1
0
mirror of https://github.com/postgres/postgres.git synced 2025-07-27 12:41:57 +03:00

Standard pgindent run for 8.1.

This commit is contained in:
Bruce Momjian
2005-10-15 02:49:52 +00:00
parent 790c01d280
commit 1dc3498251
770 changed files with 34334 additions and 32507 deletions

View File

@ -26,7 +26,7 @@
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $PostgreSQL: pgsql/contrib/pgcrypto/fortuna.c,v 1.4 2005/07/18 17:12:54 tgl Exp $
* $PostgreSQL: pgsql/contrib/pgcrypto/fortuna.c,v 1.5 2005/10/15 02:49:06 momjian Exp $
*/
#include "postgres.h"
@ -43,16 +43,16 @@
* Why Fortuna-like: There does not seem to be any definitive reference
* on Fortuna in the net. Instead this implementation is based on
* following references:
*
*
* http://en.wikipedia.org/wiki/Fortuna_(PRNG)
* - Wikipedia article
* - Wikipedia article
* http://jlcooke.ca/random/
* - Jean-Luc Cooke Fortuna-based /dev/random driver for Linux.
* - Jean-Luc Cooke Fortuna-based /dev/random driver for Linux.
*/
/*
* There is some confusion about whether and how to carry forward
* the state of the pools. Seems like original Fortuna does not
* the state of the pools. Seems like original Fortuna does not
* do it, resetting hash after each request. I guess expecting
* feeding to happen more often that requesting. This is absolutely
* unsuitable for pgcrypto, as nothing asynchronous happens here.
@ -76,7 +76,7 @@
* How many pools.
*
* Original Fortuna uses 32 pools, that means 32'th pool is
* used not earlier than in 13th year. This is a waste in
* used not earlier than in 13th year. This is a waste in
* pgcrypto, as we have very low-frequancy seeding. Here
* is preferable to have all entropy usable in reasonable time.
*
@ -89,12 +89,12 @@
#define NUM_POOLS 23
/* in microseconds */
#define RESEED_INTERVAL 100000 /* 0.1 sec */
#define RESEED_INTERVAL 100000 /* 0.1 sec */
/* for one big request, reseed after this many bytes */
#define RESEED_BYTES (1024*1024)
/*
/*
* Skip reseed if pool 0 has less than this many
* bytes added since last reseed.
*/
@ -114,17 +114,18 @@
#define MD_CTX SHA256_CTX
#define CIPH_CTX rijndael_ctx
struct fortuna_state {
uint8 counter[CIPH_BLOCK];
uint8 result[CIPH_BLOCK];
uint8 key[BLOCK];
MD_CTX pool[NUM_POOLS];
CIPH_CTX ciph;
unsigned reseed_count;
struct timeval last_reseed_time;
unsigned pool0_bytes;
unsigned rnd_pos;
int counter_init;
struct fortuna_state
{
uint8 counter[CIPH_BLOCK];
uint8 result[CIPH_BLOCK];
uint8 key[BLOCK];
MD_CTX pool[NUM_POOLS];
CIPH_CTX ciph;
unsigned reseed_count;
struct timeval last_reseed_time;
unsigned pool0_bytes;
unsigned rnd_pos;
int counter_init;
};
typedef struct fortuna_state FState;
@ -137,29 +138,35 @@ typedef struct fortuna_state FState;
* - No memory allocations.
*/
static void ciph_init(CIPH_CTX *ctx, const uint8 *key, int klen)
static void
ciph_init(CIPH_CTX * ctx, const uint8 *key, int klen)
{
rijndael_set_key(ctx, (const uint32 *)key, klen, 1);
rijndael_set_key(ctx, (const uint32 *) key, klen, 1);
}
static void ciph_encrypt(CIPH_CTX *ctx, const uint8 *in, uint8 *out)
static void
ciph_encrypt(CIPH_CTX * ctx, const uint8 *in, uint8 *out)
{
rijndael_encrypt(ctx, (const uint32 *)in, (uint32 *)out);
rijndael_encrypt(ctx, (const uint32 *) in, (uint32 *) out);
}
static void md_init(MD_CTX *ctx)
static void
md_init(MD_CTX * ctx)
{
SHA256_Init(ctx);
}
static void md_update(MD_CTX *ctx, const uint8 *data, int len)
static void
md_update(MD_CTX * ctx, const uint8 *data, int len)
{
SHA256_Update(ctx, data, len);
}
static void md_result(MD_CTX *ctx, uint8 *dst)
static void
md_result(MD_CTX * ctx, uint8 *dst)
{
SHA256_CTX tmp;
SHA256_CTX tmp;
memcpy(&tmp, ctx, sizeof(*ctx));
SHA256_Final(dst, &tmp);
memset(&tmp, 0, sizeof(tmp));
@ -168,9 +175,11 @@ static void md_result(MD_CTX *ctx, uint8 *dst)
/*
* initialize state
*/
static void init_state(FState *st)
static void
init_state(FState * st)
{
int i;
int i;
memset(st, 0, sizeof(*st));
for (i = 0; i < NUM_POOLS; i++)
md_init(&st->pool[i]);
@ -180,9 +189,11 @@ static void init_state(FState *st)
* Endianess does not matter.
* It just needs to change without repeating.
*/
static void inc_counter(FState *st)
static void
inc_counter(FState * st)
{
uint32 *val = (uint32*)st->counter;
uint32 *val = (uint32 *) st->counter;
if (++val[0])
return;
if (++val[1])
