mirror of
https://github.com/postgres/postgres.git
synced 2025-06-27 23:21:58 +03:00
Pre-beta mechanical code beautification.
Run pgindent, pgperltidy, and reformat-dat-files. I manually fixed a couple of comments that pgindent uglified.
This commit is contained in:
@ -8537,139 +8537,138 @@ div_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result,
|
||||
alloc_var(result, res_ndigits);
|
||||
res_digits = result->digits;
|
||||
|
||||
/*
|
||||
* The full multiple-place algorithm is taken from Knuth volume 2,
|
||||
* Algorithm 4.3.1D.
|
||||
*
|
||||
* We need the first divisor digit to be >= NBASE/2. If it isn't,
|
||||
* make it so by scaling up both the divisor and dividend by the
|
||||
* factor "d". (The reason for allocating dividend[0] above is to
|
||||
* leave room for possible carry here.)
|
||||
*/
|
||||
if (divisor[1] < HALF_NBASE)
|
||||
{
|
||||
int d = NBASE / (divisor[1] + 1);
|
||||
/*
|
||||
* The full multiple-place algorithm is taken from Knuth volume 2,
|
||||
* Algorithm 4.3.1D.
|
||||
*
|
||||
* We need the first divisor digit to be >= NBASE/2. If it isn't, make it
|
||||
* so by scaling up both the divisor and dividend by the factor "d". (The
|
||||
* reason for allocating dividend[0] above is to leave room for possible
|
||||
* carry here.)
|
||||
*/
|
||||
if (divisor[1] < HALF_NBASE)
|
||||
{
|
||||
int d = NBASE / (divisor[1] + 1);
|
||||
|
||||
carry = 0;
|
||||
for (i = var2ndigits; i > 0; i--)
|
||||
{
|
||||
carry += divisor[i] * d;
|
||||
divisor[i] = carry % NBASE;
|
||||
carry = carry / NBASE;
|
||||
}
|
||||
Assert(carry == 0);
|
||||
carry = 0;
|
||||
/* at this point only var1ndigits of dividend can be nonzero */
|
||||
for (i = var1ndigits; i >= 0; i--)
|
||||
{
|
||||
carry += dividend[i] * d;
|
||||
dividend[i] = carry % NBASE;
|
||||
carry = carry / NBASE;
|
||||
}
|
||||
Assert(carry == 0);
|
||||
Assert(divisor[1] >= HALF_NBASE);
|
||||
carry = 0;
|
||||
for (i = var2ndigits; i > 0; i--)
|
||||
{
|
||||
carry += divisor[i] * d;
|
||||
divisor[i] = carry % NBASE;
|
||||
carry = carry / NBASE;
|
||||
}
|
||||
/* First 2 divisor digits are used repeatedly in main loop */
|
||||
divisor1 = divisor[1];
|
||||
divisor2 = divisor[2];
|
||||
Assert(carry == 0);
|
||||
carry = 0;
|
||||
/* at this point only var1ndigits of dividend can be nonzero */
|
||||
for (i = var1ndigits; i >= 0; i--)
|
||||
{
|
||||
carry += dividend[i] * d;
|
||||
dividend[i] = carry % NBASE;
|
||||
carry = carry / NBASE;
|
||||
}
|
||||
Assert(carry == 0);
|
||||
Assert(divisor[1] >= HALF_NBASE);
|
||||
}
|
||||
/* First 2 divisor digits are used repeatedly in main loop */
|
||||
divisor1 = divisor[1];
|
||||
divisor2 = divisor[2];
|
||||
|
||||
/*
|
||||
* Begin the main loop. Each iteration of this loop produces the j'th
|
||||
* quotient digit by dividing dividend[j .. j + var2ndigits] by the
|
||||
* divisor; this is essentially the same as the common manual procedure
|
||||
* for long division.
|
||||
*/
|
||||
for (j = 0; j < res_ndigits; j++)
|
||||
{
|
||||
/* Estimate quotient digit from the first two dividend digits */
|
||||
int next2digits = dividend[j] * NBASE + dividend[j + 1];
|
||||
int qhat;
|
||||
|
||||
/*
|
||||
* Begin the main loop. Each iteration of this loop produces the j'th
|
||||
* quotient digit by dividing dividend[j .. j + var2ndigits] by the
|
||||
* divisor; this is essentially the same as the common manual
|
||||
* procedure for long division.
|
||||
* If next2digits are 0, then quotient digit must be 0 and there's no
|
||||
* need to adjust the working dividend. It's worth testing here to
|
||||
* fall out ASAP when processing trailing zeroes in a dividend.
|
||||
*/
|
||||
for (j = 0; j < res_ndigits; j++)
|
||||
if (next2digits == 0)
|
||||
{
|
||||
/* Estimate quotient digit from the first two dividend digits */
|
||||
int next2digits = dividend[j] * NBASE + dividend[j + 1];
|
||||
int qhat;
|
||||
res_digits[j] = 0;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (dividend[j] == divisor1)
|
||||
qhat = NBASE - 1;
|
||||
else
|
||||
qhat = next2digits / divisor1;
|
||||
|
||||
/*
|
||||
* Adjust quotient digit if it's too large. Knuth proves that after
|
||||
* this step, the quotient digit will be either correct or just one
|
||||
* too large. (Note: it's OK to use dividend[j+2] here because we
|
||||
* know the divisor length is at least 2.)
