend="extend-types-polymorphic"/>).</entry>
</row>
<row>
<entry><type>anycompatiblerange</type></entry>
<entry>Indicates that a function accepts any range data type,
with automatic promotion of multiple arguments to a common data type
(see <xref linkend="extend-types-polymorphic"/> and
<xref linkend="rangetypes"/>).</entry>
</row>
<row>
<entry><type>cstring</type></entry>
<entry>Indicates that a function accepts or returns a null-terminated C string.</entry>
@ -4924,6 +4973,11 @@ SELECT * FROM pg_attribute
<entry>A foreign-data wrapper handler is declared to return <type>fdw_handler</type>.</entry>
</row>
<row>
<entry><type>table_am_handler</type></entry>
<entry>A table access method handler is declared to return <type>table_am_handler</type>.</entry>
</row>
<row>
<entry><type>index_am_handler</type></entry>
<entry>An index access method handler is declared to return <type>index_am_handler</type>.</entry>
@ -4970,7 +5024,7 @@ SELECT * FROM pg_attribute
<para>
Functions coded in C (whether built-in or dynamically loaded) can be
declared to accept or return any of these pseudo data types. It is up to
declared to accept or return any of these pseudo-types. It is up to
the function author to ensure that the function will behave safely
when a pseudo-type is used as an argument type.
</para>
@ -4981,10 +5035,9 @@ SELECT * FROM pg_attribute
languages forbid use of a pseudo-type as an argument type, and allow
only <type>void</type> and <type>record</type> as a result type (plus
<type>trigger</type> or <type>event_trigger</type> when the function is used
as a trigger or event trigger). Some also
support polymorphic functions using the types <type>anyelement</type>,
<type>anyarray</type>, <type>anynonarray</type>, <type>anyenum</type>, and
<type>anyrange</type>.
as a trigger or event trigger). Some also support polymorphic functions
using the polymorphic pseudo-types, which are shown above and discussed
in detail in <xref linkend="extend-types-polymorphic"/>.
</para>
<para>

View File

@ -229,21 +229,114 @@
</indexterm>
<para>
Five pseudo-types of special interest are <type>anyelement</type>,
<type>anyarray</type>, <type>anynonarray</type>, <type>anyenum</type>,
and <type>anyrange</type>,
which are collectively called <firstterm>polymorphic types</firstterm>.
Any function declared using these types is said to be
a <firstterm>polymorphic function</firstterm>. A polymorphic function can
operate on many different data types, with the specific data type(s)
being determined by the data types actually passed to it in a particular
call.
Some pseudo-types of special interest are the <firstterm>polymorphic
types</firstterm>, which are used to declare <firstterm>polymorphic
functions</firstterm>. This powerful feature allows a single function
definition to operate on many different data types, with the specific
data type(s) being determined by the data types actually passed to it
in a particular call. The polymorphic types are shown in
<xref linkend="extend-types-polymorphic-table"/>. Some examples of
their use appear in <xref linkend="xfunc-sql-polymorphic-functions"/>.
