mirror of
https://github.com/postgres/postgres.git
synced 2025-07-05 07:21:24 +03:00
Add zpbit and varbit data types from Adrian Joubert
<a.joubert@albourne.com>.
This commit is contained in:
937
src/backend/utils/adt/varbit.c
Normal file
937
src/backend/utils/adt/varbit.c
Normal file
@ -0,0 +1,937 @@
|
||||
/*-------------------------------------------------------------------------
|
||||
*
|
||||
* varbit.c
|
||||
* Functions for the built-in type bit() and varying bit().
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $Header: /cvsroot/pgsql/src/backend/utils/adt/varbit.c,v 1.1 2000/04/08 02:12:54 thomas Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
/* Include file list stolen from float.c.
|
||||
* Can probably get rid of some of these.
|
||||
* - thomas 2000-04-07
|
||||
*/
|
||||
#include <ctype.h>
|
||||
#include <errno.h>
|
||||
|
||||
#include <float.h> /* faked on sunos4 */
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include "postgres.h"
|
||||
#ifdef HAVE_LIMITS_H
|
||||
#include <limits.h>
|
||||
#ifndef MAXINT
|
||||
#define MAXINT INT_MAX
|
||||
#endif
|
||||
#else
|
||||
#ifdef HAVE_VALUES_H
|
||||
#include <values.h>
|
||||
#endif
|
||||
#endif
|
||||
#include "fmgr.h"
|
||||
#include "utils/builtins.h"
|
||||
#include "access/htup.h"
|
||||
|
||||
/*
|
||||
Prefixes:
|
||||
zp -- zero-padded fixed length bit string
|
||||
var -- varying bit string
|
||||
|
||||
attypmod -- contains the length of the bit string in bits, or for
|
||||
varying bits the maximum length.
|
||||
|
||||
The data structure contains the following elements:
|
||||
header -- length of the whole data structure (incl header)
|
||||
in bytes. (as with all varying length datatypes)
|
||||
data section -- private data section for the bits data structures
|
||||
bitlength -- lenght of the bit string in bits
|
||||
bitdata -- least significant byte first string
|
||||
*/
|
||||
|
||||
char *
|
||||
varbit_out (bits8 *s) {
|
||||
return zpbits_out(s);
|
||||
}
|
||||
|
||||
/*
|
||||
* zpbit_in -
|
||||
* converts a string to the internal representation of a bitstring.
|
||||
* The length is determined by the number of bits required plus
|
||||
* VARHDRSZ bytes or from atttypmod.
|
||||
* (XXX dummy is here because we pass typelem as the second argument
|
||||
* for array_in. copied this, no idea what it means??)
|
||||
*/
|
||||
bits8 *
|
||||
zpbit_in(char *s, int dummy, int32 atttypmod)
|
||||
{
|
||||
bits8 *result; /* the bits string that was read in */
|
||||
char *sp; /* pointer into the character string */
|
||||
bits8 *r;
|
||||
int len, /* Length of the whole data structure */
|
||||
bitlen, /* Number of bits in the bit string */
|
||||
slen; /* Length of the input string */
|
||||
int bit_not_hex = 0; /* 0 = hex string 1=bit string */
|
||||
int bc, ipad;
|
||||
bits8 x = 0;
|
||||
|
||||
|
||||
if (s == NULL)
|
||||
return (bits8 *) NULL;
|
||||
|
||||
/* Check that the first character is a b or an x */
|
||||
if (s[0]=='b' || s[0]=='B')
|
||||
bit_not_hex = 1;
|
||||
else if (s[0]=='x' || s[0]=='X')
|
||||
bit_not_hex = 0;
|
||||
else
|
||||
elog(ERROR, "zpbit_in: %s is not a valid bitstring",s);
|
||||
|
||||
slen = strlen(s) - 1;
|
||||
/* Determine bitlength from input string */
|
||||
bitlen = slen;
|
||||
if (!bit_not_hex)
|
||||
bitlen *= 4;
|
||||
|
||||
/* Sometimes atttypmod is not supplied. If it is supplied we need to make
|
