1
0
mirror of https://github.com/postgres/postgres.git synced 2025-07-02 09:02:37 +03:00

pgindent run.

This commit is contained in:
Bruce Momjian
2003-08-04 00:43:34 +00:00
parent 63354a0228
commit 089003fb46
554 changed files with 24888 additions and 21245 deletions

View File

@ -6,7 +6,7 @@
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $Header: /cvsroot/pgsql/src/backend/executor/execAmi.c,v 1.72 2003/07/21 17:05:00 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/execAmi.c,v 1.73 2003/08/04 00:43:17 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -48,7 +48,7 @@
* ----------------------------------------------------------------
*/
void
ExecReScan(PlanState *node, ExprContext *exprCtxt)
ExecReScan(PlanState * node, ExprContext *exprCtxt)
{
/* If collecting timing stats, update them */
if (node->instrument)
@ -61,7 +61,7 @@ ExecReScan(PlanState *node, ExprContext *exprCtxt)
foreach(lst, node->initPlan)
{
SubPlanState *sstate = (SubPlanState *) lfirst(lst);
SubPlanState *sstate = (SubPlanState *) lfirst(lst);
PlanState *splan = sstate->planstate;
if (splan->plan->extParam != NULL) /* don't care about child
@ -72,7 +72,7 @@ ExecReScan(PlanState *node, ExprContext *exprCtxt)
}
foreach(lst, node->subPlan)
{
SubPlanState *sstate = (SubPlanState *) lfirst(lst);
SubPlanState *sstate = (SubPlanState *) lfirst(lst);
PlanState *splan = sstate->planstate;
if (splan->plan->extParam != NULL)
@ -177,7 +177,7 @@ ExecReScan(PlanState *node, ExprContext *exprCtxt)
* Marks the current scan position.
*/
void
ExecMarkPos(PlanState *node)
ExecMarkPos(PlanState * node)
{
switch (nodeTag(node))
{
@ -218,7 +218,7 @@ ExecMarkPos(PlanState *node)
* restores the scan position previously saved with ExecMarkPos()
*/
void
ExecRestrPos(PlanState *node)
ExecRestrPos(PlanState * node)
{
switch (nodeTag(node))
{
@ -302,16 +302,16 @@ ExecSupportsBackwardScan(Plan *node)
return false;
case T_Append:
{
List *l;
foreach(l, ((Append *) node)->appendplans)
{
if (!ExecSupportsBackwardScan((Plan *) lfirst(l)))
return false;
List *l;
foreach(l, ((Append *) node)->appendplans)
{
if (!ExecSupportsBackwardScan((Plan *) lfirst(l)))
return false;
}
return true;
}
return true;
}
case T_SeqScan:
case T_IndexScan:

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/execGrouping.c,v 1.4 2003/07/21 17:05:08 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/execGrouping.c,v 1.5 2003/08/04 00:43:17 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -249,7 +249,7 @@ execTuplesHashPrepare(TupleDesc tupdesc,
eq_function = oprfuncid(optup);
ReleaseSysCache(optup);
hash_function = get_op_hash_function(eq_opr);
if (!OidIsValid(hash_function)) /* should not happen */
if (!OidIsValid(hash_function)) /* should not happen */
elog(ERROR, "could not find hash function for hash operator %u",
eq_opr);
fmgr_info(eq_function, &(*eqfunctions)[i]);
@ -289,8 +289,8 @@ BuildTupleHashTable(int numCols, AttrNumber *keyColIdx,
int nbuckets, Size entrysize,
MemoryContext tablecxt, MemoryContext tempcxt)
{
TupleHashTable hashtable;
Size tabsize;
TupleHashTable hashtable;
Size tabsize;
Assert(nbuckets > 0);
Assert(entrysize >= sizeof(TupleHashEntryData));
@ -411,9 +411,9 @@ LookupTupleHashEntry(TupleHashTable hashtable, TupleTableSlot *slot,
* Iterator state must be initialized with ResetTupleHashIterator() macro.
*/
TupleHashEntry
ScanTupleHashTable(TupleHashTable hashtable, TupleHashIterator *state)
ScanTupleHashTable(TupleHashTable hashtable, TupleHashIterator * state)
{
TupleHashEntry entry;
TupleHashEntry entry;
entry = state->next_entry;
while (entry == NULL)

View File

@ -26,7 +26,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/execMain.c,v 1.212 2003/08/01 00:15:20 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/execMain.c,v 1.213 2003/08/04 00:43:17 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -68,7 +68,7 @@ static void initResultRelInfo(ResultRelInfo *resultRelInfo,
Index resultRelationIndex,
List *rangeTable,
CmdType operation);
static TupleTableSlot *ExecutePlan(EState *estate, PlanState *planstate,
static TupleTableSlot *ExecutePlan(EState *estate, PlanState * planstate,
CmdType operation,
long numberTuples,
ScanDirection direction,
@ -87,7 +87,7 @@ static void EndEvalPlanQual(EState *estate);
static void ExecCheckRTEPerms(RangeTblEntry *rte, CmdType operation);
static void ExecCheckXactReadOnly(Query *parsetree, CmdType operation);
static void EvalPlanQualStart(evalPlanQual *epq, EState *estate,
evalPlanQual *priorepq);
evalPlanQual *priorepq);
static void EvalPlanQualStop(evalPlanQual *epq);
/* end of local decls */
@ -100,7 +100,7 @@ static void EvalPlanQualStop(evalPlanQual *epq);
* query plan
*
* Takes a QueryDesc previously created by CreateQueryDesc (it's not real
* clear why we bother to separate the two functions, but...). The tupDesc
* clear why we bother to separate the two functions, but...). The tupDesc
* field of the QueryDesc is filled in to describe the tuples that will be
* returned, and the internal fields (estate and planstate) are set up.
*
@ -122,8 +122,8 @@ ExecutorStart(QueryDesc *queryDesc, bool explainOnly)
Assert(queryDesc->estate == NULL);
/*
* If the transaction is read-only, we need to check if any writes
* are planned to non-temporary tables.
* If the transaction is read-only, we need to check if any writes are
* planned to non-temporary tables.
*/
if (!explainOnly)
ExecCheckXactReadOnly(queryDesc->parsetree, queryDesc->operation);
@ -362,8 +362,8 @@ ExecCheckRTEPerms(RangeTblEntry *rte, CmdType operation)
/*
* Otherwise, only plain-relation RTEs need to be checked here.
* Function RTEs are checked by init_fcache when the function is prepared
* for execution. Join and special RTEs need no checks.
* Function RTEs are checked by init_fcache when the function is
* prepared for execution. Join and special RTEs need no checks.
*/
if (rte->rtekind != RTE_RELATION)
return;
@ -435,7 +435,7 @@ ExecCheckXactReadOnly(Query *parsetree, CmdType operation)
if (operation == CMD_DELETE || operation == CMD_INSERT
|| operation == CMD_UPDATE)
{
List *lp;
List *lp;
foreach(lp, parsetree->rtable)
{
@ -474,9 +474,9 @@ static void
InitPlan(QueryDesc *queryDesc, bool explainOnly)
{
CmdType operation = queryDesc->operation;
Query *parseTree = queryDesc->parsetree;
Plan *plan = queryDesc->plantree;
EState *estate = queryDesc->estate;
Query *parseTree = queryDesc->parsetree;
Plan *plan = queryDesc->plantree;
EState *estate = queryDesc->estate;
PlanState *planstate;
List *rangeTable;
Relation intoRelationDesc;
@ -484,8 +484,8 @@ InitPlan(QueryDesc *queryDesc, bool explainOnly)
TupleDesc tupType;
/*
* Do permissions checks. It's sufficient to examine the query's
* top rangetable here --- subplan RTEs will be checked during
* Do permissions checks. It's sufficient to examine the query's top
* rangetable here --- subplan RTEs will be checked during
* ExecInitSubPlan().
*/
ExecCheckRTPerms(parseTree->rtable, operation);
@ -570,10 +570,11 @@ InitPlan(QueryDesc *queryDesc, bool explainOnly)
if (operation == CMD_SELECT && parseTree->into != NULL)
{
do_select_into = true;
/*
* For now, always create OIDs in SELECT INTO; this is for backwards
* compatibility with pre-7.3 behavior. Eventually we might want
* to allow the user to choose.
* For now, always create OIDs in SELECT INTO; this is for
* backwards compatibility with pre-7.3 behavior. Eventually we
* might want to allow the user to choose.
*/
estate->es_force_oids = true;
}
@ -640,12 +641,12 @@ InitPlan(QueryDesc *queryDesc, bool explainOnly)
tupType = ExecGetResultType(planstate);
/*
* Initialize the junk filter if needed. SELECT and INSERT queries need a
* filter if there are any junk attrs in the tlist. INSERT and SELECT
* INTO also need a filter if the top plan node is a scan node that's not
* doing projection (else we'll be scribbling on the scan tuple!) UPDATE
* and DELETE always need a filter, since there's always a junk 'ctid'
* attribute present --- no need to look first.
* Initialize the junk filter if needed. SELECT and INSERT queries
* need a filter if there are any junk attrs in the tlist. INSERT and
* SELECT INTO also need a filter if the top plan node is a scan node
* that's not doing projection (else we'll be scribbling on the scan
* tuple!) UPDATE and DELETE always need a filter, since there's
* always a junk 'ctid' attribute present --- no need to look first.
*/
{
bool junk_filter_needed = false;
@ -752,8 +753,8 @@ InitPlan(QueryDesc *queryDesc, bool explainOnly)
/*
* If doing SELECT INTO, initialize the "into" relation. We must wait
* till now so we have the "clean" result tuple type to create the
* new table from.
* till now so we have the "clean" result tuple type to create the new
* table from.
*
* If EXPLAIN, skip creating the "into" relation.
*/
@ -795,16 +796,16 @@ InitPlan(QueryDesc *queryDesc, bool explainOnly)
FreeTupleDesc(tupdesc);
/*
* Advance command counter so that the newly-created
* relation's catalog tuples will be visible to heap_open.
* Advance command counter so that the newly-created relation's
* catalog tuples will be visible to heap_open.
*/
CommandCounterIncrement();
/*
* If necessary, create a TOAST table for the into
* relation. Note that AlterTableCreateToastTable ends
* with CommandCounterIncrement(), so that the TOAST table
* will be visible for insertion.
* If necessary, create a TOAST table for the into relation. Note
* that AlterTableCreateToastTable ends with
* CommandCounterIncrement(), so that the TOAST table will be
* visible for insertion.
*/
AlterTableCreateToastTable(intoRelationId, true);
@ -841,19 +842,19 @@ initResultRelInfo(ResultRelInfo *resultRelInfo,
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("cannot change sequence relation \"%s\"",
RelationGetRelationName(resultRelationDesc))));
RelationGetRelationName(resultRelationDesc))));
break;
case RELKIND_TOASTVALUE:
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("cannot change toast relation \"%s\"",
RelationGetRelationName(resultRelationDesc))));
RelationGetRelationName(resultRelationDesc))));
break;
case RELKIND_VIEW:
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("cannot change view relation \"%s\"",
RelationGetRelationName(resultRelationDesc))));
RelationGetRelationName(resultRelationDesc))));
break;
}
@ -894,7 +895,7 @@ initResultRelInfo(ResultRelInfo *resultRelInfo,
* ----------------------------------------------------------------
*/
void
ExecEndPlan(PlanState *planstate, EState *estate)
ExecEndPlan(PlanState * planstate, EState *estate)
{
ResultRelInfo *resultRelInfo;
int i;
@ -964,18 +965,18 @@ ExecEndPlan(PlanState *planstate, EState *estate)
*/
static TupleTableSlot *
ExecutePlan(EState *estate,
PlanState *planstate,
PlanState * planstate,
CmdType operation,
long numberTuples,
ScanDirection direction,
DestReceiver *dest)
{
JunkFilter *junkfilter;
TupleTableSlot *slot;
ItemPointer tupleid = NULL;
ItemPointerData tuple_ctid;
long current_tuple_count;
TupleTableSlot *result;
JunkFilter *junkfilter;
TupleTableSlot *slot;
ItemPointer tupleid = NULL;
ItemPointerData tuple_ctid;
long current_tuple_count;
TupleTableSlot *result;
/*
* initialize local variables
@ -1199,7 +1200,7 @@ lnext: ;
/*
* check our tuple count.. if we've processed the proper number
* then quit, else loop again and process more tuples. Zero
* then quit, else loop again and process more tuples. Zero
* numberTuples means no limit.
*/
current_tuple_count++;
@ -1309,7 +1310,7 @@ ExecInsert(TupleTableSlot *slot,
/* BEFORE ROW INSERT Triggers */
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_INSERT] > 0)
resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_INSERT] > 0)
{
HeapTuple newtuple;
@ -1686,13 +1687,13 @@ ExecConstraints(ResultRelInfo *resultRelInfo,
ereport(ERROR,
(errcode(ERRCODE_NOT_NULL_VIOLATION),
errmsg("null value for attribute \"%s\" violates NOT NULL constraint",
NameStr(rel->rd_att->attrs[attrChk - 1]->attname))));
NameStr(rel->rd_att->attrs[attrChk - 1]->attname))));
}
}
if (constr->num_check > 0)
{
const char *failed;
const char *failed;
if ((failed = ExecRelCheck(resultRelInfo, slot, estate)) != NULL)
ereport(ERROR,
@ -1884,10 +1885,11 @@ EvalPlanQual(EState *estate, Index rti, ItemPointer tid)
* integrated with the Param mechanism somehow, so that the upper plan
* nodes know that their children's outputs have changed.
*
* Note that the stack of free evalPlanQual nodes is quite useless at
* the moment, since it only saves us from pallocing/releasing the
* Note that the stack of free evalPlanQual nodes is quite useless at the
* moment, since it only saves us from pallocing/releasing the
* evalPlanQual nodes themselves. But it will be useful once we
* implement ReScan instead of end/restart for re-using PlanQual nodes.
* implement ReScan instead of end/restart for re-using PlanQual
* nodes.
*/
if (endNode)
{
@ -1898,10 +1900,11 @@ EvalPlanQual(EState *estate, Index rti, ItemPointer tid)
/*
* Initialize new recheck query.
*
* Note: if we were re-using PlanQual plans via ExecReScan, we'd need
* to instead copy down changeable state from the top plan (including
* es_result_relation_info, es_junkFilter) and reset locally changeable
* state in the epq (including es_param_exec_vals, es_evTupleNull).
* Note: if we were re-using PlanQual plans via ExecReScan, we'd need to
* instead copy down changeable state from the top plan (including
* es_result_relation_info, es_junkFilter) and reset locally
* changeable state in the epq (including es_param_exec_vals,
* es_evTupleNull).
*/
EvalPlanQualStart(epq, estate, epq->next);
@ -2016,9 +2019,9 @@ EvalPlanQualStart(evalPlanQual *epq, EState *estate, evalPlanQual *priorepq)
/*
* The epqstates share the top query's copy of unchanging state such
* as the snapshot, rangetable, result-rel info, and external Param info.
* They need their own copies of local state, including a tuple table,
* es_param_exec_vals, etc.
* as the snapshot, rangetable, result-rel info, and external Param
* info. They need their own copies of local state, including a tuple
* table, es_param_exec_vals, etc.
*/
epqstate->es_direction = ForwardScanDirection;
epqstate->es_snapshot = estate->es_snapshot;
@ -2036,11 +2039,11 @@ EvalPlanQualStart(evalPlanQual *epq, EState *estate, evalPlanQual *priorepq)
epqstate->es_instrument = estate->es_instrument;
epqstate->es_force_oids = estate->es_force_oids;
epqstate->es_topPlan = estate->es_topPlan;
/*
* Each epqstate must have its own es_evTupleNull state, but
* all the stack entries share es_evTuple state. This allows
* sub-rechecks to inherit the value being examined by an
* outer recheck.
* Each epqstate must have its own es_evTupleNull state, but all the
* stack entries share es_evTuple state. This allows sub-rechecks to
* inherit the value being examined by an outer recheck.
*/
epqstate->es_evTupleNull = (bool *) palloc0(rtsize * sizeof(bool));
if (priorepq == NULL)