|
||||
*/
|
||||
while (divisor2 * qhat >
|
||||
(next2digits - qhat * divisor1) * NBASE + dividend[j + 2])
|
||||
qhat--;
|
||||
|
||||
/* As above, need do nothing more when quotient digit is 0 */
|
||||
if (qhat > 0)
|
||||
{
|
||||
NumericDigit *dividend_j = ÷nd[j];
|
||||
|
||||
/*
|
||||
* If next2digits are 0, then quotient digit must be 0 and there's
|
||||
* no need to adjust the working dividend. It's worth testing
|
||||
* here to fall out ASAP when processing trailing zeroes in a
|
||||
* dividend.
|
||||
* Multiply the divisor by qhat, and subtract that from the
|
||||
* working dividend. The multiplication and subtraction are
|
||||
* folded together here, noting that qhat <= NBASE (since it might
|
||||
* be one too large), and so the intermediate result "tmp_result"
|
||||
* is in the range [-NBASE^2, NBASE - 1], and "borrow" is in the
|
||||
* range [0, NBASE].
|
||||
*/
|
||||
if (next2digits == 0)
|
||||
borrow = 0;
|
||||
for (i = var2ndigits; i >= 0; i--)
|
||||
{
|
||||
res_digits[j] = 0;
|
||||
continue;
|
||||
int tmp_result;
|
||||
|
||||
tmp_result = dividend_j[i] - borrow - divisor[i] * qhat;
|
||||
borrow = (NBASE - 1 - tmp_result) / NBASE;
|
||||
dividend_j[i] = tmp_result + borrow * NBASE;
|
||||
}
|
||||
|
||||
if (dividend[j] == divisor1)
|
||||
qhat = NBASE - 1;
|
||||
else
|
||||
qhat = next2digits / divisor1;
|
||||
|
||||
/*
|
||||
* Adjust quotient digit if it's too large. Knuth proves that
|
||||
* after this step, the quotient digit will be either correct or
|
||||
* just one too large. (Note: it's OK to use dividend[j+2] here
|
||||
* because we know the divisor length is at least 2.)
|
||||
* If we got a borrow out of the top dividend digit, then indeed
|
||||
* qhat was one too large. Fix it, and add back the divisor to
|
||||
* correct the working dividend. (Knuth proves that this will
|
||||
* occur only about 3/NBASE of the time; hence, it's a good idea
|
||||
* to test this code with small NBASE to be sure this section gets
|
||||
* exercised.)
|
||||
*/
|
||||
while (divisor2 * qhat >
|
||||
(next2digits - qhat * divisor1) * NBASE + dividend[j + 2])
|
||||
qhat--;
|
||||
|
||||
/* As above, need do nothing more when quotient digit is 0 */
|
||||
if (qhat > 0)
|
||||
if (borrow)
|
||||
{
|
||||
NumericDigit *dividend_j = ÷nd[j];
|
||||
|
||||
/*
|
||||
* Multiply the divisor by qhat, and subtract that from the
|
||||
* working dividend. The multiplication and subtraction are
|
||||
* folded together here, noting that qhat <= NBASE (since it
|
||||
* might be one too large), and so the intermediate result
|
||||
* "tmp_result" is in the range [-NBASE^2, NBASE - 1], and
|
||||
* "borrow" is in the range [0, NBASE].
|
||||
*/
|
||||
borrow = 0;
|
||||
qhat--;
|
||||
carry = 0;
|
||||
for (i = var2ndigits; i >= 0; i--)
|
||||
{
|
||||
int tmp_result;
|
||||
|
||||
tmp_result = dividend_j[i] - borrow - divisor[i] * qhat;
|
||||
borrow = (NBASE - 1 - tmp_result) / NBASE;
|
||||
dividend_j[i] = tmp_result + borrow * NBASE;
|
||||
}
|
||||
|
||||
/*
|
||||
* If we got a borrow out of the top dividend digit, then
|
||||
* indeed qhat was one too large. Fix it, and add back the
|
||||
* divisor to correct the working dividend. (Knuth proves
|
||||
* that this will occur only about 3/NBASE of the time; hence,
|
||||
* it's a good idea to test this code with small NBASE to be
|
||||
* sure this section gets exercised.)
|
||||
*/
|
||||
if (borrow)
|
||||
{
|
||||
qhat--;
|
||||
carry = 0;
|
||||
for (i = var2ndigits; i >= 0; i--)
|
||||
carry += dividend_j[i] + divisor[i];
|
||||
if (carry >= NBASE)
|
||||
{
|
||||
carry += dividend_j[i] + divisor[i];
|
||||
if (carry >= NBASE)
|
||||
{
|
||||
dividend_j[i] = carry - NBASE;
|
||||
carry = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
dividend_j[i] = carry;
|
||||
carry = 0;
|
||||
}
|
||||
dividend_j[i] = carry - NBASE;
|
||||
carry = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
dividend_j[i] = carry;
|
||||
carry = 0;
|
||||
}
|
||||
/* A carry should occur here to cancel the borrow above */
|
||||
Assert(carry == 1);
|
||||
}
|
||||
/* A carry should occur here to cancel the borrow above */
|
||||
Assert(carry == 1);
|
||||
}
|
||||
|
||||
/* And we're done with this quotient digit */
|
||||
res_digits[j] = qhat;
|
||||
}
|
||||
|
||||
/* And we're done with this quotient digit */
|
||||
res_digits[j] = qhat;
|
||||
}
|
||||
|
||||
pfree(dividend);
|
||||
|
||||
/*
|
||||
|
Reference in New Issue
Block a user