||||
sure that the bitstring fits. Note that the number of infered bits can
|
||||
be larger than the number of actual bits needed, but only if we are
|
||||
reading a hex string and not by more than 3 bits, as a hex string gives
|
||||
and accurate length upto 4 bits */
|
||||
if (atttypmod == -1)
|
||||
atttypmod = bitlen;
|
||||
else
|
||||
if ((bitlen>atttypmod && bit_not_hex) ||
|
||||
(bitlen>atttypmod+3 && !bit_not_hex))
|
||||
elog(ERROR, "zpbit_in: bit string of size %d cannot be written into bits(%d)",
|
||||
bitlen,atttypmod);
|
||||
|
||||
|
||||
len = VARBITDATALEN(atttypmod);
|
||||
|
||||
if (len > MaxAttrSize)
|
||||
elog(ERROR, "zpbit_in: length of bit() must be less than %ld",
|
||||
(MaxAttrSize-VARHDRSZ-VARBITHDRSZ)*BITSPERBYTE);
|
||||
|
||||
result = (bits8 *) palloc(len);
|
||||
/* set to 0 so that *r is always initialised and strin is zero-padded */
|
||||
memset(result, 0, len);
|
||||
VARSIZE(result) = len;
|
||||
VARBITLEN(result) = atttypmod;
|
||||
|
||||
/* We need to read the bitstring from the end, as we store it least
|
||||
significant byte first. s points to the byte before the beginning
|
||||
of the bitstring */
|
||||
sp = s+1;
|
||||
r = VARBITS(result);
|
||||
if (bit_not_hex)
|
||||
{
|
||||
/* Parse the bit representation of the string */
|
||||
/* We know it fits, as bitlen was compared to atttypmod */
|
||||
x = BITHIGH;
|
||||
for (bc = 0; sp != s+slen+1; sp++, bc++)
|
||||
{
|
||||
if (*sp=='1')
|
||||
*r |= x;
|
||||
if (bc==7) {
|
||||
bc = 0;
|
||||
x = BITHIGH;
|
||||
r++;
|
||||
} else
|
||||
x >>= 1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Parse the hex representation of the string */
|
||||
for (bc = 0; sp != s+slen+1; sp++)
|
||||
{
|
||||
if (*sp>='0' && *sp<='9')
|
||||
x = (bits8) (*sp - '0');
|
||||
else if (*sp>='A' && *sp<='F')
|
||||
x = (bits8) (*sp - 'A') + 10;
|
||||
else if (*sp>='a' && *sp<='f')
|
||||
x = (bits8) (*sp - 'a') + 10;
|
||||
else
|
||||
elog(ERROR,"Cannot parse %c as a hex digit",*sp);
|
||||
if (bc) {
|
||||
bc = 0;
|
||||
*r++ |= x;
|
||||
} else {
|
||||
bc++;
|
||||
*r = x<<4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (bitlen > atttypmod) {
|
||||
/* Check that this fitted */
|
||||
r = (bits8 *) (result + len - 1);
|
||||
ipad = VARBITPAD(result);
|
||||
/* The bottom ipad bits of the byte pointed to by r need to be zero */
|
||||
if (((*r << (BITSPERBYTE-ipad)) & BITMASK) > 0)
|
||||
elog(ERROR, "zpbit_in: bit string too large for bit(%d) data type",
|
||||
atttypmod);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* zpbit_out -
|
||||
* for the time being we print everything as hex strings, as this is likely
|
||||
* to be more compact than bit strings, and consequently much more efficient
|
||||
* for long strings
|
||||
*/
|
||||
char *
|
||||
zpbit_out(bits8 *s)
|
||||
{
|
||||
char *result, *r;
|
||||
bits8 *sp;
|
||||
int i, len, bitlen;
|
||||
|
||||
if (s == NULL)
|
||||
{
|
||||
result = (char *) palloc(2);
|
||||
result[0] = '-';
|
||||
result[1] = '\0';
|
||||
}
|
||||
else
|
||||
{
|
||||
bitlen = VARBITLEN(s);
|
||||
len = bitlen/4 + (bitlen%4>0 ? 1 : 0);
|
||||
result = (char *) palloc(len + 4);
|
||||
sp = VARBITS(s);
|
||||
r = result;
|
||||
*r++ = 'X';
|
||||
*r++ = '\'';
|
||||
/* we cheat by knowing that we store full bytes zero padded */
|
||||
for (i=0; i<len; i+=2, sp++) {
|
||||
*r++ = HEXDIG((*sp)>>4);
|
||||