</para>
<table id="extend-types-polymorphic-table">
<title>Polymorphic Types</title>
<tgroup cols="3">
<thead>
<row>
<entry>Name</entry>
<entry>Family</entry>
<entry>Description</entry>
</row>
</thead>
<tbody>
<row>
<entry><type>anyelement</type></entry>
<entry>Simple</entry>
<entry>Indicates that a function accepts any data type</entry>
</row>
<row>
<entry><type>anyarray</type></entry>
<entry>Simple</entry>
<entry>Indicates that a function accepts any array data type</entry>
</row>
<row>
<entry><type>anynonarray</type></entry>
<entry>Simple</entry>
<entry>Indicates that a function accepts any non-array data type</entry>
</row>
<row>
<entry><type>anyenum</type></entry>
<entry>Simple</entry>
<entry>Indicates that a function accepts any enum data type
(see <xref linkend="datatype-enum"/>)
</entry>
</row>
<row>
<entry><type>anyrange</type></entry>
<entry>Simple</entry>
<entry>Indicates that a function accepts any range data type
(see <xref linkend="rangetypes"/>)
</entry>
</row>
<row>
<entry><type>anycompatible</type></entry>
<entry>Common</entry>
<entry>Indicates that a function accepts any data type,
with automatic promotion of multiple arguments to a common data type
</entry>
</row>
<row>
<entry><type>anycompatiblearray</type></entry>
<entry>Common</entry>
<entry>Indicates that a function accepts any array data type,
with automatic promotion of multiple arguments to a common data type
</entry>
</row>
<row>
<entry><type>anycompatiblenonarray</type></entry>
<entry>Common</entry>
<entry>Indicates that a function accepts any non-array data type,
with automatic promotion of multiple arguments to a common data type
</entry>
</row>
<row>
<entry><type>anycompatiblerange</type></entry>
<entry>Common</entry>
<entry>Indicates that a function accepts any range data type,
with automatic promotion of multiple arguments to a common data type
</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
Polymorphic arguments and results are tied to each other and are resolved
to a specific data type when a query calling a polymorphic function is
parsed. Each position (either argument or return value) declared as
to specific data types when a query calling a polymorphic function is
parsed. When there is more than one polymorphic argument, the actual
data types of the input values must match up as described below. If the
function's result type is polymorphic, or it has output parameters of
polymorphic types, the types of those results are deduced from the
actual types of the polymorphic inputs as described below.
</para>
<para>
For the <quote>simple</quote> family of polymorphic types, the
matching and deduction rules work like this:
</para>
<para>
Each position (either argument or return value) declared as
<type>anyelement</type> is allowed to have any specific actual
data type, but in any given call they must all be the
<emphasis>same</emphasis> actual type. Each
@ -280,7 +373,8 @@
<para>
When the return value of a function is declared as a polymorphic type,
there must be at least one argument position that is also polymorphic,
and the actual data type supplied as the argument determines the actual
and the actual data type(s) supplied for the polymorphic arguments
determine the actual
result type for that call. For example, if there were not already
an array subscripting mechanism, one could define a function that
implements subscripting as <literal>subscript(anyarray, integer)
@ -294,8 +388,9 @@
<para>
In most cases, the parser can infer the actual data type for a
polymorphic result type from arguments that are of a different
polymorphic type; for example <type>anyarray</type> can be deduced
from <type>anyelement</type> or vice versa. The exception is that a
polymorphic type in the same family; for example <type>anyarray</type>
can be deduced from <type>anyelement</type> or vice versa.
An exception is that a
polymorphic result of type <type>anyrange</type> requires an argument
of type <type>anyrange</type>; it cannot be deduced
from <type>anyarray</type> or <type>anyelement</type> arguments. This
@ -311,14 +406,70 @@
both actual arguments have to be the same enum type.
</para>
<para>
For the <quote>common</quote> family of polymorphic types, the
matching and deduction rules work approximately the same as for
the <quote>simple</quote> family, with one major difference: the
actual types of the arguments need not be identical, so long as they
can be implicitly cast to a single common type. The common type is
selected following the same rules as for <literal>UNION</literal> and
related constructs (see <xref linkend="typeconv-union-case"/>).
Selection of the common type considers the actual types
of <type>anycompatible</type> and <type>anycompatiblenonarray</type>
inputs, the array element types of <type>anycompatiblearray</type>
inputs, and the range subtypes of <type>anycompatiblerange</type>
inputs. If <type>anycompatiblenonarray</type> is present then the
common type is required to be a non-array type. Once a common type is
identified, arguments in <type>anycompatible</type>
and <type>anycompatiblenonarray</type> positions are automatically
cast to that type, and arguments in <type>anycompatiblearray</type>
positions are automatically cast to the array type for that type.