View File

@ -12,7 +12,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/execProcnode.c,v 1.37 2003/07/21 17:05:08 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/execProcnode.c,v 1.38 2003/08/04 00:43:17 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -52,7 +52,7 @@
* * ExecInitNode() notices that it is looking at a nest loop and
* as the code below demonstrates, it calls ExecInitNestLoop().
* Eventually this calls ExecInitNode() on the right and left subplans
* and so forth until the entire plan is initialized. The result
* and so forth until the entire plan is initialized. The result
* of ExecInitNode() is a plan state tree built with the same structure
* as the underlying plan tree.
*
@ -226,7 +226,7 @@ ExecInitNode(Plan *node, EState *estate)
subps = NIL;
foreach(subp, node->initPlan)
{
SubPlan *subplan = (SubPlan *) lfirst(subp);
SubPlan *subplan = (SubPlan *) lfirst(subp);
SubPlanState *sstate;
Assert(IsA(subplan, SubPlan));
@ -237,9 +237,9 @@ ExecInitNode(Plan *node, EState *estate)
result->initPlan = subps;
/*
* Initialize any subPlans present in this node. These were found
* by ExecInitExpr during initialization of the PlanState. Note we
* must do this after initializing initPlans, in case their arguments
* Initialize any subPlans present in this node. These were found by
* ExecInitExpr during initialization of the PlanState. Note we must
* do this after initializing initPlans, in case their arguments
* contain subPlans (is that actually possible? perhaps not).
*/
subps = NIL;
@ -268,7 +268,7 @@ ExecInitNode(Plan *node, EState *estate)
* ----------------------------------------------------------------
*/
TupleTableSlot *
ExecProcNode(PlanState *node)
ExecProcNode(PlanState * node)
{
TupleTableSlot *result;
@ -280,7 +280,7 @@ ExecProcNode(PlanState *node)
if (node == NULL)
return NULL;
if (node->chgParam != NULL) /* something changed */
if (node->chgParam != NULL) /* something changed */
ExecReScan(node, NULL); /* let ReScan handle this */
if (node->instrument)
@ -484,7 +484,7 @@ ExecCountSlotsNode(Plan *node)
* ----------------------------------------------------------------
*/
void
ExecEndNode(PlanState *node)
ExecEndNode(PlanState * node)
{
List *subp;