*r++ = HEXDIG((*sp) & 0xF);
|
||||
}
|
||||
/* Go back one step if we printed a hex number that was not part
|
||||
of the bitstring anymore */
|
||||
if (i==len+1)
|
||||
r--;
|
||||
*r++ = '\'';
|
||||
*r = '\0';
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* zpbits_out -
|
||||
* Prints the string a bits
|
||||
*/
|
||||
char *
|
||||
zpbits_out(bits8 *s)
|
||||
{
|
||||
char *result, *r;
|
||||
bits8 *sp;
|
||||
bits8 x;
|
||||
int i, k, len;
|
||||
|
||||
if (s == NULL)
|
||||
{
|
||||
result = (char *) palloc(2);
|
||||
result[0] = '-';
|
||||
result[1] = '\0';
|
||||
}
|
||||
else
|
||||
{
|
||||
len = VARBITLEN(s);
|
||||
result = (char *) palloc(len + 4);
|
||||
sp = VARBITS(s);
|
||||
r = result;
|
||||
*r++ = 'B';
|
||||
*r++ = '\'';
|
||||
for (i=0; i<len-BITSPERBYTE; i+=BITSPERBYTE, sp++) {
|
||||
x = *sp;
|
||||
for (k=0; k<BITSPERBYTE; k++)
|
||||
{
|
||||
*r++ = (x & BITHIGH) ? '1' : '0';
|
||||
x <<= 1;
|
||||
}
|
||||
}
|
||||
x = *sp;
|
||||
for (k=i; k<len; k++)
|
||||
{
|
||||
*r++ = (x & BITHIGH) ? '1' : '0';
|
||||
x <<= 1;
|
||||
}
|
||||
*r++ = '\'';
|
||||
*r = '\0';
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* varbit_in -
|
||||
* converts a string to the internal representation of a bitstring.
|
||||
*/
|
||||
bits8 *
|
||||
varbit_in(char *s, int dummy, int32 atttypmod)
|
||||
{
|
||||
bits8 *result; /* The resulting bit string */
|
||||
char *sp; /* pointer into the character string */
|
||||
bits8 *r;
|
||||
int len, /* Length of the whole data structure */
|
||||
bitlen, /* Number of bits in the bit string */
|
||||
slen; /* Length of the input string */
|
||||
int bit_not_hex = 0;
|
||||
int bc, ipad;
|
||||
bits8 x = 0;
|
||||
|
||||
|
||||
if (s == NULL)
|
||||
return (bits8 *) NULL;
|
||||
|
||||
/* Check that the first character is a b or an x */
|
||||
if (s[0]=='b' || s[0]=='B')
|
||||
bit_not_hex = 1;
|
||||
else if (s[0]=='x' || s[0]=='X')
|
||||
bit_not_hex = 0;
|
||||
else
|
||||
elog(ERROR, "zpbit_in: %s is not a valid bitstring",s);
|
||||
|
||||
slen = strlen(s) - 1;
|
||||
/* Determine bitlength from input string */
|
||||
bitlen = slen;
|
||||
if (!bit_not_hex)
|
||||
bitlen *= 4;
|
||||
|
||||
/* Sometimes atttypmod is not supplied. If it is supplied we need to make
|
||||
sure that the bitstring fits. Note that the number of infered bits can
|
||||
be larger than the number of actual bits needed, but only if we are
|
||||
reading a hex string and not by more than 3 bits, as a hex string gives
|
||||
and accurate length upto 4 bits */
|
||||
if (atttypmod > -1)
|
||||
if ((bitlen>atttypmod && bit_not_hex) ||
|
||||
(bitlen>atttypmod+3 && !bit_not_hex))
|
||||
elog(ERROR, "varbit_in: bit string of size %d cannot be written into varying bits(%d)",
|
||||
bitlen,atttypmod);
|
||||
|
||||
|
||||
len = VARBITDATALEN(bitlen);
|
||||
|
||||
if (len > MaxAttrSize)
|
||||
elog(ERROR, "varbit_in: length of bit() must be less than %ld",
|
||||
(MaxAttrSize-VARHDRSZ-VARBITHDRSZ)*BITSPERBYTE);
|
||||
|
||||
result = (bits8 *) palloc(len);
|
||||
/* set to 0 so that *r is always initialised and strin is zero-padded */
|
||||
memset(result, 0, len);
|
||||
VARSIZE(result) = len;
|
||||
VARBITLEN(result) = bitlen;
|
||||
|
||||
/* We need to read the bitstring from the end, as we store it least
|
||||
significant byte first. s points to the byte before the beginning
|
||||
of the bitstring */
|
||||
sp = s + 1;