</para>
<para>
Since there is no way to select a range type knowing only its subtype,
use of <type>anycompatiblerange</type> requires that all arguments
declared with that type have the same actual range type, and that that
type's subtype agree with the selected common type, so that no casting
of the range values is required. As with <type>anyrange</type>, use
of <type>anycompatiblerange</type> as a function result type requires
that there be an <type>anycompatiblerange</type> argument.
</para>
<para>
Notice that there is no <type>anycompatibleenum</type> type. Such a
type would not be very useful, since there normally are not any
implicit casts to enum types, meaning that there would be no way to
resolve a common type for dissimilar enum inputs.
</para>
<para>
The <quote>simple</quote> and <quote>common</quote> polymorphic
families represent two independent sets of type variables. Consider
for example
<programlisting>
CREATE FUNCTION myfunc(a anyelement, b anyelement,
c anycompatible, d anycompatible)
RETURNS anycompatible AS ...
</programlisting>
In an actual call of this function, the first two inputs must have
exactly the same type. The last two inputs must be promotable to a
common type, but this type need not have anything to do with the type
of the first two inputs. The result will have the common type of the
last two inputs.
</para>
<para>
A variadic function (one taking a variable number of arguments, as in
<xref linkend="xfunc-sql-variadic-functions"/>) can be
polymorphic: this is accomplished by declaring its last parameter as
<literal>VARIADIC</literal> <type>anyarray</type>. For purposes of argument
<literal>VARIADIC</literal> <type>anyarray</type> or
<literal>VARIADIC</literal> <type>anycompatiblearray</type>.
For purposes of argument
matching and determining the actual result type, such a function behaves
the same as if you had written the appropriate number of
<type>anynonarray</type> parameters.
<type>anynonarray</type> or <type>anycompatiblenonarray</type>
parameters.
</para>
</sect2>
</sect1>

View File

@ -138,13 +138,11 @@
</para>
<para>
<application>PL/pgSQL</application> functions can also be declared to accept
and return the polymorphic types
<type>anyelement</type>, <type>anyarray</type>, <type>anynonarray</type>,
<type>anyenum</type>, and <type>anyrange</type>. The actual
data types handled by a polymorphic function can vary from call to
call, as discussed in <xref linkend="extend-types-polymorphic"/>.
An example is shown in <xref linkend="plpgsql-declaration-parameters"/>.
<application>PL/pgSQL</application> functions can also be declared to
accept and return the polymorphic types described in
<xref linkend="extend-types-polymorphic"/>, thus allowing the actual data
types handled by the function to vary from call to call.
Examples appear in <xref linkend="plpgsql-declaration-parameters"/>.
</para>
<para>
@ -519,13 +517,11 @@ $$ LANGUAGE plpgsql;
</para>
<para>
When the return type of a <application>PL/pgSQL</application>
function is declared as a polymorphic type (<type>anyelement</type>,
<type>anyarray</type>, <type>anynonarray</type>, <type>anyenum</type>,
or <type>anyrange</type>), a special parameter <literal>$0</literal>
is created. Its data type is the actual return type of the function,
as deduced from the actual input types (see <xref
linkend="extend-types-polymorphic"/>).
When the return type of a <application>PL/pgSQL</application> function
is declared as a polymorphic type (see
<xref linkend="extend-types-polymorphic"/>), a special
parameter <literal>$0</literal> is created. Its data type is the actual
return type of the function, as deduced from the actual input types.
This allows the function to access its actual return type
as shown in <xref linkend="plpgsql-declaration-type"/>.
<literal>$0</literal> is initialized to null and can be modified by
@ -563,6 +559,32 @@ END;
$$ LANGUAGE plpgsql;
</programlisting>
</para>
<para>
In practice it might be more useful to declare a polymorphic function
using the <type>anycompatible</type> family of types, so that automatic
promotion of the input arguments to a common type will occur.