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/execQual.c,v 1.138 2003/08/01 00:15:21 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/execQual.c,v 1.139 2003/08/04 00:43:17 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -50,55 +50,55 @@
/* static function decls */
static Datum ExecEvalAggref(AggrefExprState *aggref,
ExprContext *econtext,
bool *isNull);
static Datum ExecEvalArrayRef(ArrayRefExprState *astate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalAggref(AggrefExprState * aggref,
ExprContext *econtext,
bool *isNull);
static Datum ExecEvalArrayRef(ArrayRefExprState * astate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalVar(Var *variable, ExprContext *econtext, bool *isNull);
static Datum ExecEvalParam(Param *expression, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalFunc(FuncExprState *fcache, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalFunc(FuncExprState * fcache, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalOper(FuncExprState *fcache, ExprContext *econtext,
static Datum ExecEvalOper(FuncExprState * fcache, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalDistinct(FuncExprState *fcache, ExprContext *econtext,
static Datum ExecEvalDistinct(FuncExprState * fcache, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalScalarArrayOp(ScalarArrayOpExprState *sstate,
ExprContext *econtext, bool *isNull);
static Datum ExecEvalScalarArrayOp(ScalarArrayOpExprState * sstate,
ExprContext *econtext, bool *isNull);
static ExprDoneCond ExecEvalFuncArgs(FunctionCallInfo fcinfo,
List *argList, ExprContext *econtext);
static Datum ExecEvalNot(BoolExprState *notclause, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalOr(BoolExprState *orExpr, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalAnd(BoolExprState *andExpr, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalCase(CaseExprState *caseExpr, ExprContext *econtext,
static Datum ExecEvalNot(BoolExprState * notclause, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalOr(BoolExprState * orExpr, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalAnd(BoolExprState * andExpr, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalCase(CaseExprState * caseExpr, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalArray(ArrayExprState *astate,
ExprContext *econtext,
bool *isNull);
static Datum ExecEvalCoalesce(CoalesceExprState *coalesceExpr,
ExprContext *econtext,
bool *isNull);
static Datum ExecEvalNullIf(FuncExprState *nullIfExpr, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalNullTest(GenericExprState *nstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalBooleanTest(GenericExprState *bstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalCoerceToDomain(CoerceToDomainState *cstate,
static Datum ExecEvalArray(ArrayExprState * astate,
ExprContext *econtext,
bool *isNull);
static Datum ExecEvalCoalesce(CoalesceExprState * coalesceExpr,
ExprContext *econtext,
bool *isNull);
static Datum ExecEvalNullIf(FuncExprState * nullIfExpr, ExprContext *econtext,
bool *isNull);
static Datum ExecEvalNullTest(GenericExprState * nstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalBooleanTest(GenericExprState * bstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalCoerceToDomain(CoerceToDomainState * cstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalCoerceToDomainValue(CoerceToDomainValue *conVal,
ExprContext *econtext, bool *isNull);
static Datum ExecEvalFieldSelect(GenericExprState *fstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalCoerceToDomainValue(CoerceToDomainValue * conVal,
ExprContext *econtext, bool *isNull);
static Datum ExecEvalFieldSelect(GenericExprState * fstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
/*----------
@ -127,7 +127,7 @@ static Datum ExecEvalFieldSelect(GenericExprState *fstate,
*----------
*/
static Datum
ExecEvalArrayRef(ArrayRefExprState *astate,
ExecEvalArrayRef(ArrayRefExprState * astate,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
@ -301,7 +301,7 @@ ExecEvalArrayRef(ArrayRefExprState *astate,
* ----------------------------------------------------------------
*/
static Datum
ExecEvalAggref(AggrefExprState *aggref, ExprContext *econtext, bool *isNull)
ExecEvalAggref(AggrefExprState * aggref, ExprContext *econtext, bool *isNull)
{
if (econtext->ecxt_aggvalues == NULL) /* safety check */
elog(ERROR, "no aggregates in this expression context");
@ -382,8 +382,8 @@ ExecEvalVar(Var *variable, ExprContext *econtext, bool *isNull)
*
* XXX this is a horrid crock: since the pointer to the slot might live
* longer than the current evaluation context, we are forced to copy
* the tuple and slot into a long-lived context --- we use
* the econtext's per-query memory which should be safe enough. This
* the tuple and slot into a long-lived context --- we use the
* econtext's per-query memory which should be safe enough. This
* represents a serious memory leak if many such tuples are processed
* in one command, however. We ought to redesign the representation
* of whole-tuple datums so that this is not necessary.
@ -439,7 +439,8 @@ ExecEvalParam(Param *expression, ExprContext *econtext, bool *isNull)
{
/*
* PARAM_EXEC params (internal executor parameters) are stored in
* the ecxt_param_exec_vals array, and can be accessed by array index.
* the ecxt_param_exec_vals array, and can be accessed by array
* index.
*/
ParamExecData *prm;
@ -457,9 +458,9 @@ ExecEvalParam(Param *expression, ExprContext *econtext, bool *isNull)
else
{
/*
* All other parameter types must be sought in ecxt_param_list_info.
* NOTE: The last entry in the param array is always an
* entry with kind == PARAM_INVALID.
* All other parameter types must be sought in
* ecxt_param_list_info. NOTE: The last entry in the param array
* is always an entry with kind == PARAM_INVALID.
*/
ParamListInfo paramList = econtext->ecxt_param_list_info;
char *thisParamName = expression->paramname;
@ -488,8 +489,8 @@ ExecEvalParam(Param *expression, ExprContext *econtext, bool *isNull)
}
if (!matchFound)
paramList++;
} /* while */
} /* if */
} /* while */
} /* if */
if (!matchFound)
{
@ -605,7 +606,7 @@ GetAttributeByName(TupleTableSlot *slot, char *attname, bool *isNull)
* init_fcache - initialize a FuncExprState node during first use
*/
void
init_fcache(Oid foid, FuncExprState *fcache, MemoryContext fcacheCxt)
init_fcache(Oid foid, FuncExprState * fcache, MemoryContext fcacheCxt)
{
AclResult aclresult;
@ -678,7 +679,7 @@ ExecEvalFuncArgs(FunctionCallInfo fcinfo,
* Evaluate the arguments to a function and then the function itself.
*/
Datum
ExecMakeFunctionResult(FuncExprState *fcache,
ExecMakeFunctionResult(FuncExprState * fcache,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
@ -881,7 +882,7 @@ ExecMakeFunctionResult(FuncExprState *fcache,
* object. (If function returns an empty set, we just return NULL instead.)
*/
Tuplestorestate *
ExecMakeTableFunctionResult(ExprState *funcexpr,
ExecMakeTableFunctionResult(ExprState * funcexpr,
ExprContext *econtext,
TupleDesc expectedDesc,
TupleDesc *returnDesc)
@ -899,14 +900,14 @@ ExecMakeTableFunctionResult(ExprState *funcexpr,
bool returnsTuple = false;
/*
* Normally the passed expression tree will be a FuncExprState, since the
* grammar only allows a function call at the top level of a table
* function reference. However, if the function doesn't return set then
* the planner might have replaced the function call via constant-folding
* or inlining. So if we see any other kind of expression node, execute
* it via the general ExecEvalExpr() code; the only difference is that
* we don't get a chance to pass a special ReturnSetInfo to any functions
* buried in the expression.
* Normally the passed expression tree will be a FuncExprState, since
* the grammar only allows a function call at the top level of a table
* function reference. However, if the function doesn't return set
* then the planner might have replaced the function call via
* constant-folding or inlining. So if we see any other kind of
* expression node, execute it via the general ExecEvalExpr() code;
* the only difference is that we don't get a chance to pass a special
* ReturnSetInfo to any functions buried in the expression.
*/
if (funcexpr && IsA(funcexpr, FuncExprState) &&
IsA(funcexpr->expr, FuncExpr))
@ -924,7 +925,7 @@ ExecMakeTableFunctionResult(ExprState *funcexpr,
*/
if (fcache->func.fn_oid == InvalidOid)
{
FuncExpr *func = (FuncExpr *) fcache->xprstate.expr;
FuncExpr *func = (FuncExpr *) fcache->xprstate.expr;
init_fcache(func->funcid, fcache, econtext->ecxt_per_query_memory);
}
@ -933,9 +934,9 @@ ExecMakeTableFunctionResult(ExprState *funcexpr,
* Evaluate the function's argument list.
*
* Note: ideally, we'd do this in the per-tuple context, but then the
* argument values would disappear when we reset the context in the
* inner loop. So do it in caller context. Perhaps we should make a
* separate context just to hold the evaluated arguments?
* argument values would disappear when we reset the context in
* the inner loop. So do it in caller context. Perhaps we should
* make a separate context just to hold the evaluated arguments?
*/
MemSet(&fcinfo, 0, sizeof(fcinfo));
fcinfo.flinfo = &(fcache->func);
@ -990,7 +991,8 @@ ExecMakeTableFunctionResult(ExprState *funcexpr,
rsinfo.setDesc = NULL;
/*
* Switch to short-lived context for calling the function or expression.
* Switch to short-lived context for calling the function or
* expression.
*/
callerContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
@ -1004,9 +1006,9 @@ ExecMakeTableFunctionResult(ExprState *funcexpr,
HeapTuple tuple;
/*
* reset per-tuple memory context before each call of the
* function or expression. This cleans up any local memory the
* function may leak when called.
* reset per-tuple memory context before each call of the function
* or expression. This cleans up any local memory the function may
* leak when called.
*/
ResetExprContext(econtext);
@ -1157,7 +1159,7 @@ ExecMakeTableFunctionResult(ExprState *funcexpr,
* ----------------------------------------------------------------
*/
static Datum
ExecEvalFunc(FuncExprState *fcache,
ExecEvalFunc(FuncExprState * fcache,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
@ -1167,7 +1169,7 @@ ExecEvalFunc(FuncExprState *fcache,
*/
if (fcache->func.fn_oid == InvalidOid)
{
FuncExpr *func = (FuncExpr *) fcache->xprstate.expr;
FuncExpr *func = (FuncExpr *) fcache->xprstate.expr;
init_fcache(func->funcid, fcache, econtext->ecxt_per_query_memory);
}
@ -1180,7 +1182,7 @@ ExecEvalFunc(FuncExprState *fcache,
* ----------------------------------------------------------------
*/
static Datum
ExecEvalOper(FuncExprState *fcache,
ExecEvalOper(FuncExprState * fcache,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
@ -1190,7 +1192,7 @@ ExecEvalOper(FuncExprState *fcache,
*/
if (fcache->func.fn_oid == InvalidOid)
{
OpExpr *op = (OpExpr *) fcache->xprstate.expr;
OpExpr *op = (OpExpr *) fcache->xprstate.expr;
init_fcache(op->opfuncid, fcache, econtext->ecxt_per_query_memory);
}
@ -1210,7 +1212,7 @@ ExecEvalOper(FuncExprState *fcache,
* ----------------------------------------------------------------
*/
static Datum
ExecEvalDistinct(FuncExprState *fcache,
ExecEvalDistinct(FuncExprState * fcache,
ExprContext *econtext,
bool *isNull)
{
@ -1242,7 +1244,7 @@ ExecEvalDistinct(FuncExprState *fcache,
if (argDone != ExprSingleResult)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("IS DISTINCT FROM does not support set arguments")));
errmsg("IS DISTINCT FROM does not support set arguments")));
Assert(fcinfo.nargs == 2);
if (fcinfo.argnull[0] && fcinfo.argnull[1])
@ -1272,11 +1274,11 @@ ExecEvalDistinct(FuncExprState *fcache,
*
* Evaluate "scalar op ANY/ALL (array)". The operator always yields boolean,
* and we combine the results across all array elements using OR and AND
* (for ANY and ALL respectively). Of course we short-circuit as soon as
* (for ANY and ALL respectively). Of course we short-circuit as soon as
* the result is known.
*/
static Datum
ExecEvalScalarArrayOp(ScalarArrayOpExprState *sstate,
ExecEvalScalarArrayOp(ScalarArrayOpExprState * sstate,
ExprContext *econtext, bool *isNull)
{
ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) sstate->fxprstate.xprstate.expr;
@ -1310,12 +1312,12 @@ ExecEvalScalarArrayOp(ScalarArrayOpExprState *sstate,
if (argDone != ExprSingleResult)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("op ANY/ALL (array) does not support set arguments")));
errmsg("op ANY/ALL (array) does not support set arguments")));
Assert(fcinfo.nargs == 2);
/*
* If the array is NULL then we return NULL --- it's not very meaningful
* to do anything else, even if the operator isn't strict.
* If the array is NULL then we return NULL --- it's not very
* meaningful to do anything else, even if the operator isn't strict.
*/
if (fcinfo.argnull[1])
{
@ -1334,6 +1336,7 @@ ExecEvalScalarArrayOp(ScalarArrayOpExprState *sstate,
nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr));
if (nitems <= 0)
return BoolGetDatum(!useOr);
/*
* If the scalar is NULL, and the function is strict, return NULL.
* This is just to avoid having to test for strictness inside the
@ -1347,8 +1350,8 @@ ExecEvalScalarArrayOp(ScalarArrayOpExprState *sstate,
}
/*
* We arrange to look up info about the element type only
* once per series of calls, assuming the element type doesn't change
* We arrange to look up info about the element type only once per
* series of calls, assuming the element type doesn't change
* underneath us.
*/
if (sstate->element_type != ARR_ELEMTYPE(arr))
@ -1370,8 +1373,8 @@ ExecEvalScalarArrayOp(ScalarArrayOpExprState *sstate,
s = (char *) ARR_DATA_PTR(arr);
for (i = 0; i < nitems; i++)
{
Datum elt;
Datum thisresult;
Datum elt;
Datum thisresult;
/* Get array element */
elt = fetch_att(s, typbyval, typlen);
@ -1394,7 +1397,7 @@ ExecEvalScalarArrayOp(ScalarArrayOpExprState *sstate,
{
result = BoolGetDatum(true);
resultnull = false;
break; /* needn't look at any more elements */
break; /* needn't look at any more elements */
}
}
else
@ -1403,7 +1406,7 @@ ExecEvalScalarArrayOp(ScalarArrayOpExprState *sstate,
{
result = BoolGetDatum(false);
resultnull = false;
break; /* needn't look at any more elements */
break; /* needn't look at any more elements */
}
}
}
@ -1428,7 +1431,7 @@ ExecEvalScalarArrayOp(ScalarArrayOpExprState *sstate,
* ----------------------------------------------------------------
*/
static Datum
ExecEvalNot(BoolExprState *notclause, ExprContext *econtext, bool *isNull)
ExecEvalNot(BoolExprState * notclause, ExprContext *econtext, bool *isNull)
{
ExprState *clause;
Datum expr_value;
@ -1456,7 +1459,7 @@ ExecEvalNot(BoolExprState *notclause, ExprContext *econtext, bool *isNull)
* ----------------------------------------------------------------
*/
static Datum
ExecEvalOr(BoolExprState *orExpr, ExprContext *econtext, bool *isNull)
ExecEvalOr(BoolExprState * orExpr, ExprContext *econtext, bool *isNull)
{
List *clauses;
List *clause;
@ -1504,7 +1507,7 @@ ExecEvalOr(BoolExprState *orExpr, ExprContext *econtext, bool *isNull)
* ----------------------------------------------------------------
*/
static Datum
ExecEvalAnd(BoolExprState *andExpr, ExprContext *econtext, bool *isNull)
ExecEvalAnd(BoolExprState * andExpr, ExprContext *econtext, bool *isNull)
{
List *clauses;
List *clause;
@ -1552,7 +1555,7 @@ ExecEvalAnd(BoolExprState *andExpr, ExprContext *econtext, bool *isNull)
* ----------------------------------------------------------------
*/
static Datum
ExecEvalCase(CaseExprState *caseExpr, ExprContext *econtext,
ExecEvalCase(CaseExprState * caseExpr, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
List *clauses;
@ -1610,22 +1613,22 @@ ExecEvalCase(CaseExprState *caseExpr, ExprContext *econtext,
* ----------------------------------------------------------------
*/
static Datum
ExecEvalArray(ArrayExprState *astate, ExprContext *econtext,
ExecEvalArray(ArrayExprState * astate, ExprContext *econtext,
bool *isNull)
{
ArrayExpr *arrayExpr = (ArrayExpr *) astate->xprstate.expr;
ArrayExpr *arrayExpr = (ArrayExpr *) astate->xprstate.expr;
ArrayType *result;
List *element;
Oid element_type = arrayExpr->element_typeid;
int ndims = arrayExpr->ndims;
int dims[MAXDIM];
int lbs[MAXDIM];
List *element;
Oid element_type = arrayExpr->element_typeid;
int ndims = arrayExpr->ndims;
int dims[MAXDIM];
int lbs[MAXDIM];
if (ndims == 1)
{
int nelems;
Datum *dvalues;
int i = 0;
int nelems;
Datum *dvalues;
int i = 0;
nelems = length(astate->elements);
@ -1683,7 +1686,7 @@ ExecEvalArray(ArrayExprState *astate, ExprContext *econtext,
/* loop through and get data area from each element */
foreach(element, astate->elements)
{
ExprState *e = (ExprState *) lfirst(element);
ExprState *e = (ExprState *) lfirst(element);
bool eisnull;
Datum arraydatum;
ArrayType *array;
@ -1718,8 +1721,8 @@ ExecEvalArray(ArrayExprState *astate, ExprContext *econtext,
elem_ndims * sizeof(int)) != 0)
ereport(ERROR,
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
errmsg("multidimensional arrays must have array "
"expressions with matching dimensions")));
errmsg("multidimensional arrays must have array "
"expressions with matching dimensions")));
}
elem_ndatabytes = ARR_SIZE(array) - ARR_OVERHEAD(elem_ndims);
@ -1767,16 +1770,16 @@ ExecEvalArray(ArrayExprState *astate, ExprContext *econtext,
* ----------------------------------------------------------------
*/
static Datum
ExecEvalCoalesce(CoalesceExprState *coalesceExpr, ExprContext *econtext,
ExecEvalCoalesce(CoalesceExprState * coalesceExpr, ExprContext *econtext,
bool *isNull)
{
List *arg;
List *arg;
/* Simply loop through until something NOT NULL is found */
foreach(arg, coalesceExpr->args)
{
ExprState *e = (ExprState *) lfirst(arg);
Datum value;
ExprState *e = (ExprState *) lfirst(arg);
Datum value;
value = ExecEvalExpr(e, econtext, isNull, NULL);
if (!*isNull)
@ -1787,7 +1790,7 @@ ExecEvalCoalesce(CoalesceExprState *coalesceExpr, ExprContext *econtext,
*isNull = true;
return (Datum) 0;
}
/* ----------------------------------------------------------------
* ExecEvalNullIf
*
@ -1797,7 +1800,7 @@ ExecEvalCoalesce(CoalesceExprState *coalesceExpr, ExprContext *econtext,
* ----------------------------------------------------------------
*/
static Datum
ExecEvalNullIf(FuncExprState *fcache, ExprContext *econtext,
ExecEvalNullIf(FuncExprState * fcache, ExprContext *econtext,
bool *isNull)
{
Datum result;
@ -1856,7 +1859,7 @@ ExecEvalNullIf(FuncExprState *fcache, ExprContext *econtext,
* ----------------------------------------------------------------
*/
static Datum
ExecEvalNullTest(GenericExprState *nstate,
ExecEvalNullTest(GenericExprState * nstate,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
@ -1901,7 +1904,7 @@ ExecEvalNullTest(GenericExprState *nstate,
* ----------------------------------------------------------------
*/
static Datum
ExecEvalBooleanTest(GenericExprState *bstate,
ExecEvalBooleanTest(GenericExprState * bstate,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
@ -1987,7 +1990,7 @@ ExecEvalBooleanTest(GenericExprState *bstate,
* datum) otherwise throw an error.
*/
static Datum
ExecEvalCoerceToDomain(CoerceToDomainState *cstate, ExprContext *econtext,
ExecEvalCoerceToDomain(CoerceToDomainState * cstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
CoerceToDomain *ctest = (CoerceToDomain *) cstate->xprstate.expr;
@ -2009,43 +2012,44 @@ ExecEvalCoerceToDomain(CoerceToDomainState *cstate, ExprContext *econtext,
if (*isNull)
ereport(ERROR,
(errcode(ERRCODE_NOT_NULL_VIOLATION),
errmsg("domain %s does not allow NULL values",
format_type_be(ctest->resulttype))));
errmsg("domain %s does not allow NULL values",
format_type_be(ctest->resulttype))));
break;
case DOM_CONSTRAINT_CHECK:
{
Datum conResult;
bool conIsNull;
Datum save_datum;
bool save_isNull;
{
Datum conResult;
bool conIsNull;
Datum save_datum;
bool save_isNull;
/*
* Set up value to be returned by CoerceToDomainValue nodes.
* We must save and restore prior setting of econtext's
* domainValue fields, in case this node is itself within
* a check expression for another domain.
*/
save_datum = econtext->domainValue_datum;
save_isNull = econtext->domainValue_isNull;
/*
* Set up value to be returned by CoerceToDomainValue
* nodes. We must save and restore prior setting of
* econtext's domainValue fields, in case this node is
* itself within a check expression for another
* domain.
*/
save_datum = econtext->domainValue_datum;
save_isNull = econtext->domainValue_isNull;
econtext->domainValue_datum = result;
econtext->domainValue_isNull = *isNull;
econtext->domainValue_datum = result;
econtext->domainValue_isNull = *isNull;
conResult = ExecEvalExpr(con->check_expr,
econtext, &conIsNull, NULL);
conResult = ExecEvalExpr(con->check_expr,
econtext, &conIsNull, NULL);
if (!conIsNull &&
!DatumGetBool(conResult))
ereport(ERROR,
(errcode(ERRCODE_CHECK_VIOLATION),
errmsg("value for domain %s violates CHECK constraint \"%s\"",
format_type_be(ctest->resulttype),
con->name)));
econtext->domainValue_datum = save_datum;
econtext->domainValue_isNull = save_isNull;
if (!conIsNull &&
!DatumGetBool(conResult))
ereport(ERROR,
(errcode(ERRCODE_CHECK_VIOLATION),
errmsg("value for domain %s violates CHECK constraint \"%s\"",
format_type_be(ctest->resulttype),
con->name)));
econtext->domainValue_datum = save_datum;
econtext->domainValue_isNull = save_isNull;
break;
}
break;
}
default:
elog(ERROR, "unrecognized constraint type: %d",
(int) con->constrainttype);
@ -2063,7 +2067,7 @@ ExecEvalCoerceToDomain(CoerceToDomainState *cstate, ExprContext *econtext,
* Return the value stored by CoerceToDomain.
*/
static Datum
ExecEvalCoerceToDomainValue(CoerceToDomainValue *conVal,
ExecEvalCoerceToDomainValue(CoerceToDomainValue * conVal,
ExprContext *econtext, bool *isNull)
{
*isNull = econtext->domainValue_isNull;
@ -2077,7 +2081,7 @@ ExecEvalCoerceToDomainValue(CoerceToDomainValue *conVal,
* ----------------------------------------------------------------
*/
static Datum
ExecEvalFieldSelect(GenericExprState *fstate,
ExecEvalFieldSelect(GenericExprState * fstate,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
@ -2141,7 +2145,7 @@ ExecEvalFieldSelect(GenericExprState *fstate,
* ----------------------------------------------------------------
*/
Datum
ExecEvalExpr(ExprState *expression,
ExecEvalExpr(ExprState * expression,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
@ -2308,7 +2312,7 @@ ExecEvalExpr(ExprState *expression,
* Same as above, but get into the right allocation context explicitly.
*/
Datum
ExecEvalExprSwitchContext(ExprState *expression,
ExecEvalExprSwitchContext(ExprState * expression,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
@ -2327,7 +2331,7 @@ ExecEvalExprSwitchContext(ExprState *expression,
* ExecInitExpr: prepare an expression tree for execution
*
* This function builds and returns an ExprState tree paralleling the given
* Expr node tree. The ExprState tree can then be handed to ExecEvalExpr
* Expr node tree. The ExprState tree can then be handed to ExecEvalExpr
* for execution. Because the Expr tree itself is read-only as far as
* ExecInitExpr and ExecEvalExpr are concerned, several different executions
* of the same plan tree can occur concurrently.
@ -2337,7 +2341,7 @@ ExecEvalExprSwitchContext(ExprState *expression,
* the same as the per-query context of the associated ExprContext.
*
* Any Aggref and SubPlan nodes found in the tree are added to the lists
* of such nodes held by the parent PlanState. Otherwise, we do very little
* of such nodes held by the parent PlanState. Otherwise, we do very little
* initialization here other than building the state-node tree. Any nontrivial
* work associated with initializing runtime info for a node should happen
* during the first actual evaluation of that node. (This policy lets us
@ -2356,7 +2360,7 @@ ExecEvalExprSwitchContext(ExprState *expression,
* This case should usually come through ExecPrepareExpr, not directly here.
*/
ExprState *
ExecInitExpr(Expr *node, PlanState *parent)
ExecInitExpr(Expr *node, PlanState * parent)
{
ExprState *state;
@ -2373,7 +2377,7 @@ ExecInitExpr(Expr *node, PlanState *parent)
break;
case T_Aggref:
{
Aggref *aggref = (Aggref *) node;
Aggref *aggref = (Aggref *) node;
AggrefExprState *astate = makeNode(AggrefExprState);
if (parent && IsA(parent, AggState))
@ -2389,8 +2393,8 @@ ExecInitExpr(Expr *node, PlanState *parent)
/*
* Complain if the aggregate's argument contains any
* aggregates; nested agg functions are semantically
* nonsensical. (This should have been caught earlier,
* but we defend against it here anyway.)
* nonsensical. (This should have been caught
* earlier, but we defend against it here anyway.)
*/
if (naggs != aggstate->numaggs)
ereport(ERROR,
@ -2433,41 +2437,41 @@ ExecInitExpr(Expr *node, PlanState *parent)
fstate->args = (List *)
ExecInitExpr((Expr *) funcexpr->args, parent);
fstate->func.fn_oid = InvalidOid; /* not initialized */
fstate->func.fn_oid = InvalidOid; /* not initialized */
state = (ExprState *) fstate;
}
break;
case T_OpExpr:
{
OpExpr *opexpr = (OpExpr *) node;
OpExpr *opexpr = (OpExpr *) node;
FuncExprState *fstate = makeNode(FuncExprState);
fstate->args = (List *)
ExecInitExpr((Expr *) opexpr->args, parent);
fstate->func.fn_oid = InvalidOid; /* not initialized */
fstate->func.fn_oid = InvalidOid; /* not initialized */
state = (ExprState *) fstate;
}
break;
case T_DistinctExpr:
{
DistinctExpr *distinctexpr = (DistinctExpr *) node;
DistinctExpr *distinctexpr = (DistinctExpr *) node;
FuncExprState *fstate = makeNode(FuncExprState);
fstate->args = (List *)
ExecInitExpr((Expr *) distinctexpr->args, parent);
fstate->func.fn_oid = InvalidOid; /* not initialized */
fstate->func.fn_oid = InvalidOid; /* not initialized */
state = (ExprState *) fstate;
}
break;
case T_ScalarArrayOpExpr:
{
ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
ScalarArrayOpExprState *sstate = makeNode(ScalarArrayOpExprState);
sstate->fxprstate.args = (List *)
ExecInitExpr((Expr *) opexpr->args, parent);
sstate->fxprstate.func.fn_oid = InvalidOid; /* not initialized */
sstate->element_type = InvalidOid; /* ditto */
sstate->fxprstate.func.fn_oid = InvalidOid; /* not initialized */
sstate->element_type = InvalidOid; /* ditto */
state = (ExprState *) sstate;
}
break;
@ -2484,7 +2488,7 @@ ExecInitExpr(Expr *node, PlanState *parent)
case T_SubPlan:
{
/* Keep this in sync with ExecInitExprInitPlan, below */
SubPlan *subplan = (SubPlan *) node;
SubPlan *subplan = (SubPlan *) node;
SubPlanState *sstate = makeNode(SubPlanState);
if (!parent)
@ -2492,7 +2496,8 @@ ExecInitExpr(Expr *node, PlanState *parent)
/*
* Here we just add the SubPlanState nodes to
* parent->subPlan. The subplans will be initialized later.
* parent->subPlan. The subplans will be initialized
* later.
*/
parent->subPlan = lcons(sstate, parent->subPlan);
sstate->sub_estate = NULL;
@ -2508,7 +2513,7 @@ ExecInitExpr(Expr *node, PlanState *parent)
break;
case T_FieldSelect:
{
FieldSelect *fselect = (FieldSelect *) node;
FieldSelect *fselect = (FieldSelect *) node;
GenericExprState *gstate = makeNode(GenericExprState);
gstate->arg = ExecInitExpr(fselect->arg, parent);
@ -2517,7 +2522,7 @@ ExecInitExpr(Expr *node, PlanState *parent)
break;
case T_RelabelType:
{
RelabelType *relabel = (RelabelType *) node;
RelabelType *relabel = (RelabelType *) node;
GenericExprState *gstate = makeNode(GenericExprState);
gstate->arg = ExecInitExpr(relabel->arg, parent);
@ -2552,10 +2557,10 @@ ExecInitExpr(Expr *node, PlanState *parent)
break;
case T_ArrayExpr:
{
ArrayExpr *arrayexpr = (ArrayExpr *) node;
ArrayExpr *arrayexpr = (ArrayExpr *) node;
ArrayExprState *astate = makeNode(ArrayExprState);
FastList outlist;
List *inlist;
FastList outlist;
List *inlist;
FastListInit(&outlist);
foreach(inlist, arrayexpr->elements)
@ -2585,8 +2590,8 @@ ExecInitExpr(Expr *node, PlanState *parent)
FastListInit(&outlist);
foreach(inlist, coalesceexpr->args)
{
Expr *e = (Expr *) lfirst(inlist);
ExprState *estate;
Expr *e = (Expr *) lfirst(inlist);
ExprState *estate;
estate = ExecInitExpr(e, parent);
FastAppend(&outlist, estate);
@ -2602,7 +2607,7 @@ ExecInitExpr(Expr *node, PlanState *parent)
fstate->args = (List *)
ExecInitExpr((Expr *) nullifexpr->args, parent);
fstate->func.fn_oid = InvalidOid; /* not initialized */
fstate->func.fn_oid = InvalidOid; /* not initialized */
state = (ExprState *) fstate;
}
break;
@ -2617,7 +2622,7 @@ ExecInitExpr(Expr *node, PlanState *parent)
break;
case T_BooleanTest:
{
BooleanTest *btest = (BooleanTest *) node;
BooleanTest *btest = (BooleanTest *) node;
GenericExprState *gstate = makeNode(GenericExprState);
gstate->arg = ExecInitExpr(btest->arg, parent);
@ -2626,7 +2631,7 @@ ExecInitExpr(Expr *node, PlanState *parent)
break;
case T_CoerceToDomain:
{
CoerceToDomain *ctest = (CoerceToDomain *) node;
CoerceToDomain *ctest = (CoerceToDomain *) node;
CoerceToDomainState *cstate = makeNode(CoerceToDomainState);
cstate->arg = ExecInitExpr(ctest->arg, parent);
@ -2636,7 +2641,7 @@ ExecInitExpr(Expr *node, PlanState *parent)
break;
case T_TargetEntry:
{
TargetEntry *tle = (TargetEntry *) node;
TargetEntry *tle = (TargetEntry *) node;
GenericExprState *gstate = makeNode(GenericExprState);
gstate->arg = ExecInitExpr(tle->expr, parent);
@ -2673,12 +2678,12 @@ ExecInitExpr(Expr *node, PlanState *parent)
/*
* ExecInitExprInitPlan --- initialize a subplan expr that's being handled
* as an InitPlan. This is identical to ExecInitExpr's handling of a regular
* as an InitPlan. This is identical to ExecInitExpr's handling of a regular
* subplan expr, except we do NOT want to add the node to the parent's
* subplan list.
*/
SubPlanState *
ExecInitExprInitPlan(SubPlan *node, PlanState *parent)
ExecInitExprInitPlan(SubPlan *node, PlanState * parent)
{
SubPlanState *sstate = makeNode(SubPlanState);
@ -2704,7 +2709,7 @@ ExecInitExprInitPlan(SubPlan *node, PlanState *parent)
* This differs from ExecInitExpr in that we don't assume the caller is
* already running in the EState's per-query context. Also, we apply
* fix_opfuncids() to the passed expression tree to be sure it is ready
* to run. (In ordinary Plan trees the planner will have fixed opfuncids,
* to run. (In ordinary Plan trees the planner will have fixed opfuncids,
* but callers outside the executor will not have done this.)
*/
ExprState *
@ -2988,8 +2993,8 @@ ExecTargetList(List *targetlist,
if (itemIsDone[resind] == ExprEndResult)
{
/*
* Oh dear, this item is returning an empty
* set. Guess we can't make a tuple after all.
* Oh dear, this item is returning an empty set.
* Guess we can't make a tuple after all.
*/
*isDone = ExprEndResult;
break;

