1
0
mirror of https://github.com/postgres/postgres.git synced 2025-07-27 12:41:57 +03:00

Remove tabs after spaces in C comments

This was not changed in HEAD, but will be done later as part of a
pgindent run.  Future pgindent runs will also do this.

Report by Tom Lane

Backpatch through all supported branches, but not HEAD
This commit is contained in:
Bruce Momjian
2014-05-06 11:26:28 -04:00
parent 41fdcf71d2
commit 04e15c69d2
699 changed files with 3823 additions and 3823 deletions

View File

@ -10,7 +10,7 @@
*
* The caller is responsible for creating the new heap, all catalog
* changes, supplying the tuples to be written to the new heap, and
* rebuilding indexes. The caller must hold AccessExclusiveLock on the
* rebuilding indexes. The caller must hold AccessExclusiveLock on the
* target table, because we assume no one else is writing into it.
*
* To use the facility:
@ -43,7 +43,7 @@
* to substitute the correct ctid instead.
*
* For each ctid reference from A -> B, we might encounter either A first
* or B first. (Note that a tuple in the middle of a chain is both A and B
* or B first. (Note that a tuple in the middle of a chain is both A and B
* of different pairs.)
*
* If we encounter A first, we'll store the tuple in the unresolved_tups
@ -58,11 +58,11 @@
* and can write A immediately with the correct ctid.
*
* Entries in the hash tables can be removed as soon as the later tuple
* is encountered. That helps to keep the memory usage down. At the end,
* is encountered. That helps to keep the memory usage down. At the end,
* both tables are usually empty; we should have encountered both A and B
* of each pair. However, it's possible for A to be RECENTLY_DEAD and B
* entirely DEAD according to HeapTupleSatisfiesVacuum, because the test
* for deadness using OldestXmin is not exact. In such a case we might
* for deadness using OldestXmin is not exact. In such a case we might
* encounter B first, and skip it, and find A later. Then A would be added
* to unresolved_tups, and stay there until end of the rewrite. Since
* this case is very unusual, we don't worry about the memory usage.
@ -78,7 +78,7 @@
* of CLUSTERing on an unchanging key column, we'll see all the versions
* of a given tuple together anyway, and so the peak memory usage is only
* proportional to the number of RECENTLY_DEAD versions of a single row, not
* in the whole table. Note that if we do fail halfway through a CLUSTER,
* in the whole table. Note that if we do fail halfway through a CLUSTER,
* the old table is still valid, so failure is not catastrophic.
*
* We can't use the normal heap_insert function to insert into the new
@ -287,7 +287,7 @@ end_heap_rewrite(RewriteState state)
}
/*
* If the rel is WAL-logged, must fsync before commit. We use heap_sync
* If the rel is WAL-logged, must fsync before commit. We use heap_sync
* to ensure that the toast table gets fsync'd too.
*
* It's obvious that we must do this when not WAL-logging. It's less
@ -554,7 +554,7 @@ rewrite_heap_dead_tuple(RewriteState state, HeapTuple old_tuple)
}
/*
* Insert a tuple to the new relation. This has to track heap_insert
* Insert a tuple to the new relation. This has to track heap_insert
* and its subsidiary functions!
*
* t_self of the tuple is set to the new TID of the tuple. If t_ctid of the