|
||||
r = VARBITS(result);
|
||||
if (bit_not_hex)
|
||||
{
|
||||
/* Parse the bit representation of the string */
|
||||
x = BITHIGH;
|
||||
for (bc = 0; sp != s+slen+1; sp++, bc++)
|
||||
{
|
||||
if (*sp=='1')
|
||||
*r |= x;
|
||||
if (bc==7) {
|
||||
bc = 0;
|
||||
x = BITHIGH;
|
||||
r++;
|
||||
} else
|
||||
x >>= 1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (bc = 0; sp != s+slen+1; sp++)
|
||||
{
|
||||
if (*sp>='0' && *sp<='9')
|
||||
x = (bits8) (*sp - '0');
|
||||
else if (*sp>='A' && *sp<='F')
|
||||
x = (bits8) (*sp - 'A') + 10;
|
||||
else if (*sp>='a' && *sp<='f')
|
||||
x = (bits8) (*sp - 'a') + 10;
|
||||
else
|
||||
elog(ERROR,"Cannot parse %c as a hex digit",*sp);
|
||||
if (bc) {
|
||||
bc = 0;
|
||||
*r++ |= x;
|
||||
} else {
|
||||
bc++;
|
||||
*r = x<<4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (bitlen > atttypmod) {
|
||||
/* Check that this fitted */
|
||||
r = (bits8 *) (result + len - 1);
|
||||
ipad = VARBITPAD(result);
|
||||
/* The bottom ipad bits of the byte pointed to by r need to be zero */
|
||||
if (((*r << (BITSPERBYTE-ipad)) & BITMASK) > 0)
|
||||
elog(ERROR, "varbit_in: bit string too large for varying bit(%d) data type",
|
||||
atttypmod);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
the zpbit_out routines are fine for varying bits as well
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Comparison operators
|
||||
*
|
||||
* We only need one set of comparison operators for bitstrings, as the lengths
|
||||
* are stored in the same way for zero-padded and varying bit strings.
|
||||
*
|
||||
* Note that the standard is not unambiguous about the comparison between
|
||||
* zero-padded bit strings and varying bitstrings. If the same value is written
|
||||
* into a zero padded bitstring as into a varying bitstring, but the zero
|
||||
* padded bitstring has greater length, it will be bigger.
|
||||
*
|
||||
* Zeros from the beginning of a bitstring cannot simply be ignored, as they
|
||||
* may be part of a bit string and may be significant.
|
||||
*/
|
||||
|
||||
bool
|
||||
biteq (bits8 *arg1, bits8 *arg2)
|
||||
{
|
||||
int bitlen1,
|
||||
bitlen2;
|
||||
|
||||
if (!PointerIsValid(arg1) || !PointerIsValid(arg2))
|
||||
return (bool) 0;
|
||||
bitlen1 = VARBITLEN(arg1);
|
||||
bitlen2 = VARBITLEN(arg2);
|
||||
if (bitlen1 != bitlen2)
|
||||
return (bool) 0;
|
||||
|
||||
/* bit strings are always stored in a full number of bytes */
|
||||
return memcmp((void *)VARBITS(arg1),(void *)VARBITS(arg2),
|
||||
VARBITBYTES(arg1)) == 0;
|
||||
}
|
||||
|
||||
bool
|
||||
bitne (bits8 *arg1, bits8 *arg2)
|
||||
{
|
||||
int bitlen1,
|
||||
bitlen2;
|
||||
|
||||
if (!PointerIsValid(arg1) || !PointerIsValid(arg2))
|
||||
return (bool) 0;
|
||||
bitlen1 = VARBITLEN(arg1);
|
||||
bitlen2 = VARBITLEN(arg2);
|
||||
if (bitlen1 != bitlen2)
|
||||
return (bool) 1;
|
||||
|
||||
/* bit strings are always stored in a full number of bytes */
|
||||
return memcmp((void *)VARBITS(arg1),(void *)VARBITS(arg2),
|
||||
VARBITBYTES(arg1)) != 0;
|
||||
}
|
||||
|
||||
/* bitcmp
|
||||
*
|
||||
* Compares two bitstrings and returns -1, 0, 1 depending on whether the first
|
||||
* string is smaller, equal, or bigger than the second. All bits are considered
|
||||
* and additional zero bits may make one string smaller/larger than the other,
|
||||
* even if their zero-padded values would be the same.