View File

@ -12,7 +12,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/execScan.c,v 1.23 2003/02/03 15:07:07 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/execScan.c,v 1.24 2003/08/04 00:43:17 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -45,7 +45,7 @@ static bool tlist_matches_tupdesc(List *tlist, Index varno, TupleDesc tupdesc);
* ----------------------------------------------------------------
*/
TupleTableSlot *
ExecScan(ScanState *node,
ExecScan(ScanState * node,
ExecScanAccessMtd accessMtd) /* function returning a tuple */
{
EState *estate;
@ -134,9 +134,10 @@ ExecScan(ScanState *node,
if (projInfo)
{
/*
* Form a projection tuple, store it in the result tuple slot
* and return it --- unless we find we can project no tuples
* from this scan tuple, in which case continue scan.
* Form a projection tuple, store it in the result tuple
* slot and return it --- unless we find we can project no
* tuples from this scan tuple, in which case continue
* scan.
*/
resultSlot = ExecProject(projInfo, &isDone);
if (isDone != ExprEndResult)
@ -175,13 +176,13 @@ ExecScan(ScanState *node,
* ExecAssignScanType must have been called already.
*/
void
ExecAssignScanProjectionInfo(ScanState *node)
ExecAssignScanProjectionInfo(ScanState * node)
{
Scan *scan = (Scan *) node->ps.plan;
Scan *scan = (Scan *) node->ps.plan;
if (tlist_matches_tupdesc(scan->plan.targetlist,
scan->scanrelid,
node->ss_ScanTupleSlot->ttc_tupleDescriptor))
node->ss_ScanTupleSlot->ttc_tupleDescriptor))
node->ps.ps_ProjInfo = NULL;
else
ExecAssignProjectionInfo(&node->ps);
@ -190,13 +191,13 @@ ExecAssignScanProjectionInfo(ScanState *node)
static bool
tlist_matches_tupdesc(List *tlist, Index varno, TupleDesc tupdesc)
{
int numattrs = tupdesc->natts;
int attrno;
int numattrs = tupdesc->natts;
int attrno;
for (attrno = 1; attrno <= numattrs; attrno++)
{
Form_pg_attribute att_tup = tupdesc->attrs[attrno - 1];
Var *var;
Var *var;
if (tlist == NIL)
return false; /* tlist too short */

View File

@ -15,7 +15,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/execTuples.c,v 1.67 2003/07/21 17:05:09 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/execTuples.c,v 1.68 2003/08/04 00:43:17 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -482,7 +482,7 @@ ExecSetSlotDescriptorIsNew(TupleTableSlot *slot, /* slot to change */
* ----------------
*/
void
ExecInitResultTupleSlot(EState *estate, PlanState *planstate)
ExecInitResultTupleSlot(EState *estate, PlanState * planstate)
{
INIT_SLOT_DEFS;
INIT_SLOT_ALLOC;
@ -494,7 +494,7 @@ ExecInitResultTupleSlot(EState *estate, PlanState *planstate)
* ----------------
*/
void
ExecInitScanTupleSlot(EState *estate, ScanState *scanstate)
ExecInitScanTupleSlot(EState *estate, ScanState * scanstate)
{
INIT_SLOT_DEFS;
INIT_SLOT_ALLOC;
@ -807,7 +807,7 @@ do_text_output_multiline(TupOutputState *tstate, char *text)
if (eol)
*eol++ = '\0';
else
eol = text + strlen(text);
eol = text +strlen(text);
do_tup_output(tstate, &text);
text = eol;

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/execUtils.c,v 1.100 2003/05/28 16:03:56 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/execUtils.c,v 1.101 2003/08/04 00:43:17 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -166,8 +166,8 @@ CreateExecutorState(void)
ALLOCSET_DEFAULT_MAXSIZE);
/*
* Make the EState node within the per-query context. This way,
* we don't need a separate pfree() operation for it at shutdown.
* Make the EState node within the per-query context. This way, we
* don't need a separate pfree() operation for it at shutdown.
*/
oldcontext = MemoryContextSwitchTo(qcontext);
@ -248,6 +248,7 @@ FreeExecutorState(EState *estate)
FreeExprContext((ExprContext *) lfirst(estate->es_exprcontexts));
/* FreeExprContext removed the list link for us */
}
/*
* Free the per-query memory context, thereby releasing all working
* memory, including the EState node itself.
@ -310,10 +311,10 @@ CreateExprContext(EState *estate)
econtext->ecxt_callbacks = NULL;
/*
* Link the ExprContext into the EState to ensure it is shut down
* when the EState is freed. Because we use lcons(), shutdowns will
* occur in reverse order of creation, which may not be essential
* but can't hurt.
* Link the ExprContext into the EState to ensure it is shut down when
* the EState is freed. Because we use lcons(), shutdowns will occur
* in reverse order of creation, which may not be essential but can't
* hurt.
*/
estate->es_exprcontexts = lcons(econtext, estate->es_exprcontexts);
@ -377,14 +378,14 @@ MakePerTupleExprContext(EState *estate)
/* ----------------
* ExecAssignExprContext
*
* This initializes the ps_ExprContext field. It is only necessary
* This initializes the ps_ExprContext field. It is only necessary
* to do this for nodes which use ExecQual or ExecProject
* because those routines require an econtext. Other nodes that
* because those routines require an econtext. Other nodes that
* don't have to evaluate expressions don't need to do this.
* ----------------
*/
void
ExecAssignExprContext(EState *estate, PlanState *planstate)
ExecAssignExprContext(EState *estate, PlanState * planstate)
{
planstate->ps_ExprContext = CreateExprContext(estate);
}
@ -394,7 +395,7 @@ ExecAssignExprContext(EState *estate, PlanState *planstate)
* ----------------
*/
void
ExecAssignResultType(PlanState *planstate,
ExecAssignResultType(PlanState * planstate,
TupleDesc tupDesc, bool shouldFree)
{
TupleTableSlot *slot = planstate->ps_ResultTupleSlot;
@ -407,7 +408,7 @@ ExecAssignResultType(PlanState *planstate,
* ----------------
*/
void
ExecAssignResultTypeFromOuterPlan(PlanState *planstate)
ExecAssignResultTypeFromOuterPlan(PlanState * planstate)
{
PlanState *outerPlan;
TupleDesc tupDesc;
@ -423,7 +424,7 @@ ExecAssignResultTypeFromOuterPlan(PlanState *planstate)
* ----------------
*/
void
ExecAssignResultTypeFromTL(PlanState *planstate)
ExecAssignResultTypeFromTL(PlanState * planstate)
{
bool hasoid = false;
TupleDesc tupDesc;
@ -445,9 +446,9 @@ ExecAssignResultTypeFromTL(PlanState *planstate)
* each of the child plans of the topmost Append plan. So, this is
* ugly but it works, for now ...
*
* SELECT INTO is also pretty grotty, because we don't yet have the
* INTO relation's descriptor at this point; we have to look aside
* at a flag set by InitPlan().
* SELECT INTO is also pretty grotty, because we don't yet have the INTO
* relation's descriptor at this point; we have to look aside at a
* flag set by InitPlan().
*/
if (planstate->state->es_force_oids)
hasoid = true;
@ -465,9 +466,9 @@ ExecAssignResultTypeFromTL(PlanState *planstate)
}
/*
* ExecTypeFromTL needs the parse-time representation of the tlist, not
* a list of ExprStates. This is good because some plan nodes don't
* bother to set up planstate->targetlist ...
* ExecTypeFromTL needs the parse-time representation of the tlist,
* not a list of ExprStates. This is good because some plan nodes
* don't bother to set up planstate->targetlist ...
*/
tupDesc = ExecTypeFromTL(planstate->plan->targetlist, hasoid);
ExecAssignResultType(planstate, tupDesc, true);
@ -478,7 +479,7 @@ ExecAssignResultTypeFromTL(PlanState *planstate)
* ----------------
*/
TupleDesc
ExecGetResultType(PlanState *planstate)
ExecGetResultType(PlanState * planstate)
{
TupleTableSlot *slot = planstate->ps_ResultTupleSlot;
@ -524,7 +525,7 @@ ExecBuildProjectionInfo(List *targetList,
* ----------------
*/
void
ExecAssignProjectionInfo(PlanState *planstate)
ExecAssignProjectionInfo(PlanState * planstate)
{
planstate->ps_ProjInfo =
ExecBuildProjectionInfo(planstate->targetlist,
@ -543,7 +544,7 @@ ExecAssignProjectionInfo(PlanState *planstate)
* ----------------
*/
void
ExecFreeExprContext(PlanState *planstate)
ExecFreeExprContext(PlanState * planstate)
{
ExprContext *econtext;
@ -575,7 +576,7 @@ ExecFreeExprContext(PlanState *planstate)
* ----------------
*/
TupleDesc
ExecGetScanType(ScanState *scanstate)
ExecGetScanType(ScanState * scanstate)
{
TupleTableSlot *slot = scanstate->ss_ScanTupleSlot;
@ -587,7 +588,7 @@ ExecGetScanType(ScanState *scanstate)
* ----------------
*/
void
ExecAssignScanType(ScanState *scanstate,
ExecAssignScanType(ScanState * scanstate,
TupleDesc tupDesc, bool shouldFree)
{
TupleTableSlot *slot = scanstate->ss_ScanTupleSlot;
@ -600,7 +601,7 @@ ExecAssignScanType(ScanState *scanstate,
* ----------------
*/
void
ExecAssignScanTypeFromOuterPlan(ScanState *scanstate)
ExecAssignScanTypeFromOuterPlan(ScanState * scanstate)
{
PlanState *outerPlan;
TupleDesc tupDesc;
@ -795,8 +796,8 @@ ExecInsertIndexTuples(TupleTableSlot *slot,
/*
* We will use the EState's per-tuple context for evaluating
* predicates and index expressions (creating it if it's not
* already there).
* predicates and index expressions (creating it if it's not already
* there).
*/
econtext = GetPerTupleExprContext(estate);
@ -841,8 +842,8 @@ ExecInsertIndexTuples(TupleTableSlot *slot,
/*
* FormIndexDatum fills in its datum and null parameters with
* attribute information taken from the given heap tuple.
* It also computes any expressions needed.
* attribute information taken from the given heap tuple. It also
* computes any expressions needed.
*/
FormIndexDatum(indexInfo,
heapTuple,
@ -878,7 +879,7 @@ ExecInsertIndexTuples(TupleTableSlot *slot,
* Add changed parameters to a plan node's chgParam set
*/
void
UpdateChangedParamSet(PlanState *node, Bitmapset *newchg)
UpdateChangedParamSet(PlanState * node, Bitmapset * newchg)
{
Bitmapset *parmset;
@ -887,6 +888,7 @@ UpdateChangedParamSet(PlanState *node, Bitmapset *newchg)
* Don't include anything else into its chgParam set.
*/
parmset = bms_intersect(node->plan->allParam, newchg);
/*
* Keep node->chgParam == NULL if there's not actually any members;
* this allows the simplest possible tests in executor node files.

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/functions.c,v 1.69 2003/07/28 18:33:18 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/functions.c,v 1.70 2003/08/04 00:43:17 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -29,8 +29,8 @@
/*
* We have an execution_state record for each query in a function. Each
* record contains a querytree and plantree for its query. If the query
* We have an execution_state record for each query in a function. Each
* record contains a querytree and plantree for its query. If the query
* is currently in F_EXEC_RUN state then there's a QueryDesc too.
*/
typedef enum
@ -83,7 +83,7 @@ static void postquel_start(execution_state *es, SQLFunctionCachePtr fcache);
static TupleTableSlot *postquel_getnext(execution_state *es);
static void postquel_end(execution_state *es);
static void postquel_sub_params(SQLFunctionCachePtr fcache,
FunctionCallInfo fcinfo);
FunctionCallInfo fcinfo);
static Datum postquel_execute(execution_state *es,
FunctionCallInfo fcinfo,
SQLFunctionCachePtr fcache);
@ -177,11 +177,11 @@ init_sql_fcache(FmgrInfo *finfo)
if (rettype == ANYARRAYOID || rettype == ANYELEMENTOID)
{
rettype = get_fn_expr_rettype(finfo);
if (rettype == InvalidOid) /* this probably should not happen */
if (rettype == InvalidOid) /* this probably should not happen */
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("could not determine actual result type for function declared %s",
format_type_be(procedureStruct->prorettype))));
format_type_be(procedureStruct->prorettype))));
}
/* Now look up the actual result type */
@ -226,7 +226,7 @@ init_sql_fcache(FmgrInfo *finfo)
fcache->funcSlot = NULL;
/*
* Parse and plan the queries. We need the argument type info to pass
* Parse and plan the queries. We need the argument type info to pass
* to the parser.
*/
nargs = procedureStruct->pronargs;
@ -234,7 +234,7 @@ init_sql_fcache(FmgrInfo *finfo)
if (nargs > 0)
{
int argnum;
int argnum;
argOidVect = (Oid *) palloc(nargs * sizeof(Oid));
memcpy(argOidVect,
@ -243,7 +243,7 @@ init_sql_fcache(FmgrInfo *finfo)
/* Resolve any polymorphic argument types */
for (argnum = 0; argnum < nargs; argnum++)
{
Oid argtype = argOidVect[argnum];
Oid argtype = argOidVect[argnum];
if (argtype == ANYARRAYOID || argtype == ANYELEMENTOID)
{
@ -309,7 +309,7 @@ postquel_getnext(execution_state *es)
/*
* If it's the function's last command, and it's a SELECT, fetch one
* row at a time so we can return the results. Otherwise just run it
* row at a time so we can return the results. Otherwise just run it
* to completion.
*/
if (LAST_POSTQUEL_COMMAND(es) && es->qd->operation == CMD_SELECT)
@ -655,14 +655,14 @@ sql_exec_error_callback(void *arg)
/*
* Try to determine where in the function we failed. If there is a
* query with non-null QueryDesc, finger it. (We check this rather
* than looking for F_EXEC_RUN state, so that errors during ExecutorStart
* or ExecutorEnd are blamed on the appropriate query; see postquel_start
* and postquel_end.)
* than looking for F_EXEC_RUN state, so that errors during
* ExecutorStart or ExecutorEnd are blamed on the appropriate query;
* see postquel_start and postquel_end.)
*/
if (fcache)
{
execution_state *es;
int query_num;
int query_num;
es = fcache->func_state;
query_num = 1;

