1
0
mirror of https://github.com/postgres/postgres.git synced 2025-06-14 18:42:34 +03:00

Allow per-tablespace effective_io_concurrency

Per discussion, nowadays it is possible to have tablespaces that have
wildly different I/O characteristics from others.  Setting different
effective_io_concurrency parameters for those has been measured to
improve performance.

Author: Julien Rouhaud
Reviewed by: Andres Freund
This commit is contained in:
Alvaro Herrera
2015-09-08 12:51:42 -03:00
parent 665a00c9e2
commit 1aba62ec63
12 changed files with 145 additions and 63 deletions

View File

@ -80,11 +80,14 @@ bool zero_damaged_pages = false;
int bgwriter_lru_maxpages = 100;
double bgwriter_lru_multiplier = 2.0;
bool track_io_timing = false;
int effective_io_concurrency = 0;
/*
* How many buffers PrefetchBuffer callers should try to stay ahead of their
* ReadBuffer calls by. This is maintained by the assign hook for
* effective_io_concurrency. Zero means "never prefetch".
* effective_io_concurrency. Zero means "never prefetch". This value is
* only used for buffers not belonging to tablespaces that have their
* effective_io_concurrency parameter set.
*/
int target_prefetch_pages = 0;
@ -415,6 +418,64 @@ static void CheckForBufferLeaks(void);
static int rnode_comparator(const void *p1, const void *p2);
/*
* ComputeIoConcurrency -- get the number of pages to prefetch for a given
* number of spindles.
*/
bool
ComputeIoConcurrency(int io_concurrency, double *target)
{
double new_prefetch_pages = 0.0;
int i;
/*
* Make sure the io_concurrency value is within valid range; it may have
* been forced with a manual pg_tablespace update.
*/
io_concurrency = Min(Max(io_concurrency, 0), MAX_IO_CONCURRENCY);
/*----------
* The user-visible GUC parameter is the number of drives (spindles),
* which we need to translate to a number-of-pages-to-prefetch target.
* The target value is stashed in *extra and then assigned to the actual
* variable by assign_effective_io_concurrency.
*
* The expected number of prefetch pages needed to keep N drives busy is:
*
* drives | I/O requests
* -------+----------------
* 1 | 1
* 2 | 2/1 + 2/2 = 3
* 3 | 3/1 + 3/2 + 3/3 = 5 1/2
* 4 | 4/1 + 4/2 + 4/3 + 4/4 = 8 1/3
* n | n * H(n)
*
* This is called the "coupon collector problem" and H(n) is called the
* harmonic series. This could be approximated by n * ln(n), but for
* reasonable numbers of drives we might as well just compute the series.
*
* Alternatively we could set the target to the number of pages necessary
* so that the expected number of active spindles is some arbitrary
* percentage of the total. This sounds the same but is actually slightly
* different. The result ends up being ln(1-P)/ln((n-1)/n) where P is
* that desired fraction.
*
* Experimental results show that both of these formulas aren't aggressive
* enough, but we don't really have any better proposals.
*
* Note that if io_concurrency = 0 (disabled), we must set target = 0.
*----------
*/
for (i = 1; i <= io_concurrency; i++)
new_prefetch_pages += (double) io_concurrency / (double) i;
*target = new_prefetch_pages;
/* This range check shouldn't fail, but let's be paranoid */
return (new_prefetch_pages > 0.0 && new_prefetch_pages < (double) INT_MAX);
}
/*
* PrefetchBuffer -- initiate asynchronous read of a block of a relation
*