1
0
mirror of https://github.com/postgres/postgres.git synced 2025-07-03 20:02:46 +03:00

Add functions gcd() and lcm() for integer and numeric types.

These compute the greatest common divisor and least common multiple of
a pair of numbers using the Euclidean algorithm.

Vik Fearing, reviewed by Fabien Coelho.

Discussion: https://postgr.es/m/adbd3e0b-e3f1-5bbc-21db-03caf1cef0f7@2ndquadrant.com
This commit is contained in:
Dean Rasheed
2020-01-25 14:00:59 +00:00
parent 530609aa42
commit 13661ddd7e
12 changed files with 689 additions and 1 deletions

View File

@ -667,6 +667,132 @@ int8mod(PG_FUNCTION_ARGS)
PG_RETURN_INT64(arg1 % arg2);
}
/*
* Greatest Common Divisor
*
* Returns the largest positive integer that exactly divides both inputs.
* Special cases:
* - gcd(x, 0) = gcd(0, x) = abs(x)
* because 0 is divisible by anything
* - gcd(0, 0) = 0
* complies with the previous definition and is a common convention
*
* Special care must be taken if either input is INT64_MIN ---
* gcd(0, INT64_MIN), gcd(INT64_MIN, 0) and gcd(INT64_MIN, INT64_MIN) are
* all equal to abs(INT64_MIN), which cannot be represented as a 64-bit signed
* integer.
*/
static int64
int8gcd_internal(int64 arg1, int64 arg2)
{
int64 swap;
int64 a1, a2;
/*
* Put the greater absolute value in arg1.
*
* This would happen automatically in the loop below, but avoids an
* expensive modulo operation, and simplifies the special-case handling
* for INT64_MIN below.
*
* We do this in negative space in order to handle INT64_MIN.
*/
a1 = (arg1 < 0) ? arg1 : -arg1;
a2 = (arg2 < 0) ? arg2 : -arg2;
if (a1 > a2)
{
swap = arg1;
arg1 = arg2;
arg2 = swap;
}
/* Special care needs to be taken with INT64_MIN. See comments above. */
if (arg1 == PG_INT64_MIN)
{
if (arg2 == 0 || arg2 == PG_INT64_MIN)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
/*
* Some machines throw a floating-point exception for INT64_MIN % -1,
* which is a bit silly since the correct answer is perfectly
* well-defined, namely zero. Guard against this and just return the
* result, gcd(INT64_MIN, -1) = 1.
*/
if (arg2 == -1)
return 1;
}
/* Use the Euclidean algorithm to find the GCD */
while (arg2 != 0)
{
swap = arg2;
arg2 = arg1 % arg2;
arg1 = swap;
}
/*
* Make sure the result is positive. (We know we don't have INT64_MIN
* anymore).
*/
if (arg1 < 0)
arg1 = -arg1;
return arg1;
}
Datum
int8gcd(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = int8gcd_internal(arg1, arg2);
PG_RETURN_INT64(result);
}
/*
* Least Common Multiple
*/
Datum
int8lcm(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 gcd;
int64 result;
/*
* Handle lcm(x, 0) = lcm(0, x) = 0 as a special case. This prevents a
* division-by-zero error below when x is zero, and an overflow error from
* the GCD computation when x = INT64_MIN.
*/
if (arg1 == 0 || arg2 == 0)
PG_RETURN_INT64(0);
/* lcm(x, y) = abs(x / gcd(x, y) * y) */
gcd = int8gcd_internal(arg1, arg2);
arg1 = arg1 / gcd;
if (unlikely(pg_mul_s64_overflow(arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
/* If the result is INT64_MIN, it cannot be represented. */
if (unlikely(result == PG_INT64_MIN))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
if (result < 0)
result = -result;
PG_RETURN_INT64(result);
}
Datum
int8inc(PG_FUNCTION_ARGS)