View File

@ -45,7 +45,7 @@
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeAgg.c,v 1.112 2003/08/01 00:15:21 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/nodeAgg.c,v 1.113 2003/08/04 00:43:17 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -173,12 +173,12 @@ typedef struct AggStatePerGroupData
* later input value. Only the first non-NULL input will be
* auto-substituted.
*/
} AggStatePerGroupData;
} AggStatePerGroupData;
/*
* To implement hashed aggregation, we need a hashtable that stores a
* representative tuple and an array of AggStatePerGroup structs for each
* distinct set of GROUP BY column values. We compute the hash key from
* distinct set of GROUP BY column values. We compute the hash key from
* the GROUP BY columns.
*/
typedef struct AggHashEntryData *AggHashEntry;
@ -188,27 +188,27 @@ typedef struct AggHashEntryData
TupleHashEntryData shared; /* common header for hash table entries */
/* per-aggregate transition status array - must be last! */
AggStatePerGroupData pergroup[1]; /* VARIABLE LENGTH ARRAY */
} AggHashEntryData; /* VARIABLE LENGTH STRUCT */
} AggHashEntryData; /* VARIABLE LENGTH STRUCT */
static void initialize_aggregates(AggState *aggstate,
AggStatePerAgg peragg,
AggStatePerGroup pergroup);
AggStatePerAgg peragg,
AggStatePerGroup pergroup);
static void advance_transition_function(AggState *aggstate,
AggStatePerAgg peraggstate,
AggStatePerGroup pergroupstate,
Datum newVal, bool isNull);
AggStatePerAgg peraggstate,
AggStatePerGroup pergroupstate,
Datum newVal, bool isNull);
static void advance_aggregates(AggState *aggstate, AggStatePerGroup pergroup);
static void process_sorted_aggregate(AggState *aggstate,
AggStatePerAgg peraggstate,
AggStatePerGroup pergroupstate);
AggStatePerAgg peraggstate,
AggStatePerGroup pergroupstate);
static void finalize_aggregate(AggState *aggstate,
AggStatePerAgg peraggstate,
AggStatePerGroup pergroupstate,
Datum *resultVal, bool *resultIsNull);
AggStatePerAgg peraggstate,
AggStatePerGroup pergroupstate,
Datum *resultVal, bool *resultIsNull);
static void build_hash_table(AggState *aggstate);
static AggHashEntry lookup_hash_entry(AggState *aggstate,
TupleTableSlot *slot);
TupleTableSlot *slot);
static TupleTableSlot *agg_retrieve_direct(AggState *aggstate);
static void agg_fill_hash_table(AggState *aggstate);
static TupleTableSlot *agg_retrieve_hash_table(AggState *aggstate);
@ -231,7 +231,7 @@ initialize_aggregates(AggState *aggstate,
{
AggStatePerAgg peraggstate = &peragg[aggno];
AggStatePerGroup pergroupstate = &pergroup[aggno];
Aggref *aggref = peraggstate->aggref;
Aggref *aggref = peraggstate->aggref;
/*
* Start a fresh sort operation for each DISTINCT aggregate.
@ -265,18 +265,18 @@ initialize_aggregates(AggState *aggstate,
oldContext = MemoryContextSwitchTo(aggstate->aggcontext);
pergroupstate->transValue = datumCopy(peraggstate->initValue,
peraggstate->transtypeByVal,
peraggstate->transtypeLen);
peraggstate->transtypeByVal,
peraggstate->transtypeLen);
MemoryContextSwitchTo(oldContext);
}
pergroupstate->transValueIsNull = peraggstate->initValueIsNull;
/*
* If the initial value for the transition state doesn't exist in the
* pg_aggregate table then we will let the first non-NULL value
* returned from the outer procNode become the initial value. (This is
* useful for aggregates like max() and min().) The noTransValue flag
* signals that we still need to do this.
* If the initial value for the transition state doesn't exist in
* the pg_aggregate table then we will let the first non-NULL
* value returned from the outer procNode become the initial
* value. (This is useful for aggregates like max() and min().)
* The noTransValue flag signals that we still need to do this.
*/
pergroupstate->noTransValue = peraggstate->initValueIsNull;
}
@ -299,8 +299,8 @@ advance_transition_function(AggState *aggstate,
if (peraggstate->transfn.fn_strict)
{
/*
* For a strict transfn, nothing happens at a NULL input
* tuple; we just keep the prior transValue.
* For a strict transfn, nothing happens at a NULL input tuple; we
* just keep the prior transValue.
*/
if (isNull)
return;
@ -314,12 +314,13 @@ advance_transition_function(AggState *aggstate,
* here is OK.)
*
* We must copy the datum into aggcontext if it is pass-by-ref.
* We do not need to pfree the old transValue, since it's NULL.
* We do not need to pfree the old transValue, since it's
* NULL.
*/
oldContext = MemoryContextSwitchTo(aggstate->aggcontext);
pergroupstate->transValue = datumCopy(newVal,
peraggstate->transtypeByVal,
peraggstate->transtypeLen);
peraggstate->transtypeByVal,
peraggstate->transtypeLen);
pergroupstate->transValueIsNull = false;
pergroupstate->noTransValue = false;
MemoryContextSwitchTo(oldContext);
@ -363,12 +364,12 @@ advance_transition_function(AggState *aggstate,
newVal = FunctionCallInvoke(&fcinfo);
/*
* If pass-by-ref datatype, must copy the new value into aggcontext and
* pfree the prior transValue. But if transfn returned a pointer to its
* first input, we don't need to do anything.
* If pass-by-ref datatype, must copy the new value into aggcontext
* and pfree the prior transValue. But if transfn returned a pointer
* to its first input, we don't need to do anything.
*/
if (!peraggstate->transtypeByVal &&
DatumGetPointer(newVal) != DatumGetPointer(pergroupstate->transValue))
DatumGetPointer(newVal) != DatumGetPointer(pergroupstate->transValue))
{
if (!fcinfo.isnull)
{
@ -388,7 +389,7 @@ advance_transition_function(AggState *aggstate,
}
/*
* Advance all the aggregates for one input tuple. The input tuple
* Advance all the aggregates for one input tuple. The input tuple
* has been stored in tmpcontext->ecxt_scantuple, so that it is accessible
* to ExecEvalExpr. pergroup is the array of per-group structs to use
* (this might be in a hashtable entry).
@ -467,8 +468,8 @@ process_sorted_aggregate(AggState *aggstate,
continue;
/*
* Clear and select the working context for evaluation of
* the equality function and transition function.
* Clear and select the working context for evaluation of the
* equality function and transition function.
*/
MemoryContextReset(workcontext);
oldContext = MemoryContextSwitchTo(workcontext);
@ -570,9 +571,9 @@ finalize_aggregate(AggState *aggstate,
static void
build_hash_table(AggState *aggstate)
{
Agg *node = (Agg *) aggstate->ss.ps.plan;
MemoryContext tmpmem = aggstate->tmpcontext->ecxt_per_tuple_memory;
Size entrysize;
Agg *node = (Agg *) aggstate->ss.ps.plan;
MemoryContext tmpmem = aggstate->tmpcontext->ecxt_per_tuple_memory;
Size entrysize;
Assert(node->aggstrategy == AGG_HASHED);
Assert(node->numGroups > 0);
@ -622,9 +623,9 @@ lookup_hash_entry(AggState *aggstate, TupleTableSlot *slot)
* the appropriate attribute for each aggregate function use (Aggref
* node) appearing in the targetlist or qual of the node. The number
* of tuples to aggregate over depends on whether grouped or plain
* aggregation is selected. In grouped aggregation, we produce a result
* aggregation is selected. In grouped aggregation, we produce a result
* row for each group; in plain aggregation there's a single result row
* for the whole query. In either case, the value of each aggregate is
* for the whole query. In either case, the value of each aggregate is
* stored in the expression context to be used when ExecProject evaluates
* the result tuple.
*/
@ -641,9 +642,7 @@ ExecAgg(AggState *node)
return agg_retrieve_hash_table(node);
}
else
{
return agg_retrieve_direct(node);
}
}
/*
@ -736,7 +735,7 @@ agg_retrieve_direct(AggState *aggstate)
firstSlot,
InvalidBuffer,
true);
aggstate->grp_firstTuple = NULL; /* don't keep two pointers */
aggstate->grp_firstTuple = NULL; /* don't keep two pointers */
/* set up for first advance_aggregates call */
tmpcontext->ecxt_scantuple = firstSlot;
@ -773,7 +772,7 @@ agg_retrieve_direct(AggState *aggstate)
firstSlot->ttc_tupleDescriptor,
node->numCols, node->grpColIdx,
aggstate->eqfunctions,
tmpcontext->ecxt_per_tuple_memory))
tmpcontext->ecxt_per_tuple_memory))
{
/*
* Save the first input tuple of the next group.
@ -806,15 +805,15 @@ agg_retrieve_direct(AggState *aggstate)
* anything), create a dummy all-nulls input tuple for use by
* ExecProject. 99.44% of the time this is a waste of cycles,
* because ordinarily the projected output tuple's targetlist
* cannot contain any direct (non-aggregated) references to
* input columns, so the dummy tuple will not be referenced.
* However there are special cases where this isn't so --- in
* particular an UPDATE involving an aggregate will have a
* targetlist reference to ctid. We need to return a null for
* ctid in that situation, not coredump.
* cannot contain any direct (non-aggregated) references to input
* columns, so the dummy tuple will not be referenced. However
* there are special cases where this isn't so --- in particular
* an UPDATE involving an aggregate will have a targetlist
* reference to ctid. We need to return a null for ctid in that
* situation, not coredump.
*
* The values returned for the aggregates will be the initial
* values of the transition functions.
* The values returned for the aggregates will be the initial values
* of the transition functions.
*/
if (TupIsNull(firstSlot))
{
@ -872,7 +871,7 @@ agg_fill_hash_table(AggState *aggstate)
{
PlanState *outerPlan;
ExprContext *tmpcontext;
AggHashEntry entry;
AggHashEntry entry;
TupleTableSlot *outerslot;
/*
@ -883,8 +882,8 @@ agg_fill_hash_table(AggState *aggstate)
tmpcontext = aggstate->tmpcontext;
/*
* Process each outer-plan tuple, and then fetch the next one,
* until we exhaust the outer plan.
* Process each outer-plan tuple, and then fetch the next one, until
* we exhaust the outer plan.
*/
for (;;)
{
@ -921,8 +920,8 @@ agg_retrieve_hash_table(AggState *aggstate)
bool *aggnulls;
AggStatePerAgg peragg;
AggStatePerGroup pergroup;
TupleHashTable hashtable;
AggHashEntry entry;
TupleHashTable hashtable;
AggHashEntry entry;
TupleTableSlot *firstSlot;
TupleTableSlot *resultSlot;
int aggno;
@ -1045,20 +1044,20 @@ ExecInitAgg(Agg *node, EState *estate)
aggstate->hashtable = NULL;
/*
* Create expression contexts. We need two, one for per-input-tuple
* processing and one for per-output-tuple processing. We cheat a little
* by using ExecAssignExprContext() to build both.
* Create expression contexts. We need two, one for per-input-tuple
* processing and one for per-output-tuple processing. We cheat a
* little by using ExecAssignExprContext() to build both.
*/
ExecAssignExprContext(estate, &aggstate->ss.ps);
aggstate->tmpcontext = aggstate->ss.ps.ps_ExprContext;
ExecAssignExprContext(estate, &aggstate->ss.ps);
/*
* We also need a long-lived memory context for holding hashtable
* data structures and transition values. NOTE: the details of what
* is stored in aggcontext and what is stored in the regular per-query
* memory context are driven by a simple decision: we want to reset the
* aggcontext in ExecReScanAgg to recover no-longer-wanted space.
* We also need a long-lived memory context for holding hashtable data
* structures and transition values. NOTE: the details of what is
* stored in aggcontext and what is stored in the regular per-query
* memory context are driven by a simple decision: we want to reset
* the aggcontext in ExecReScanAgg to recover no-longer-wanted space.
*/
aggstate->aggcontext =
AllocSetContextCreate(CurrentMemoryContext,
@ -1079,10 +1078,10 @@ ExecInitAgg(Agg *node, EState *estate)
* initialize child expressions
*
* Note: ExecInitExpr finds Aggrefs for us, and also checks that no aggs
* contain other agg calls in their arguments. This would make no sense
* under SQL semantics anyway (and it's forbidden by the spec). Because
* that is true, we don't need to worry about evaluating the aggs in any
* particular order.
* contain other agg calls in their arguments. This would make no
* sense under SQL semantics anyway (and it's forbidden by the spec).
* Because that is true, we don't need to worry about evaluating the
* aggs in any particular order.
*/
aggstate->ss.ps.targetlist = (List *)
ExecInitExpr((Expr *) node->plan.targetlist,
@ -1116,19 +1115,20 @@ ExecInitAgg(Agg *node, EState *estate)
if (numaggs <= 0)
{
/*
* This is not an error condition: we might be using the Agg node just
* to do hash-based grouping. Even in the regular case,
* constant-expression simplification could optimize away all of the
* Aggrefs in the targetlist and qual. So keep going, but force local
* copy of numaggs positive so that palloc()s below don't choke.
* This is not an error condition: we might be using the Agg node
* just to do hash-based grouping. Even in the regular case,
* constant-expression simplification could optimize away all of
* the Aggrefs in the targetlist and qual. So keep going, but
* force local copy of numaggs positive so that palloc()s below
* don't choke.
*/
numaggs = 1;
}
/*
* If we are grouping, precompute fmgr lookup data for inner loop.
* We need both equality and hashing functions to do it by hashing,
* but only equality if not hashing.
* If we are grouping, precompute fmgr lookup data for inner loop. We
* need both equality and hashing functions to do it by hashing, but
* only equality if not hashing.
*/
if (node->numCols > 0)
{
@ -1146,8 +1146,8 @@ ExecInitAgg(Agg *node, EState *estate)
}
/*
* Set up aggregate-result storage in the output expr context, and also
* allocate my private per-agg working storage
* Set up aggregate-result storage in the output expr context, and
* also allocate my private per-agg working storage
*/
econtext = aggstate->ss.ps.ps_ExprContext;
econtext->ecxt_aggvalues = (Datum *) palloc0(sizeof(Datum) * numaggs);
@ -1174,8 +1174,8 @@ ExecInitAgg(Agg *node, EState *estate)
* unchanging fields of the per-agg data. We also detect duplicate
* aggregates (for example, "SELECT sum(x) ... HAVING sum(x) > 0").
* When duplicates are detected, we only make an AggStatePerAgg struct
* for the first one. The clones are simply pointed at the same result
* entry by giving them duplicate aggno values.
* for the first one. The clones are simply pointed at the same
* result entry by giving them duplicate aggno values.
*/
aggno = -1;
foreach(alist, aggstate->aggs)
@ -1425,9 +1425,9 @@ ExecReScanAgg(AggState *node, ExprContext *exprCtxt)
if (((Agg *) node->ss.ps.plan)->aggstrategy == AGG_HASHED)
{
/*
* In the hashed case, if we haven't yet built the hash table
* then we can just return; nothing done yet, so nothing to undo.
* If subnode's chgParam is not NULL then it will be re-scanned by
* In the hashed case, if we haven't yet built the hash table then
* we can just return; nothing done yet, so nothing to undo. If
* subnode's chgParam is not NULL then it will be re-scanned by
* ExecProcNode, else no reason to re-scan it at all.
*/
if (!node->table_filled)

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeAppend.c,v 1.52 2003/02/09 00:30:39 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/nodeAppend.c,v 1.53 2003/08/04 00:43:17 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -355,7 +355,7 @@ ExecReScanAppend(AppendState *node, ExprContext *exprCtxt)
for (i = node->as_firstplan; i <= node->as_lastplan; i++)
{
PlanState *subnode = node->appendplans[i];
PlanState *subnode = node->appendplans[i];
/*
* ExecReScan doesn't know about my subplans, so I have to do

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeHash.c,v 1.77 2003/07/21 17:05:09 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/nodeHash.c,v 1.78 2003/08/04 00:43:17 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -244,7 +244,7 @@ ExecHashTableCreate(Hash *node, List *hashOperators)
i = 0;
foreach(ho, hashOperators)
{
Oid hashfn;
Oid hashfn;
hashfn = get_op_hash_function(lfirsto(ho));
if (!OidIsValid(hashfn))

