1
0
mirror of https://github.com/postgres/postgres.git synced 2025-09-02 04:21:28 +03:00

Remove tabs after spaces in C comments

This was not changed in HEAD, but will be done later as part of a
pgindent run.  Future pgindent runs will also do this.

Report by Tom Lane

Backpatch through all supported branches, but not HEAD
This commit is contained in:
Bruce Momjian
2014-05-06 11:26:28 -04:00
parent 41fdcf71d2
commit 04e15c69d2
699 changed files with 3823 additions and 3823 deletions

View File

@@ -3640,7 +3640,7 @@ get_guc_variables(void)
/*
* Build the sorted array. This is split out so that it could be
* Build the sorted array. This is split out so that it could be
* re-executed after startup (eg, we could allow loadable modules to
* add vars, and then we'd need to re-sort).
*/
@@ -3797,7 +3797,7 @@ add_placeholder_variable(const char *name, int elevel)
/*
* The char* is allocated at the end of the struct since we have no
* 'static' place to point to. Note that the current value, as well as
* 'static' place to point to. Note that the current value, as well as
* the boot and reset values, start out NULL.
*/
var->variable = (char **) (var + 1);
@@ -3839,7 +3839,7 @@ find_option(const char *name, bool create_placeholders, int elevel)
return *res;
/*
* See if the name is an obsolete name for a variable. We assume that the
* See if the name is an obsolete name for a variable. We assume that the
* set of supported old names is short enough that a brute-force search is
* the best way.
*/
@@ -4495,7 +4495,7 @@ NewGUCNestLevel(void)
/*
* Do GUC processing at transaction or subtransaction commit or abort, or
* when exiting a function that has proconfig settings, or when undoing a
* transient assignment to some GUC variables. (The name is thus a bit of
* transient assignment to some GUC variables. (The name is thus a bit of
* a misnomer; perhaps it should be ExitGUCNestLevel or some such.)
* During abort, we discard all GUC settings that were applied at nesting
* levels >= nestLevel. nestLevel == 1 corresponds to the main transaction.
@@ -5296,7 +5296,7 @@ set_config_option(const char *name, const char *value,
* If a PGC_BACKEND parameter is changed in the config file,
* we want to accept the new value in the postmaster (whence
* it will propagate to subsequently-started backends), but
* ignore it in existing backends. This is a tad klugy, but
* ignore it in existing backends. This is a tad klugy, but
* necessary because we don't re-read the config file during
* backend start.
*
@@ -5353,7 +5353,7 @@ set_config_option(const char *name, const char *value,
* An exception might be made if the reset value is assumed to be "safe".
*
* Note: this flag is currently used for "session_authorization" and
* "role". We need to prohibit changing these inside a local userid
* "role". We need to prohibit changing these inside a local userid
* context because when we exit it, GUC won't be notified, leaving things
* out of sync. (This could be fixed by forcing a new GUC nesting level,
* but that would change behavior in possibly-undesirable ways.) Also, we
@@ -6218,7 +6218,7 @@ flatten_set_variable_args(const char *name, List *args)
else
{
/*
* Plain string literal or identifier. For quote mode,
* Plain string literal or identifier. For quote mode,
* quote it if it's not a vanilla identifier.
*/
if (flags & GUC_LIST_QUOTE)
@@ -6535,7 +6535,7 @@ define_custom_variable(struct config_generic * variable)
* variable. Essentially, we need to duplicate all the active and stacked
* values, but with appropriate validation and datatype adjustment.
*
* If an assignment fails, we report a WARNING and keep going. We don't
* If an assignment fails, we report a WARNING and keep going. We don't
* want to throw ERROR for bad values, because it'd bollix the add-on
* module that's presumably halfway through getting loaded. In such cases
* the default or previous state will become active instead.
@@ -6563,7 +6563,7 @@ define_custom_variable(struct config_generic * variable)
/*
* Free up as much as we conveniently can of the placeholder structure.
* (This neglects any stack items, so it's possible for some memory to be
* leaked. Since this can only happen once per session per variable, it
* leaked. Since this can only happen once per session per variable, it
* doesn't seem worth spending much code on.)
*/
set_string_field(pHolder, pHolder->variable, NULL);
@@ -6636,7 +6636,7 @@ reapply_stacked_values(struct config_generic * variable,
else
{
/*
* We are at the end of the stack. If the active/previous value is
* We are at the end of the stack. If the active/previous value is
* different from the reset value, it must represent a previously
* committed session value. Apply it, and then drop the stack entry
* that set_config_option will have created under the impression that
@@ -7823,7 +7823,7 @@ ParseLongOption(const char *string, char **name, char **value)
/*
* Handle options fetched from pg_db_role_setting.setconfig,
* pg_proc.proconfig, etc. Caller must specify proper context/source/action.
* pg_proc.proconfig, etc. Caller must specify proper context/source/action.
*
* The array parameter must be an array of TEXT (it must not be NULL).
*/
@@ -8105,7 +8105,7 @@ GUCArrayReset(ArrayType *array)
* Validate a proposed option setting for GUCArrayAdd/Delete/Reset.
*
* name is the option name. value is the proposed value for the Add case,
* or NULL for the Delete/Reset cases. If skipIfNoPermissions is true, it's
* or NULL for the Delete/Reset cases. If skipIfNoPermissions is true, it's
* not an error to have no permissions to set the option.
*
* Returns TRUE if OK, FALSE if skipIfNoPermissions is true and user does not
@@ -8186,7 +8186,7 @@ validate_option_array_item(const char *name, const char *value,
* ERRCODE_INVALID_PARAMETER_VALUE SQLSTATE for check hook failures.
*
* Note that GUC_check_errmsg() etc are just macros that result in a direct
* assignment to the associated variables. That is ugly, but forced by the
* assignment to the associated variables. That is ugly, but forced by the
* limitations of C's macro mechanisms.
*/
void