@ -195,7 +206,8 @@ static void inc_counter(FState *st)
/*
* This is called 'cipher in counter mode'.
*/
static void encrypt_counter(FState *st, uint8 *dst)
static void
encrypt_counter(FState * st, uint8 *dst)
{
ciph_encrypt(&st->ciph, st->counter, dst);
inc_counter(st);
@ -206,12 +218,13 @@ static void encrypt_counter(FState *st, uint8 *dst)
* The time between reseed must be at least RESEED_INTERVAL
* microseconds.
*/
static int too_often(FState *st)
static int
too_often(FState * st)
{
int ok;
int ok;
struct timeval tv;
struct timeval *last = &st->last_reseed_time;
gettimeofday(&tv, NULL);
ok = 0;
@ -229,19 +242,19 @@ static int too_often(FState *st)
/*
* generate new key from all the pools
*/
static void reseed(FState *st)
static void
reseed(FState * st)
{
unsigned k;
unsigned n;
MD_CTX key_md;
uint8 buf[BLOCK];
unsigned k;
unsigned n;
MD_CTX key_md;
uint8 buf[BLOCK];
/* set pool as empty */
st->pool0_bytes = 0;
/*
* Both #0 and #1 reseed would use only pool 0.
* Just skip #0 then.
* Both #0 and #1 reseed would use only pool 0. Just skip #0 then.
*/
n = ++st->reseed_count;
@ -249,7 +262,8 @@ static void reseed(FState *st)
* The goal: use k-th pool only 1/(2^k) of the time.
*/
md_init(&key_md);
for (k = 0; k < NUM_POOLS; k++) {
for (k = 0; k < NUM_POOLS; k++)
{
md_result(&st->pool[k], buf);
md_update(&key_md, buf, BLOCK);
@ -272,11 +286,12 @@ static void reseed(FState *st)
}
/*
* Pick a random pool. This uses key bytes as random source.
* Pick a random pool. This uses key bytes as random source.
*/
static unsigned get_rand_pool(FState *st)
static unsigned
get_rand_pool(FState * st)
{
unsigned rnd;
unsigned rnd;
/*
* This slightly prefers lower pools - thats OK.
@ -293,11 +308,12 @@ static unsigned get_rand_pool(FState *st)
/*
* update pools
*/
static void add_entropy(FState *st, const uint8 *data, unsigned len)
static void
add_entropy(FState * st, const uint8 *data, unsigned len)
{
unsigned pos;
uint8 hash[BLOCK];
MD_CTX md;
unsigned pos;
uint8 hash[BLOCK];
MD_CTX md;
/* hash given data */
md_init(&md);
@ -305,14 +321,13 @@ static void add_entropy(FState *st, const uint8 *data, unsigned len)
md_result(&md, hash);
/*
* Make sure the pool 0 is initialized,
* then update randomly.
* Make sure the pool 0 is initialized, then update randomly.
*/
if (st->reseed_count == 0 && st->pool0_bytes < POOL0_FILL)
pos = 0;
else
pos = get_rand_pool(st);
md_update( &st->pool[pos], hash, BLOCK);
md_update(&st->pool[pos], hash, BLOCK);
if (pos == 0)
st->pool0_bytes += len;
@ -324,7 +339,8 @@ static void add_entropy(FState *st, const uint8 *data, unsigned len)
/*
* Just take 2 next blocks as new key
*/
static void rekey(FState *st)
static void
rekey(FState * st)
{
encrypt_counter(st, st->key);
encrypt_counter(st, st->key + CIPH_BLOCK);
@ -336,7 +352,8 @@ static void rekey(FState *st)
* In case it does not, slow down the attacker by initialising
* the couter to random value.
*/
static void init_counter(FState *st)
static void
init_counter(FState * st)
{
/* Use next block as counter. */
encrypt_counter(st, st->counter);
@ -348,10 +365,11 @@ static void init_counter(FState *st)
st->counter_init = 1;
}
static void extract_data(FState *st, unsigned count, uint8 *dst)
static void
extract_data(FState * st, unsigned count, uint8 *dst)
{
unsigned n;
unsigned block_nr = 0;
unsigned n;
unsigned block_nr = 0;
/* Can we reseed? */
if (st->pool0_bytes >= POOL0_FILL && !too_often(st))
@ -361,7 +379,8 @@ static void extract_data(FState *st, unsigned count, uint8 *dst)
if (!st->counter_init)
init_counter(st);
while (count > 0) {
while (count > 0)
{
/* produce bytes */
encrypt_counter(st, st->result);
@ -391,9 +410,10 @@ static void extract_data(FState *st, unsigned count, uint8 *dst)
*/
static FState main_state;
static int init_done = 0;
static int init_done = 0;
void fortuna_add_entropy(const uint8 *data, unsigned len)
void
fortuna_add_entropy(const uint8 *data, unsigned len)
{
if (!init_done)
{
@ -405,7 +425,8 @@ void fortuna_add_entropy(const uint8 *data, unsigned len)
add_entropy(&main_state, data, len);
}
void fortuna_get_bytes(unsigned len, uint8 *dst)
void
fortuna_get_bytes(unsigned len, uint8 *dst)
{
if (!init_done)
{
@ -416,4 +437,3 @@ void fortuna_get_bytes(unsigned len, uint8 *dst)
return;
extract_data(&main_state, len, dst);
}