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeHashjoin.c,v 1.53 2003/07/21 17:05:09 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/nodeHashjoin.c,v 1.54 2003/08/04 00:43:17 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -22,8 +22,8 @@
#include "utils/memutils.h"
static TupleTableSlot *ExecHashJoinOuterGetTuple(PlanState *node,
HashJoinState *hjstate);
static TupleTableSlot *ExecHashJoinOuterGetTuple(PlanState * node,
HashJoinState *hjstate);
static TupleTableSlot *ExecHashJoinGetSavedTuple(HashJoinState *hjstate,
BufFile *file,
TupleTableSlot *tupleSlot);
@ -94,10 +94,10 @@ ExecHashJoin(HashJoinState *node)
/*
* If we're doing an IN join, we want to return at most one row per
* outer tuple; so we can stop scanning the inner scan if we matched on
* the previous try.
* outer tuple; so we can stop scanning the inner scan if we matched
* on the previous try.
*/
if (node->js.jointype == JOIN_IN &&
if (node->js.jointype == JOIN_IN &&
node->hj_MatchedOuter)
node->hj_NeedNewOuter = true;
@ -244,7 +244,10 @@ ExecHashJoin(HashJoinState *node)
}
}
/* If we didn't return a tuple, may need to set NeedNewOuter */
/*
* If we didn't return a tuple, may need to set
* NeedNewOuter
*/
if (node->js.jointype == JOIN_IN)
{
node->hj_NeedNewOuter = true;
@ -365,7 +368,7 @@ ExecInitHashJoin(HashJoin *node, EState *estate)
case JOIN_LEFT:
hjstate->hj_NullInnerTupleSlot =
ExecInitNullTupleSlot(estate,
ExecGetResultType(innerPlanState(hjstate)));
ExecGetResultType(innerPlanState(hjstate)));
break;
default:
elog(ERROR, "unrecognized join type: %d",
@ -407,10 +410,10 @@ ExecInitHashJoin(HashJoin *node, EState *estate)
hjstate->hj_CurTuple = (HashJoinTuple) NULL;
/*
* The planner already made a list of the inner hashkeys for us,
* but we also need a list of the outer hashkeys, as well as a list
* of the hash operator OIDs. Both lists of exprs must then be prepared
* for execution.
* The planner already made a list of the inner hashkeys for us, but
* we also need a list of the outer hashkeys, as well as a list of the
* hash operator OIDs. Both lists of exprs must then be prepared for
* execution.
*/
hjstate->hj_InnerHashKeys = (List *)
ExecInitExpr((Expr *) hashNode->hashkeys,
@ -496,7 +499,7 @@ ExecEndHashJoin(HashJoinState *node)
*/
static TupleTableSlot *
ExecHashJoinOuterGetTuple(PlanState *node, HashJoinState *hjstate)
ExecHashJoinOuterGetTuple(PlanState * node, HashJoinState *hjstate)
{
HashJoinTable hashtable = hjstate->hj_HashTable;
int curbatch = hashtable->curbatch;
@ -701,11 +704,11 @@ ExecReScanHashJoin(HashJoinState *node, ExprContext *exprCtxt)
Assert(node->hj_HashTable != NULL);
/*
* In a multi-batch join, we currently have to do rescans the hard way,
* primarily because batch temp files may have already been released.
* But if it's a single-batch join, and there is no parameter change
* for the inner subnode, then we can just re-use the existing hash
* table without rebuilding it.
* In a multi-batch join, we currently have to do rescans the hard
* way, primarily because batch temp files may have already been
* released. But if it's a single-batch join, and there is no
* parameter change for the inner subnode, then we can just re-use the
* existing hash table without rebuilding it.
*/
if (node->hj_HashTable->nbatch == 0 &&
((PlanState *) node)->righttree->chgParam == NULL)
@ -718,6 +721,7 @@ ExecReScanHashJoin(HashJoinState *node, ExprContext *exprCtxt)
node->hj_hashdone = false;
ExecHashTableDestroy(node->hj_HashTable);
node->hj_HashTable = NULL;
/*
* if chgParam of subnode is not null then plan will be re-scanned
* by first ExecProcNode.
@ -736,8 +740,8 @@ ExecReScanHashJoin(HashJoinState *node, ExprContext *exprCtxt)
node->hj_MatchedOuter = false;
/*
* if chgParam of subnode is not null then plan will be re-scanned
* by first ExecProcNode.
* if chgParam of subnode is not null then plan will be re-scanned by
* first ExecProcNode.
*/
if (((PlanState *) node)->lefttree->chgParam == NULL)
ExecReScan(((PlanState *) node)->lefttree, exprCtxt);

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeIndexscan.c,v 1.80 2003/07/21 17:05:09 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/nodeIndexscan.c,v 1.81 2003/08/04 00:43:18 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -290,7 +290,8 @@ ExecIndexReScan(IndexScanState *node, ExprContext *exprCtxt)
int j;
estate = node->ss.ps.state;
econtext = node->iss_RuntimeContext; /* context for runtime keys */
econtext = node->iss_RuntimeContext; /* context for runtime
* keys */
numIndices = node->iss_NumIndices;
scanDescs = node->iss_ScanDescs;
scanKeys = node->iss_ScanKeys;
@ -882,7 +883,7 @@ ExecInitIndexScan(IndexScan *node, EState *estate)
reloid)));
indexstate->ss.ss_currentRelation = currentRelation;
indexstate->ss.ss_currentScanDesc = NULL; /* no heap scan here */
indexstate->ss.ss_currentScanDesc = NULL; /* no heap scan here */
/*
* get the scan type from the relation descriptor.

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeLimit.c,v 1.15 2003/07/21 17:05:09 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/nodeLimit.c,v 1.16 2003/08/04 00:43:18 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -55,17 +55,21 @@ ExecLimit(LimitState *node)
switch (node->lstate)
{
case LIMIT_INITIAL:
/*
* If backwards scan, just return NULL without changing state.
*/
if (!ScanDirectionIsForward(direction))
return NULL;
/*
* First call for this scan, so compute limit/offset. (We can't do
* this any earlier, because parameters from upper nodes may not
* be set until now.) This also sets position = 0.
* First call for this scan, so compute limit/offset. (We
* can't do this any earlier, because parameters from upper
* nodes may not be set until now.) This also sets position =
* 0.
*/
recompute_limits(node);
/*
* Check for empty window; if so, treat like empty subplan.
*/
@ -74,6 +78,7 @@ ExecLimit(LimitState *node)
node->lstate = LIMIT_EMPTY;
return NULL;
}
/*
* Fetch rows from subplan until we reach position > offset.
*/
@ -83,8 +88,8 @@ ExecLimit(LimitState *node)
if (TupIsNull(slot))
{
/*
* The subplan returns too few tuples for us to produce
* any output at all.
* The subplan returns too few tuples for us to
* produce any output at all.
*/
node->lstate = LIMIT_EMPTY;
return NULL;
@ -93,6 +98,7 @@ ExecLimit(LimitState *node)
if (++node->position > node->offset)
break;
}
/*
* Okay, we have the first tuple of the window.
*/
@ -100,9 +106,10 @@ ExecLimit(LimitState *node)
break;
case LIMIT_EMPTY:
/*
* The subplan is known to return no tuples (or not more than
* OFFSET tuples, in general). So we return no tuples.
* OFFSET tuples, in general). So we return no tuples.
*/
return NULL;
@ -113,7 +120,8 @@ ExecLimit(LimitState *node)
* Forwards scan, so check for stepping off end of window.
* If we are at the end of the window, return NULL without
* advancing the subplan or the position variable; but
* change the state machine state to record having done so.
* change the state machine state to record having done
* so.
*/
if (!node->noCount &&
node->position >= node->offset + node->count)
@ -121,6 +129,7 @@ ExecLimit(LimitState *node)
node->lstate = LIMIT_WINDOWEND;
return NULL;
}
/*
* Get next tuple from subplan, if any.
*/
@ -136,14 +145,16 @@ ExecLimit(LimitState *node)
else
{
/*
* Backwards scan, so check for stepping off start of window.
* As above, change only state-machine status if so.
* Backwards scan, so check for stepping off start of
* window. As above, change only state-machine status if
* so.
*/
if (node->position <= node->offset + 1)
{
node->lstate = LIMIT_WINDOWSTART;
return NULL;
}
/*
* Get previous tuple from subplan; there should be one!
*/
@ -158,9 +169,11 @@ ExecLimit(LimitState *node)
case LIMIT_SUBPLANEOF:
if (ScanDirectionIsForward(direction))
return NULL;
/*
* Backing up from subplan EOF, so re-fetch previous tuple;
* there should be one! Note previous tuple must be in window.
* there should be one! Note previous tuple must be in
* window.
*/
slot = ExecProcNode(outerPlan);
if (TupIsNull(slot))
@ -173,9 +186,10 @@ ExecLimit(LimitState *node)
case LIMIT_WINDOWEND:
if (ScanDirectionIsForward(direction))
return NULL;
/*
* Backing up from window end: simply re-return the last
* tuple fetched from the subplan.
* Backing up from window end: simply re-return the last tuple
* fetched from the subplan.
*/
slot = node->subSlot;
node->lstate = LIMIT_INWINDOW;
@ -185,6 +199,7 @@ ExecLimit(LimitState *node)
case LIMIT_WINDOWSTART:
if (!ScanDirectionIsForward(direction))
return NULL;
/*
* Advancing after having backed off window start: simply
* re-return the last tuple fetched from the subplan.

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeMaterial.c,v 1.42 2003/03/27 16:51:27 momjian Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/nodeMaterial.c,v 1.43 2003/08/04 00:43:18 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -79,15 +79,15 @@ ExecMaterial(MaterialState *node)
{
/*
* When reversing direction at tuplestore EOF, the first
* getheaptuple call will fetch the last-added tuple; but
* we want to return the one before that, if possible.
* So do an extra fetch.
* getheaptuple call will fetch the last-added tuple; but we
* want to return the one before that, if possible. So do an
* extra fetch.
*/
heapTuple = tuplestore_getheaptuple(tuplestorestate,
forward,
&should_free);
if (heapTuple == NULL)
return NULL; /* the tuplestore must be empty */
return NULL; /* the tuplestore must be empty */
if (should_free)
heap_freetuple(heapTuple);
}
@ -129,10 +129,11 @@ ExecMaterial(MaterialState *node)
}
heapTuple = outerslot->val;
should_free = false;
/*
* Append returned tuple to tuplestore, too. NOTE: because the
* tuplestore is certainly in EOF state, its read position will move
* forward over the added tuple. This is what we want.
* tuplestore is certainly in EOF state, its read position will
* move forward over the added tuple. This is what we want.
*/
tuplestore_puttuple(tuplestorestate, (void *) heapTuple);
}
@ -293,8 +294,8 @@ ExecMaterialReScan(MaterialState *node, ExprContext *exprCtxt)
* If subnode is to be rescanned then we forget previous stored
* results; we have to re-read the subplan and re-store.
*
* Otherwise we can just rewind and rescan the stored output.
* The state of the subnode does not change.
* Otherwise we can just rewind and rescan the stored output. The state
* of the subnode does not change.
*/
if (((PlanState *) node)->lefttree->chgParam != NULL)
{
@ -303,7 +304,5 @@ ExecMaterialReScan(MaterialState *node, ExprContext *exprCtxt)
node->eof_underlying = false;
}
else
{
tuplestore_rescan((Tuplestorestate *) node->tuplestorestate);
}
}

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeMergejoin.c,v 1.58 2003/07/21 17:05:10 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/nodeMergejoin.c,v 1.59 2003/08/04 00:43:18 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -102,7 +102,7 @@ static bool MergeCompare(List *eqQual, List *compareQual, ExprContext *econtext)
*/
static void
MJFormSkipQuals(List *qualList, List **ltQuals, List **gtQuals,
PlanState *parent)
PlanState * parent)
{
List *ltexprs,
*gtexprs,
@ -358,9 +358,9 @@ ExecMergeJoin(MergeJoinState *node)
List *otherqual;
bool qualResult;
bool compareResult;
PlanState *innerPlan;
PlanState *innerPlan;
TupleTableSlot *innerTupleSlot;
PlanState *outerPlan;
PlanState *outerPlan;
TupleTableSlot *outerTupleSlot;
ExprContext *econtext;
bool doFillOuter;
@ -644,7 +644,7 @@ ExecMergeJoin(MergeJoinState *node)
* tuple, and return it if it passes the non-join
* quals.
*/
node->mj_MatchedInner = true; /* do it only once */
node->mj_MatchedInner = true; /* do it only once */
ResetExprContext(econtext);
@ -720,7 +720,7 @@ ExecMergeJoin(MergeJoinState *node)
* tuple, and return it if it passes the non-join
* quals.
*/
node->mj_MatchedOuter = true; /* do it only once */
node->mj_MatchedOuter = true; /* do it only once */
ResetExprContext(econtext);
@ -1004,7 +1004,7 @@ ExecMergeJoin(MergeJoinState *node)
* tuple, and return it if it passes the non-join
* quals.
*/
node->mj_MatchedOuter = true; /* do it only once */
node->mj_MatchedOuter = true; /* do it only once */
ResetExprContext(econtext);
@ -1181,7 +1181,7 @@ ExecMergeJoin(MergeJoinState *node)
* tuple, and return it if it passes the non-join
* quals.
*/
node->mj_MatchedInner = true; /* do it only once */
node->mj_MatchedInner = true; /* do it only once */
ResetExprContext(econtext);
@ -1266,7 +1266,7 @@ ExecMergeJoin(MergeJoinState *node)
* tuple, and return it if it passes the non-join
* quals.
*/
node->mj_MatchedInner = true; /* do it only once */
node->mj_MatchedInner = true; /* do it only once */
ResetExprContext(econtext);
@ -1333,7 +1333,7 @@ ExecMergeJoin(MergeJoinState *node)
* tuple, and return it if it passes the non-join
* quals.
*/
node->mj_MatchedOuter = true; /* do it only once */
node->mj_MatchedOuter = true; /* do it only once */
ResetExprContext(econtext);
@ -1462,12 +1462,12 @@ ExecInitMergeJoin(MergeJoin *node, EState *estate)
case JOIN_LEFT:
mergestate->mj_NullInnerTupleSlot =
ExecInitNullTupleSlot(estate,
ExecGetResultType(innerPlanState(mergestate)));
ExecGetResultType(innerPlanState(mergestate)));
break;
case JOIN_RIGHT:
mergestate->mj_NullOuterTupleSlot =
ExecInitNullTupleSlot(estate,
ExecGetResultType(outerPlanState(mergestate)));
ExecGetResultType(outerPlanState(mergestate)));
/*
* Can't handle right or full join with non-nil extra
@ -1481,10 +1481,10 @@ ExecInitMergeJoin(MergeJoin *node, EState *estate)
case JOIN_FULL:
mergestate->mj_NullOuterTupleSlot =
ExecInitNullTupleSlot(estate,
ExecGetResultType(outerPlanState(mergestate)));
ExecGetResultType(outerPlanState(mergestate)));
mergestate->mj_NullInnerTupleSlot =
ExecInitNullTupleSlot(estate,
ExecGetResultType(innerPlanState(mergestate)));
ExecGetResultType(innerPlanState(mergestate)));
/*
* Can't handle right or full join with non-nil extra

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeNestloop.c,v 1.33 2003/07/21 17:05:10 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/nodeNestloop.c,v 1.34 2003/08/04 00:43:18 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -103,8 +103,8 @@ ExecNestLoop(NestLoopState *node)
/*
* If we're doing an IN join, we want to return at most one row per
* outer tuple; so we can stop scanning the inner scan if we matched on
* the previous try.
* outer tuple; so we can stop scanning the inner scan if we matched
* on the previous try.
*/
if (node->js.jointype == JOIN_IN &&
node->nl_MatchedOuter)
@ -330,7 +330,7 @@ ExecInitNestLoop(NestLoop *node, EState *estate)
case JOIN_LEFT:
nlstate->nl_NullInnerTupleSlot =
ExecInitNullTupleSlot(estate,
ExecGetResultType(innerPlanState(nlstate)));
ExecGetResultType(innerPlanState(nlstate)));
break;
default:
elog(ERROR, "unrecognized join type: %d",
@ -404,7 +404,7 @@ ExecEndNestLoop(NestLoopState *node)
void
ExecReScanNestLoop(NestLoopState *node, ExprContext *exprCtxt)
{
PlanState *outerPlan = outerPlanState(node);
PlanState *outerPlan = outerPlanState(node);
/*
* If outerPlan->chgParam is not null then plan will be automatically

View File

@ -34,7 +34,7 @@
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeResult.c,v 1.24 2002/12/15 16:17:46 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/nodeResult.c,v 1.25 2003/08/04 00:43:18 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -64,7 +64,7 @@ ExecResult(ResultState *node)
{
TupleTableSlot *outerTupleSlot;
TupleTableSlot *resultSlot;
PlanState *outerPlan;
PlanState *outerPlan;
ExprContext *econtext;
ExprDoneCond isDone;