View File

@@ -109,7 +109,7 @@ static char **save_argv;
* from being clobbered by subsequent ps_display actions.
*
* (The original argv[] will not be overwritten by this routine, but may be
* overwritten during init_ps_display. Also, the physical location of the
* overwritten during init_ps_display. Also, the physical location of the
* environment strings may be moved, so this should be called before any code
* that might try to hang onto a getenv() result.)
*/
@@ -210,7 +210,7 @@ save_ps_display_args(int argc, char **argv)
/*
* Call this once during subprocess startup to set the identification
* values. At this point, the original argv[] array may be overwritten.
* values. At this point, the original argv[] array may be overwritten.
*/
void
init_ps_display(const char *username, const char *dbname,
@@ -360,7 +360,7 @@ set_ps_display(const char *activity, bool force)
/*
* Returns what's currently in the ps display, in case someone needs
* it. Note that only the activity part is returned. On some platforms
* it. Note that only the activity part is returned. On some platforms
* the string will not be null-terminated, so return the effective
* length into *displen.
*/

View File

@@ -13,7 +13,7 @@
*
* Red-black trees are a type of balanced binary tree wherein (1) any child of
* a red node is always black, and (2) every path from root to leaf traverses
* an equal number of black nodes. From these properties, it follows that the
* an equal number of black nodes. From these properties, it follows that the
* longest path from root to leaf is only about twice as long as the shortest,
* so lookups are guaranteed to run in O(lg n) time.
*
@@ -102,7 +102,7 @@ static RBNode sentinel = {InitialState, RBBLACK, RBNIL, RBNIL, NULL};
* valid data! freefunc can be NULL if caller doesn't require retail
* space reclamation.
*
* The RBTree node is palloc'd in the caller's memory context. Note that
* The RBTree node is palloc'd in the caller's memory context. Note that
* all contents of the tree are actually allocated by the caller, not here.
*
* Since tree contents are managed by the caller, there is currently not
@@ -282,10 +282,10 @@ rb_rotate_right(RBTree *rb, RBNode *x)
/*
* Maintain Red-Black tree balance after inserting node x.
*
* The newly inserted node is always initially marked red. That may lead to
* The newly inserted node is always initially marked red. That may lead to
* a situation where a red node has a red child, which is prohibited. We can
* always fix the problem by a series of color changes and/or "rotations",
* which move the problem progressively higher up in the tree. If one of the
* which move the problem progressively higher up in the tree. If one of the
* two red nodes is the root, we can always fix the problem by changing the
* root from red to black.
*
@@ -296,7 +296,7 @@ static void
rb_insert_fixup(RBTree *rb, RBNode *x)
{
/*
* x is always a red node. Initially, it is the newly inserted node. Each
* x is always a red node. Initially, it is the newly inserted node. Each
* iteration of this loop moves it higher up in the tree.
*/
while (x != rb->root && x->parent->color == RBRED)
@@ -481,7 +481,7 @@ rb_delete_fixup(RBTree *rb, RBNode *x)
while (x != rb->root && x->color == RBBLACK)
{
/*
* Left and right cases are symmetric. Any nodes that are children of
* Left and right cases are symmetric. Any nodes that are children of
* x have a black-height one less than the remainder of the nodes in
* the tree. We rotate and recolor nodes to move the problem up the
* tree: at some stage we'll either fix the problem, or reach the root