For example:
<programlisting>
CREATE FUNCTION add_three_values(v1 anycompatible, v2 anycompatible, v3 anycompatible)
RETURNS anycompatible AS $$
BEGIN
RETURN v1 + v2 + v3;
END;
$$ LANGUAGE plpgsql;
</programlisting>
With this example, a call such as
<programlisting>
SELECT add_three_values(1, 2, 4.7);
</programlisting>
will work, automatically promoting the integer inputs to numeric.
The function using <type>anyelement</type> would require you to
cast the three inputs to the same type manually.
</para>
</sect2>
<sect2 id="plpgsql-declaration-alias">

View File

@ -1226,16 +1226,13 @@ $$ LANGUAGE SQL;
</para>
</sect2>
<sect2>
<sect2 id="xfunc-sql-polymorphic-functions">
<title>Polymorphic <acronym>SQL</acronym> Functions</title>
<para>
<acronym>SQL</acronym> functions can be declared to accept and
return the polymorphic types <type>anyelement</type>,
<type>anyarray</type>, <type>anynonarray</type>,
<type>anyenum</type>, and <type>anyrange</type>. See <xref
linkend="extend-types-polymorphic"/> for a more detailed
explanation of polymorphic functions. Here is a polymorphic
return the polymorphic types described in <xref
linkend="extend-types-polymorphic"/>. Here is a polymorphic
function <function>make_array</function> that builds up an array
from two arbitrary data type elements:
<screen>
@ -1260,9 +1257,43 @@ SELECT make_array(1, 2) AS intarray, make_array('a'::text, 'b') AS textarray;
type.
Without the typecast, you will get errors like this:
<screen>
<computeroutput>
ERROR: could not determine polymorphic type because input has type unknown
</computeroutput>
</screen>
</para>
<para>
With <function>make_array</function> declared as above, you must
provide two arguments that are of exactly the same data type; the
system will not attempt to resolve any type differences. Thus for
example this does not work:
<screen>
SELECT make_array(1, 2.5) AS numericarray;
ERROR: function make_array(integer, numeric) does not exist
</screen>
An alternative approach is to use the <quote>common</quote> family of
polymorphic types, which allows the system to try to identify a
suitable common type:
<screen>
CREATE FUNCTION make_array2(anycompatible, anycompatible)
RETURNS anycompatiblearray AS $$
SELECT ARRAY[$1, $2];
$$ LANGUAGE SQL;
SELECT make_array2(1, 2.5) AS numericarray;
numericarray
--------------
{1,2.5}
(1 row)
</screen>
Because the rules for common type resolution default to choosing
type <type>text</type> when all inputs are of unknown types, this
also works:
<screen>
SELECT make_array2('a', 'b') AS textarray;
textarray
-----------
{a,b}
(1 row)
</screen>
</para>
@ -1284,7 +1315,7 @@ CREATE FUNCTION invalid_func() RETURNS anyelement AS $$
SELECT 1;
$$ LANGUAGE SQL;
ERROR: cannot determine result data type
DETAIL: A function returning a polymorphic type must have at least one polymorphic argument.
DETAIL: A result of type anyelement requires at least one input of type anyelement, anyarray, anynonarray, anyenum, or anyrange.
</screen>
</para>
@ -3157,11 +3188,9 @@ CREATE OR REPLACE FUNCTION retcomposite(IN integer, IN integer,
<para>
C-language functions can be declared to accept and
return the polymorphic types
<type>anyelement</type>, <type>anyarray</type>, <type>anynonarray</type>,
<type>anyenum</type>, and <type>anyrange</type>.
See <xref linkend="extend-types-polymorphic"/> for a more detailed explanation
of polymorphic functions. When function arguments or return types
return the polymorphic types described in <xref
linkend="extend-types-polymorphic"/>.
When a function's arguments or return types
are defined as polymorphic types, the function author cannot know
in advance what data type it will be called with, or
need to return. There are two routines provided in <filename>fmgr.h</filename>