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeSeqscan.c,v 1.43 2003/02/03 15:07:07 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/nodeSeqscan.c,v 1.44 2003/08/04 00:43:18 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -29,8 +29,8 @@
#include "executor/nodeSeqscan.h"
#include "parser/parsetree.h"
static void InitScanRelation(SeqScanState *node, EState *estate);
static TupleTableSlot *SeqNext(SeqScanState *node);
static void InitScanRelation(SeqScanState * node, EState *estate);
static TupleTableSlot *SeqNext(SeqScanState * node);
/* ----------------------------------------------------------------
* Scan Support
@ -43,7 +43,7 @@ static TupleTableSlot *SeqNext(SeqScanState *node);
* ----------------------------------------------------------------
*/
static TupleTableSlot *
SeqNext(SeqScanState *node)
SeqNext(SeqScanState * node)
{
HeapTuple tuple;
HeapScanDesc scandesc;
@ -123,7 +123,7 @@ SeqNext(SeqScanState *node)
*/
TupleTableSlot *
ExecSeqScan(SeqScanState *node)
ExecSeqScan(SeqScanState * node)
{
/*
* use SeqNext as access method
@ -139,7 +139,7 @@ ExecSeqScan(SeqScanState *node)
* ----------------------------------------------------------------
*/
static void
InitScanRelation(SeqScanState *node, EState *estate)
InitScanRelation(SeqScanState * node, EState *estate)
{
Index relid;
List *rangeTable;
@ -252,7 +252,7 @@ ExecCountSlotsSeqScan(SeqScan *node)
* ----------------------------------------------------------------
*/
void
ExecEndSeqScan(SeqScanState *node)
ExecEndSeqScan(SeqScanState * node)
{
Relation relation;
HeapScanDesc scanDesc;
@ -302,7 +302,7 @@ ExecEndSeqScan(SeqScanState *node)
* ----------------------------------------------------------------
*/
void
ExecSeqReScan(SeqScanState *node, ExprContext *exprCtxt)
ExecSeqReScan(SeqScanState * node, ExprContext *exprCtxt)
{
EState *estate;
Index scanrelid;
@ -332,7 +332,7 @@ ExecSeqReScan(SeqScanState *node, ExprContext *exprCtxt)
* ----------------------------------------------------------------
*/
void
ExecSeqMarkPos(SeqScanState *node)
ExecSeqMarkPos(SeqScanState * node)
{
HeapScanDesc scan;
@ -347,7 +347,7 @@ ExecSeqMarkPos(SeqScanState *node)
* ----------------------------------------------------------------
*/
void
ExecSeqRestrPos(SeqScanState *node)
ExecSeqRestrPos(SeqScanState * node)
{
HeapScanDesc scan;

View File

@ -7,7 +7,7 @@
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeSubplan.c,v 1.51 2003/07/21 17:05:10 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/nodeSubplan.c,v 1.52 2003/08/04 00:43:18 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -29,13 +29,13 @@
#include "utils/lsyscache.h"
static Datum ExecHashSubPlan(SubPlanState *node,
ExprContext *econtext,
bool *isNull);
static Datum ExecScanSubPlan(SubPlanState *node,
ExprContext *econtext,
bool *isNull);
static void buildSubPlanHash(SubPlanState *node);
static Datum ExecHashSubPlan(SubPlanState * node,
ExprContext *econtext,
bool *isNull);
static Datum ExecScanSubPlan(SubPlanState * node,
ExprContext *econtext,
bool *isNull);
static void buildSubPlanHash(SubPlanState * node);
static bool findPartialMatch(TupleHashTable hashtable, TupleTableSlot *slot);
static bool tupleAllNulls(HeapTuple tuple);
@ -45,11 +45,11 @@ static bool tupleAllNulls(HeapTuple tuple);
* ----------------------------------------------------------------
*/
Datum
ExecSubPlan(SubPlanState *node,
ExecSubPlan(SubPlanState * node,
ExprContext *econtext,
bool *isNull)
{
SubPlan *subplan = (SubPlan *) node->xprstate.expr;
SubPlan *subplan = (SubPlan *) node->xprstate.expr;
if (subplan->setParam != NIL)
elog(ERROR, "cannot set parent params from subquery");
@ -64,11 +64,11 @@ ExecSubPlan(SubPlanState *node,
* ExecHashSubPlan: store subselect result in an in-memory hash table
*/
static Datum
ExecHashSubPlan(SubPlanState *node,
ExecHashSubPlan(SubPlanState * node,
ExprContext *econtext,
bool *isNull)
{
SubPlan *subplan = (SubPlan *) node->xprstate.expr;
SubPlan *subplan = (SubPlan *) node->xprstate.expr;
PlanState *planstate = node->planstate;
ExprContext *innerecontext = node->innerecontext;
TupleTableSlot *slot;
@ -79,8 +79,8 @@ ExecHashSubPlan(SubPlanState *node,
elog(ERROR, "hashed subplan with direct correlation not supported");
/*
* If first time through or we need to rescan the subplan, build
* the hash table.
* If first time through or we need to rescan the subplan, build the
* hash table.
*/
if (node->hashtable == NULL || planstate->chgParam != NULL)
buildSubPlanHash(node);
@ -94,19 +94,19 @@ ExecHashSubPlan(SubPlanState *node,
return BoolGetDatum(false);
/*
* Evaluate lefthand expressions and form a projection tuple.
* First we have to set the econtext to use (hack alert!).
* Evaluate lefthand expressions and form a projection tuple. First we
* have to set the econtext to use (hack alert!).
*/
node->projLeft->pi_exprContext = econtext;
slot = ExecProject(node->projLeft, NULL);
tup = slot->val;
/*
* Note: because we are typically called in a per-tuple context,
* we have to explicitly clear the projected tuple before returning.
* Otherwise, we'll have a double-free situation: the per-tuple context
* will probably be reset before we're called again, and then the tuple
* slot will think it still needs to free the tuple.
* Note: because we are typically called in a per-tuple context, we
* have to explicitly clear the projected tuple before returning.
* Otherwise, we'll have a double-free situation: the per-tuple
* context will probably be reset before we're called again, and then
* the tuple slot will think it still needs to free the tuple.
*/
/*
@ -116,20 +116,20 @@ ExecHashSubPlan(SubPlanState *node,
ResetExprContext(innerecontext);
/*
* If the LHS is all non-null, probe for an exact match in the
* main hash table. If we find one, the result is TRUE.
* Otherwise, scan the partly-null table to see if there are any
* rows that aren't provably unequal to the LHS; if so, the result
* is UNKNOWN. (We skip that part if we don't care about UNKNOWN.)
* Otherwise, the result is FALSE.
* If the LHS is all non-null, probe for an exact match in the main
* hash table. If we find one, the result is TRUE. Otherwise, scan
* the partly-null table to see if there are any rows that aren't
* provably unequal to the LHS; if so, the result is UNKNOWN. (We
* skip that part if we don't care about UNKNOWN.) Otherwise, the
* result is FALSE.
*
* Note: the reason we can avoid a full scan of the main hash table
* is that the combining operators are assumed never to yield NULL
* when both inputs are non-null. If they were to do so, we might
* need to produce UNKNOWN instead of FALSE because of an UNKNOWN
* result in comparing the LHS to some main-table entry --- which
* is a comparison we will not even make, unless there's a chance
* match of hash keys.
* Note: the reason we can avoid a full scan of the main hash table is
* that the combining operators are assumed never to yield NULL when
* both inputs are non-null. If they were to do so, we might need to
* produce UNKNOWN instead of FALSE because of an UNKNOWN result in
* comparing the LHS to some main-table entry --- which is a
* comparison we will not even make, unless there's a chance match of
* hash keys.
*/
if (HeapTupleNoNulls(tup))
{
@ -151,14 +151,14 @@ ExecHashSubPlan(SubPlanState *node,
}
/*
* When the LHS is partly or wholly NULL, we can never return TRUE.
* If we don't care about UNKNOWN, just return FALSE. Otherwise,
* if the LHS is wholly NULL, immediately return UNKNOWN. (Since the
* combining operators are strict, the result could only be FALSE if the
* sub-select were empty, but we already handled that case.) Otherwise,
* we must scan both the main and partly-null tables to see if there are
* any rows that aren't provably unequal to the LHS; if so, the result is
* UNKNOWN. Otherwise, the result is FALSE.
* When the LHS is partly or wholly NULL, we can never return TRUE. If
* we don't care about UNKNOWN, just return FALSE. Otherwise, if the
* LHS is wholly NULL, immediately return UNKNOWN. (Since the
* combining operators are strict, the result could only be FALSE if
* the sub-select were empty, but we already handled that case.)
* Otherwise, we must scan both the main and partly-null tables to see
* if there are any rows that aren't provably unequal to the LHS; if
* so, the result is UNKNOWN. Otherwise, the result is FALSE.
*/
if (node->hashnulls == NULL)
{
@ -194,11 +194,11 @@ ExecHashSubPlan(SubPlanState *node,
* ExecScanSubPlan: default case where we have to rescan subplan each time
*/
static Datum
ExecScanSubPlan(SubPlanState *node,
ExecScanSubPlan(SubPlanState * node,
ExprContext *econtext,
bool *isNull)
{
SubPlan *subplan = (SubPlan *) node->xprstate.expr;
SubPlan *subplan = (SubPlan *) node->xprstate.expr;
PlanState *planstate = node->planstate;
SubLinkType subLinkType = subplan->subLinkType;
bool useOr = subplan->useOr;
@ -218,14 +218,14 @@ ExecScanSubPlan(SubPlanState *node,
oldcontext = MemoryContextSwitchTo(node->sub_estate->es_query_cxt);
/*
* Set Params of this plan from parent plan correlation values.
* (Any calculation we have to do is done in the parent econtext,
* since the Param values don't need to have per-query lifetime.)
* Set Params of this plan from parent plan correlation values. (Any
* calculation we have to do is done in the parent econtext, since the
* Param values don't need to have per-query lifetime.)
*/
pvar = node->args;
foreach(lst, subplan->parParam)
{
int paramid = lfirsti(lst);
int paramid = lfirsti(lst);
ParamExecData *prm = &(econtext->ecxt_param_exec_vals[paramid]);
Assert(pvar != NIL);
@ -241,23 +241,24 @@ ExecScanSubPlan(SubPlanState *node,
ExecReScan(planstate, NULL);
/*
* For all sublink types except EXPR_SUBLINK and ARRAY_SUBLINK, the result
* is boolean as are the results of the combining operators. We combine
* results within a tuple (if there are multiple columns) using OR
* semantics if "useOr" is true, AND semantics if not. We then combine
* results across tuples (if the subplan produces more than one) using OR
* semantics for ANY_SUBLINK or AND semantics for ALL_SUBLINK.
* (MULTIEXPR_SUBLINK doesn't allow multiple tuples from the subplan.)
* NULL results from the combining operators are handled according to
* the usual SQL semantics for OR and AND. The result for no input
* tuples is FALSE for ANY_SUBLINK, TRUE for ALL_SUBLINK, NULL for
* MULTIEXPR_SUBLINK.
* For all sublink types except EXPR_SUBLINK and ARRAY_SUBLINK, the
* result is boolean as are the results of the combining operators. We
* combine results within a tuple (if there are multiple columns)
* using OR semantics if "useOr" is true, AND semantics if not. We
* then combine results across tuples (if the subplan produces more
* than one) using OR semantics for ANY_SUBLINK or AND semantics for
* ALL_SUBLINK. (MULTIEXPR_SUBLINK doesn't allow multiple tuples from
* the subplan.) NULL results from the combining operators are handled
* according to the usual SQL semantics for OR and AND. The result
* for no input tuples is FALSE for ANY_SUBLINK, TRUE for ALL_SUBLINK,
* NULL for MULTIEXPR_SUBLINK.
*
* For EXPR_SUBLINK we require the subplan to produce no more than one
* tuple, else an error is raised. For ARRAY_SUBLINK we allow the subplan
* to produce more than one tuple. In either case, if zero tuples are
* produced, we return NULL. Assuming we get a tuple, we just use its
* first column (there can be only one non-junk column in this case).
* tuple, else an error is raised. For ARRAY_SUBLINK we allow the
* subplan to produce more than one tuple. In either case, if zero
* tuples are produced, we return NULL. Assuming we get a tuple, we
* just use its first column (there can be only one non-junk column in
* this case).
*/
result = BoolGetDatum(subLinkType == ALL_SUBLINK);
*isNull = false;
@ -311,8 +312,8 @@ ExecScanSubPlan(SubPlanState *node,
if (subLinkType == ARRAY_SUBLINK)
{
Datum dvalue;
bool disnull;
Datum dvalue;
bool disnull;
found = true;
/* stash away current value */
@ -346,7 +347,8 @@ ExecScanSubPlan(SubPlanState *node,
bool expnull;
/*
* Load up the Param representing this column of the sub-select.
* Load up the Param representing this column of the
* sub-select.
*/
prmdata = &(econtext->ecxt_param_exec_vals[paramid]);
Assert(prmdata->execPlan == NULL);
@ -432,8 +434,8 @@ ExecScanSubPlan(SubPlanState *node,
{
/*
* deal with empty subplan result. result/isNull were previously
* initialized correctly for all sublink types except EXPR, ARRAY, and
* MULTIEXPR; for those, return NULL.
* initialized correctly for all sublink types except EXPR, ARRAY,
* and MULTIEXPR; for those, return NULL.
*/
if (subLinkType == EXPR_SUBLINK ||
subLinkType == ARRAY_SUBLINK ||
@ -459,9 +461,9 @@ ExecScanSubPlan(SubPlanState *node,
* buildSubPlanHash: load hash table by scanning subplan output.
*/
static void
buildSubPlanHash(SubPlanState *node)
buildSubPlanHash(SubPlanState * node)
{
SubPlan *subplan = (SubPlan *) node->xprstate.expr;
SubPlan *subplan = (SubPlan *) node->xprstate.expr;
PlanState *planstate = node->planstate;
int ncols = length(node->exprs);
ExprContext *innerecontext = node->innerecontext;
@ -474,19 +476,19 @@ buildSubPlanHash(SubPlanState *node)
Assert(!subplan->useOr);
/*
* If we already had any hash tables, destroy 'em; then create
* empty hash table(s).
* If we already had any hash tables, destroy 'em; then create empty
* hash table(s).
*
* If we need to distinguish accurately between FALSE and UNKNOWN
* (i.e., NULL) results of the IN operation, then we have to store
* subplan output rows that are partly or wholly NULL. We store such
* rows in a separate hash table that we expect will be much smaller
* than the main table. (We can use hashing to eliminate partly-null
* rows that are not distinct. We keep them separate to minimize the
* cost of the inevitable full-table searches; see findPartialMatch.)
* If we need to distinguish accurately between FALSE and UNKNOWN (i.e.,
* NULL) results of the IN operation, then we have to store subplan
* output rows that are partly or wholly NULL. We store such rows in
* a separate hash table that we expect will be much smaller than the
* main table. (We can use hashing to eliminate partly-null rows that
* are not distinct. We keep them separate to minimize the cost of
* the inevitable full-table searches; see findPartialMatch.)
*
* If it's not necessary to distinguish FALSE and UNKNOWN, then we
* don't need to store subplan output rows that contain NULL.
* If it's not necessary to distinguish FALSE and UNKNOWN, then we don't
* need to store subplan output rows that contain NULL.
*/
MemoryContextReset(node->tablecxt);
node->hashtable = NULL;
@ -529,7 +531,8 @@ buildSubPlanHash(SubPlanState *node)
/*
* We are probably in a short-lived expression-evaluation context.
* Switch to the child plan's per-query context for calling ExecProcNode.
* Switch to the child plan's per-query context for calling
* ExecProcNode.
*/
oldcontext = MemoryContextSwitchTo(node->sub_estate->es_query_cxt);
@ -539,8 +542,9 @@ buildSubPlanHash(SubPlanState *node)
ExecReScan(planstate, NULL);
/*
* Scan the subplan and load the hash table(s). Note that when there are
* duplicate rows coming out of the sub-select, only one copy is stored.
* Scan the subplan and load the hash table(s). Note that when there
* are duplicate rows coming out of the sub-select, only one copy is
* stored.
*/
for (slot = ExecProcNode(planstate);
!TupIsNull(slot);
@ -572,9 +576,9 @@ buildSubPlanHash(SubPlanState *node)
/*
* If result contains any nulls, store separately or not at all.
* (Since we know the projection tuple has no junk columns, we
* can just look at the overall hasnull info bit, instead of
* groveling through the columns.)
* (Since we know the projection tuple has no junk columns, we can
* just look at the overall hasnull info bit, instead of groveling
* through the columns.)
*/
if (HeapTupleNoNulls(tup))
{
@ -621,7 +625,7 @@ findPartialMatch(TupleHashTable hashtable, TupleTableSlot *slot)
HeapTuple tuple = slot->val;
TupleDesc tupdesc = slot->ttc_tupleDescriptor;
TupleHashIterator hashiter;
TupleHashEntry entry;
TupleHashEntry entry;
ResetTupleHashIterator(&hashiter);
while ((entry = ScanTupleHashTable(hashtable, &hashiter)) != NULL)
@ -643,8 +647,8 @@ findPartialMatch(TupleHashTable hashtable, TupleTableSlot *slot)
static bool
tupleAllNulls(HeapTuple tuple)
{
int ncols = tuple->t_data->t_natts;
int i;
int ncols = tuple->t_data->t_natts;
int i;
for (i = 1; i <= ncols; i++)
{
@ -659,15 +663,15 @@ tupleAllNulls(HeapTuple tuple)
* ----------------------------------------------------------------
*/
void
ExecInitSubPlan(SubPlanState *node, EState *estate)
ExecInitSubPlan(SubPlanState * node, EState *estate)
{
SubPlan *subplan = (SubPlan *) node->xprstate.expr;
SubPlan *subplan = (SubPlan *) node->xprstate.expr;
EState *sp_estate;
MemoryContext oldcontext;
/*
* Do access checking on the rangetable entries in the subquery.
* Here, we assume the subquery is a SELECT.
* Do access checking on the rangetable entries in the subquery. Here,
* we assume the subquery is a SELECT.
*/
ExecCheckRTPerms(subplan->rtable, CMD_SELECT);
@ -690,9 +694,9 @@ ExecInitSubPlan(SubPlanState *node, EState *estate)
* create an EState for the subplan
*
* The subquery needs its own EState because it has its own rangetable.
* It shares our Param ID space, however. XXX if rangetable access were
* done differently, the subquery could share our EState, which would
* eliminate some thrashing about in this module...
* It shares our Param ID space, however. XXX if rangetable access
* were done differently, the subquery could share our EState, which
* would eliminate some thrashing about in this module...
*/
sp_estate = CreateExecutorState();
node->sub_estate = sp_estate;
@ -721,9 +725,9 @@ ExecInitSubPlan(SubPlanState *node, EState *estate)
* to set params for parent plan then mark parameters as needing
* evaluation.
*
* Note that in the case of un-correlated subqueries we don't care
* about setting parent->chgParam here: indices take care about
* it, for others - it doesn't matter...
* Note that in the case of un-correlated subqueries we don't care about
* setting parent->chgParam here: indices take care about it, for
* others - it doesn't matter...
*/
if (subplan->setParam != NIL)
{
@ -731,7 +735,7 @@ ExecInitSubPlan(SubPlanState *node, EState *estate)
foreach(lst, subplan->setParam)
{
int paramid = lfirsti(lst);
int paramid = lfirsti(lst);
ParamExecData *prm = &(estate->es_param_exec_vals[paramid]);
prm->execPlan = node;
@ -744,8 +748,8 @@ ExecInitSubPlan(SubPlanState *node, EState *estate)
*/
if (subplan->useHashTable)
{
int ncols,
i;
int ncols,
i;
TupleDesc tupDesc;
TupleTable tupTable;
TupleTableSlot *slot;
@ -768,15 +772,16 @@ ExecInitSubPlan(SubPlanState *node, EState *estate)
ncols = length(node->exprs);
node->keyColIdx = (AttrNumber *) palloc(ncols * sizeof(AttrNumber));
for (i = 0; i < ncols; i++)
node->keyColIdx[i] = i+1;
node->keyColIdx[i] = i + 1;
/*
* We use ExecProject to evaluate the lefthand and righthand
* expression lists and form tuples. (You might think that we
* could use the sub-select's output tuples directly, but that is
* not the case if we had to insert any run-time coercions of the
* sub-select's output datatypes; anyway this avoids storing any
* resjunk columns that might be in the sub-select's output.)
* Run through the combining expressions to build tlists for the
* resjunk columns that might be in the sub-select's output.) Run
* through the combining expressions to build tlists for the
* lefthand and righthand sides. We need both the ExprState list
* (for ExecProject) and the underlying parse Exprs (for
* ExecTypeFromTL).
@ -791,7 +796,7 @@ ExecInitSubPlan(SubPlanState *node, EState *estate)
i = 1;
foreach(lexpr, node->exprs)
{
FuncExprState *fstate = (FuncExprState *) lfirst(lexpr);
FuncExprState *fstate = (FuncExprState *) lfirst(lexpr);
OpExpr *opexpr = (OpExpr *) fstate->xprstate.expr;
ExprState *exstate;
Expr *expr;
@ -834,34 +839,34 @@ ExecInitSubPlan(SubPlanState *node, EState *estate)
rightptlist = lappend(rightptlist, tle);
/* Lookup the combining function */
fmgr_info(opexpr->opfuncid, &node->eqfunctions[i-1]);
node->eqfunctions[i-1].fn_expr = (Node *) opexpr;
fmgr_info(opexpr->opfuncid, &node->eqfunctions[i - 1]);
node->eqfunctions[i - 1].fn_expr = (Node *) opexpr;
/* Lookup the associated hash function */
hashfn = get_op_hash_function(opexpr->opno);
if (!OidIsValid(hashfn))
elog(ERROR, "could not find hash function for hash operator %u",
opexpr->opno);
fmgr_info(hashfn, &node->hashfunctions[i-1]);
fmgr_info(hashfn, &node->hashfunctions[i - 1]);
i++;
}
/*
* Create a tupletable to hold these tuples. (Note: we never bother
* to free the tupletable explicitly; that's okay because it will
* never store raw disk tuples that might have associated buffer
* pins. The only resource involved is memory, which will be
* cleaned up by freeing the query context.)
* Create a tupletable to hold these tuples. (Note: we never
* bother to free the tupletable explicitly; that's okay because
* it will never store raw disk tuples that might have associated
* buffer pins. The only resource involved is memory, which will
* be cleaned up by freeing the query context.)
*/
tupTable = ExecCreateTupleTable(2);
/*
* Construct tupdescs, slots and projection nodes for left and
* right sides. The lefthand expressions will be evaluated in
* the parent plan node's exprcontext, which we don't have access
* to here. Fortunately we can just pass NULL for now and fill it
* in later (hack alert!). The righthand expressions will be
* right sides. The lefthand expressions will be evaluated in the
* parent plan node's exprcontext, which we don't have access to
* here. Fortunately we can just pass NULL for now and fill it in
* later (hack alert!). The righthand expressions will be
* evaluated in our own innerecontext.
*/
tupDesc = ExecTypeFromTL(leftptlist, false);
@ -894,11 +899,11 @@ ExecInitSubPlan(SubPlanState *node, EState *estate)
* ----------------------------------------------------------------
*/
void
ExecSetParamPlan(SubPlanState *node, ExprContext *econtext)
ExecSetParamPlan(SubPlanState * node, ExprContext *econtext)
{
SubPlan *subplan = (SubPlan *) node->xprstate.expr;
SubPlan *subplan = (SubPlan *) node->xprstate.expr;
PlanState *planstate = node->planstate;
SubLinkType subLinkType = subplan->subLinkType;
SubLinkType subLinkType = subplan->subLinkType;
MemoryContext oldcontext;
TupleTableSlot *slot;
List *lst;
@ -928,7 +933,7 @@ ExecSetParamPlan(SubPlanState *node, ExprContext *econtext)
if (subLinkType == EXISTS_SUBLINK)
{
/* There can be only one param... */
int paramid = lfirsti(subplan->setParam);
int paramid = lfirsti(subplan->setParam);
ParamExecData *prm = &(econtext->ecxt_param_exec_vals[paramid]);
prm->execPlan = NULL;
@ -940,8 +945,8 @@ ExecSetParamPlan(SubPlanState *node, ExprContext *econtext)
if (subLinkType == ARRAY_SUBLINK)
{
Datum dvalue;
bool disnull;
Datum dvalue;
bool disnull;
found = true;
/* stash away current value */
@ -963,8 +968,8 @@ ExecSetParamPlan(SubPlanState *node, ExprContext *econtext)
found = true;
/*
* We need to copy the subplan's tuple into our own context,
* in case any of the params are pass-by-ref type --- the pointers
* We need to copy the subplan's tuple into our own context, in
* case any of the params are pass-by-ref type --- the pointers
* stored in the param structs will point at this copied tuple!
* node->curTuple keeps track of the copied tuple for eventual
* freeing.
@ -981,7 +986,7 @@ ExecSetParamPlan(SubPlanState *node, ExprContext *econtext)
*/
foreach(lst, subplan->setParam)
{
int paramid = lfirsti(lst);
int paramid = lfirsti(lst);
ParamExecData *prm = &(econtext->ecxt_param_exec_vals[paramid]);
prm->execPlan = NULL;
@ -995,7 +1000,7 @@ ExecSetParamPlan(SubPlanState *node, ExprContext *econtext)
if (subLinkType == EXISTS_SUBLINK)
{
/* There can be only one param... */
int paramid = lfirsti(subplan->setParam);
int paramid = lfirsti(subplan->setParam);
ParamExecData *prm = &(econtext->ecxt_param_exec_vals[paramid]);
prm->execPlan = NULL;
@ -1006,7 +1011,7 @@ ExecSetParamPlan(SubPlanState *node, ExprContext *econtext)
{
foreach(lst, subplan->setParam)
{
int paramid = lfirsti(lst);
int paramid = lfirsti(lst);
ParamExecData *prm = &(econtext->ecxt_param_exec_vals[paramid]);
prm->execPlan = NULL;
@ -1018,7 +1023,7 @@ ExecSetParamPlan(SubPlanState *node, ExprContext *econtext)
else if (subLinkType == ARRAY_SUBLINK)
{
/* There can be only one param... */
int paramid = lfirsti(subplan->setParam);
int paramid = lfirsti(subplan->setParam);
ParamExecData *prm = &(econtext->ecxt_param_exec_vals[paramid]);
Assert(astate != NULL);
@ -1036,7 +1041,7 @@ ExecSetParamPlan(SubPlanState *node, ExprContext *econtext)
* ----------------------------------------------------------------
*/
void
ExecEndSubPlan(SubPlanState *node)
ExecEndSubPlan(SubPlanState * node)
{
if (node->needShutdown)
{
@ -1056,10 +1061,10 @@ ExecEndSubPlan(SubPlanState *node)
* Mark an initplan as needing recalculation
*/
void
ExecReScanSetParamPlan(SubPlanState *node, PlanState *parent)
ExecReScanSetParamPlan(SubPlanState * node, PlanState * parent)
{
PlanState *planstate = node->planstate;
SubPlan *subplan = (SubPlan *) node->xprstate.expr;
SubPlan *subplan = (SubPlan *) node->xprstate.expr;
EState *estate = parent->state;
List *lst;
@ -1080,7 +1085,7 @@ ExecReScanSetParamPlan(SubPlanState *node, PlanState *parent)
*/
foreach(lst, subplan->setParam)
{
int paramid = lfirsti(lst);
int paramid = lfirsti(lst);
ParamExecData *prm = &(estate->es_param_exec_vals[paramid]);
prm->execPlan = node;