View File

@@ -57,7 +57,7 @@ static timeout_params *volatile active_timeouts[MAX_TIMEOUTS];
* Note that we don't bother to reset any pending timer interrupt when we
* disable the signal handler; it's not really worth the cycles to do so,
* since the probability of the interrupt actually occurring while we have
* it disabled is low. See comments in schedule_alarm() about that.
* it disabled is low. See comments in schedule_alarm() about that.
*/
static volatile sig_atomic_t alarm_enabled = false;
@@ -69,7 +69,7 @@ static volatile sig_atomic_t alarm_enabled = false;
* Internal helper functions
*
* For all of these, it is caller's responsibility to protect them from
* interruption by the signal handler. Generally, call disable_alarm()
* interruption by the signal handler. Generally, call disable_alarm()
* first to prevent interruption, then update state, and last call
* schedule_alarm(), which will re-enable the signal handler if needed.
*****************************************************************************/
@@ -144,7 +144,7 @@ enable_timeout(TimeoutId id, TimestampTz now, TimestampTz fin_time)
Assert(all_timeouts[id].timeout_handler != NULL);
/*
* If this timeout was already active, momentarily disable it. We
* If this timeout was already active, momentarily disable it. We
* interpret the call as a directive to reschedule the timeout.
*/
i = find_active_timeout(id);
@@ -152,7 +152,7 @@ enable_timeout(TimeoutId id, TimestampTz now, TimestampTz fin_time)
remove_timeout_index(i);
/*
* Find out the index where to insert the new timeout. We sort by
* Find out the index where to insert the new timeout. We sort by
* fin_time, and for equal fin_time by priority.
*/
for (i = 0; i < num_active_timeouts; i++)
@@ -214,18 +214,18 @@ schedule_alarm(TimestampTz now)
*
* Because we didn't bother to reset the timer in disable_alarm(),
* it's possible that a previously-set interrupt will fire between
* enable_alarm() and setitimer(). This is safe, however. There are
* enable_alarm() and setitimer(). This is safe, however. There are
* two possible outcomes:
*
* 1. The signal handler finds nothing to do (because the nearest
* timeout event is still in the future). It will re-set the timer
* and return. Then we'll overwrite the timer value with a new one.
* and return. Then we'll overwrite the timer value with a new one.
* This will mean that the timer fires a little later than we
* intended, but only by the amount of time it takes for the signal
* handler to do nothing useful, which shouldn't be much.
*
* 2. The signal handler executes and removes one or more timeout
* events. When it returns, either the queue is now empty or the
* events. When it returns, either the queue is now empty or the
* frontmost event is later than the one we looked at above. So we'll
* overwrite the timer value with one that is too soon (plus or minus
* the signal handler's execution time), causing a useless interrupt
@@ -266,14 +266,14 @@ handle_sig_alarm(SIGNAL_ARGS)
* mainline is waiting for a lock). If SIGINT or similar arrives while
* this code is running, we'd lose control and perhaps leave our data
* structures in an inconsistent state. Disable immediate interrupts, and
* just to be real sure, bump the holdoff counter as well. (The reason
* just to be real sure, bump the holdoff counter as well. (The reason
* for this belt-and-suspenders-too approach is to make sure that nothing
* bad happens if a timeout handler calls code that manipulates
* ImmediateInterruptOK.)
*
* Note: it's possible for a SIGINT to interrupt handle_sig_alarm before
* we manage to do this; the net effect would be as if the SIGALRM event
* had been silently lost. Therefore error recovery must include some
* had been silently lost. Therefore error recovery must include some
* action that will allow any lost interrupt to be rescheduled. Disabling
* some or all timeouts is sufficient, or if that's not appropriate,
* reschedule_timeouts() can be called. Also, the signal blocking hazard
@@ -434,7 +434,7 @@ RegisterTimeout(TimeoutId id, timeout_handler_proc handler)
*
* This can be used during error recovery in case query cancel resulted in loss
* of a SIGALRM event (due to longjmp'ing out of handle_sig_alarm before it
* could do anything). But note it's not necessary if any of the public
* could do anything). But note it's not necessary if any of the public
* enable_ or disable_timeout functions are called in the same area, since
* those all do schedule_alarm() internally if needed.
*/
@@ -503,7 +503,7 @@ enable_timeout_at(TimeoutId id, TimestampTz fin_time)
* Enable multiple timeouts at once.
*
* This works like calling enable_timeout_after() and/or enable_timeout_at()
* multiple times. Use this to reduce the number of GetCurrentTimestamp()
* multiple times. Use this to reduce the number of GetCurrentTimestamp()
* and setitimer() calls needed to establish multiple timeouts.
*/
void

View File

@@ -4,7 +4,7 @@
* Functions for parsing timezone offset files
*
* Note: this code is invoked from the check_hook for the GUC variable
* timezone_abbreviations. Therefore, it should report problems using
* timezone_abbreviations. Therefore, it should report problems using
* GUC_check_errmsg() and related functions, and try to avoid throwing
* elog(ERROR). This is not completely bulletproof at present --- in
* particular out-of-memory will throw an error. Could probably fix with
@@ -179,7 +179,7 @@ addToArray(tzEntry **base, int *arraysize, int n,
/*
* Search the array for a duplicate; as a useful side effect, the array is
* maintained in sorted order. We use strcmp() to ensure we match the
* maintained in sorted order. We use strcmp() to ensure we match the
* sort order datetime.c expects.
*/
arrayptr = *base;