View File

@ -12,7 +12,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeSubqueryscan.c,v 1.18 2003/02/09 00:30:39 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/nodeSubqueryscan.c,v 1.19 2003/08/04 00:43:18 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -160,10 +160,11 @@ ExecInitSubqueryScan(SubqueryScan *node, EState *estate)
Assert(rte->rtekind == RTE_SUBQUERY);
/*
* The subquery needs its own EState because it has its own rangetable.
* It shares our Param ID space, however. XXX if rangetable access were
* done differently, the subquery could share our EState, which would
* eliminate some thrashing about in this module...
* The subquery needs its own EState because it has its own
* rangetable. It shares our Param ID space, however. XXX if
* rangetable access were done differently, the subquery could share
* our EState, which would eliminate some thrashing about in this
* module...
*/
sp_estate = CreateExecutorState();
subquerystate->sss_SubEState = sp_estate;
@ -259,9 +260,9 @@ ExecSubqueryReScan(SubqueryScanState *node, ExprContext *exprCtxt)
/*
* ExecReScan doesn't know about my subplan, so I have to do
* changed-parameter signaling myself. This is just as well,
* because the subplan has its own memory context in which its
* chgParam state lives.
* changed-parameter signaling myself. This is just as well, because
* the subplan has its own memory context in which its chgParam state
* lives.
*/
if (node->ss.ps.chgParam != NULL)
UpdateChangedParamSet(node->subplan, node->ss.ps.chgParam);

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeUnique.c,v 1.38 2003/02/02 19:08:57 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/nodeUnique.c,v 1.39 2003/08/04 00:43:18 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -57,9 +57,9 @@ ExecUnique(UniqueState *node)
* now loop, returning only non-duplicate tuples. We assume that the
* tuples arrive in sorted order so we can detect duplicates easily.
*
* We return the first tuple from each group of duplicates (or the
* last tuple of each group, when moving backwards). At either end
* of the subplan, clear priorTuple so that we correctly return the
* We return the first tuple from each group of duplicates (or the last
* tuple of each group, when moving backwards). At either end of the
* subplan, clear priorTuple so that we correctly return the
* first/last tuple when reversing direction.
*/
for (;;)

View File

@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/spi.c,v 1.99 2003/07/21 17:05:10 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/spi.c,v 1.100 2003/08/04 00:43:18 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -95,8 +95,8 @@ SPI_connect(void)
/*
* Create memory contexts for this procedure
*
* XXX it would be better to use PortalContext as the parent context,
* but we may not be inside a portal (consider deferred-trigger
* XXX it would be better to use PortalContext as the parent context, but
* we may not be inside a portal (consider deferred-trigger
* execution).
*/
_SPI_current->procCxt = AllocSetContextCreate(TopTransactionContext,
@ -799,7 +799,7 @@ SPI_cursor_open(const char *name, void *plan, Datum *Values, const char *Nulls)
*/
PortalDefineQuery(portal,
NULL, /* unfortunately don't have sourceText */
"SELECT", /* cursor's query is always a SELECT */
"SELECT", /* cursor's query is always a SELECT */
makeList1(queryTree),
makeList1(planTree),
PortalGetHeapMemory(portal));
@ -1007,9 +1007,9 @@ _SPI_execute(const char *src, int tcount, _SPI_plan *plan)
/*
* Do parse analysis and rule rewrite for each raw parsetree.
*
* We save the querytrees from each raw parsetree as a separate
* sublist. This allows _SPI_execute_plan() to know where the
* boundaries between original queries fall.
* We save the querytrees from each raw parsetree as a separate sublist.
* This allows _SPI_execute_plan() to know where the boundaries
* between original queries fall.
*/
query_list_list = NIL;
plan_list = NIL;
@ -1136,8 +1136,8 @@ _SPI_execute_plan(_SPI_plan *plan, Datum *Values, const char *Nulls,
foreach(query_list_list_item, query_list_list)
{
List *query_list = lfirst(query_list_list_item);
List *query_list_item;
List *query_list = lfirst(query_list_list_item);
List *query_list_item;
/* Reset state for each original parsetree */
/* (at most one of its querytrees will be marked canSetTag) */
@ -1148,7 +1148,7 @@ _SPI_execute_plan(_SPI_plan *plan, Datum *Values, const char *Nulls,
foreach(query_list_item, query_list)
{
Query *queryTree = (Query *) lfirst(query_list_item);
Query *queryTree = (Query *) lfirst(query_list_item);
Plan *planTree;
QueryDesc *qdesc;
DestReceiver *dest;
@ -1190,10 +1190,10 @@ _SPI_pquery(QueryDesc *queryDesc, bool runit, int tcount)
{
case CMD_SELECT:
res = SPI_OK_SELECT;
if (queryDesc->parsetree->into != NULL) /* select into table */
if (queryDesc->parsetree->into != NULL) /* select into table */
{
res = SPI_OK_SELINTO;
queryDesc->dest = None_Receiver; /* don't output results */
queryDesc->dest = None_Receiver; /* don't output results */
}
break;
case CMD_INSERT:
@ -1351,7 +1351,7 @@ _SPI_checktuples(void)
SPITupleTable *tuptable = _SPI_current->tuptable;
bool failed = false;
if (tuptable == NULL) /* spi_dest_startup was not called */
if (tuptable == NULL) /* spi_dest_startup was not called */
failed = true;
else if (processed != (tuptable->alloced - tuptable->free))
failed = true;
@ -1372,7 +1372,8 @@ _SPI_copy_plan(_SPI_plan *plan, int location)
parentcxt = _SPI_current->procCxt;
else if (location == _SPI_CPLAN_TOPCXT)
parentcxt = TopMemoryContext;
else /* (this case not currently used) */
else
/* (this case not currently used) */
parentcxt = CurrentMemoryContext;
/*

View File

@ -9,7 +9,7 @@
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/tstoreReceiver.c,v 1.6 2003/05/08 18:16:36 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/executor/tstoreReceiver.c,v 1.7 2003/08/04 00:43:18 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -21,10 +21,10 @@
typedef struct
{
DestReceiver pub;
Tuplestorestate *tstore;
MemoryContext cxt;
} TStoreState;
DestReceiver pub;
Tuplestorestate *tstore;
MemoryContext cxt;
} TStoreState;
/*