|
||||
* Anything is equal to undefined.
|
||||
*/
|
||||
int
|
||||
bitcmp (bits8 *arg1, bits8 *arg2)
|
||||
{
|
||||
int bitlen1, bytelen1,
|
||||
bitlen2, bytelen2;
|
||||
int cmp;
|
||||
|
||||
if (!PointerIsValid(arg1) || !PointerIsValid(arg2))
|
||||
return (bool) 0;
|
||||
bytelen1 = VARBITBYTES(arg1);
|
||||
bytelen2 = VARBITBYTES(arg2);
|
||||
|
||||
cmp = memcmp(VARBITS(arg1),VARBITS(arg2),Min(bytelen1,bytelen2));
|
||||
if (cmp==0) {
|
||||
bitlen1 = VARBITLEN(arg1);
|
||||
bitlen2 = VARBITLEN(arg2);
|
||||
if (bitlen1 != bitlen2)
|
||||
return bitlen1 < bitlen2 ? -1 : 1;
|
||||
}
|
||||
return cmp;
|
||||
}
|
||||
|
||||
bool
|
||||
bitlt (bits8 *arg1, bits8 *arg2)
|
||||
{
|
||||
return (bool) (bitcmp(arg1,arg2) == -1);
|
||||
}
|
||||
|
||||
bool
|
||||
bitle (bits8 *arg1, bits8 *arg2)
|
||||
{
|
||||
return (bool) (bitcmp(arg1,arg2) <= 0);
|
||||
}
|
||||
|
||||
bool
|
||||
bitge (bits8 *arg1, bits8 *arg2)
|
||||
{
|
||||
return (bool) (bitcmp(arg1,arg2) >= 0);
|
||||
}
|
||||
|
||||
bool
|
||||
bitgt (bits8 *arg1, bits8 *arg2)
|
||||
{
|
||||
return (bool) (bitcmp(arg1,arg2) == 1);
|
||||
}
|
||||
|
||||
/* bitcat
|
||||
* Concatenation of bit strings
|
||||
*/
|
||||
bits8 *
|
||||
bitcat (bits8 *arg1, bits8 *arg2)
|
||||
{
|
||||
int bitlen1, bitlen2, bytelen, bit1pad, bit2shift;
|
||||
bits8 *result;
|
||||
bits8 *pr, *pa;
|
||||
|
||||
if (!PointerIsValid(arg1) || !PointerIsValid(arg2))
|
||||
return NULL;
|
||||
|
||||
bitlen1 = VARBITLEN(arg1);
|
||||
bitlen2 = VARBITLEN(arg2);
|
||||
|
||||
bytelen = VARBITDATALEN(bitlen1+bitlen2);
|
||||
|
||||
result = (bits8 *) palloc(bytelen*sizeof(bits8));
|
||||
VARSIZE(result) = bytelen;
|
||||
VARBITLEN(result) = bitlen1+bitlen2;
|
||||
/* Copy the first bitstring in */
|
||||
memcpy(VARBITS(result),VARBITS(arg1),VARBITBYTES(arg1));
|
||||
/* Copy the second bit string */
|
||||
bit1pad = VARBITPAD(arg1);
|
||||
if (bit1pad==0)
|
||||
{
|
||||
memcpy(VARBITS(result)+VARBITBYTES(arg1),VARBITS(arg2),
|
||||
VARBITBYTES(arg2));
|
||||
}
|
||||
else if (bitlen2>0)
|
||||
{
|
||||
/* We need to shift all the results to fit */
|
||||
bit2shift = BITSPERBYTE - bit1pad;
|
||||
pa = VARBITS(arg2);
|
||||
pr = VARBITS(result)+VARBITBYTES(arg1)-1;
|
||||
for ( ; pa < VARBITEND(arg2); pa++) {
|
||||
*pr |= ((*pa >> bit2shift) & BITMASK);
|
||||
pr++;
|
||||
if (pr < VARBITEND(result))
|
||||
*pr = (*pa << bit1pad) & BITMASK;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* bitsubstr
|
||||
* retrieve a substring from the bit string.
|
||||
* Note, s is 1-based.
|
||||
* SQL draft 6.10 9)
|
||||
*/
|
||||
bits8 *
|
||||
bitsubstr (bits8 *arg, int32 s, int32 l)
|
||||
{
|
||||
int bitlen,
|
||||
rbitlen,
|
||||
len,
|
||||
ipad = 0,
|
||||
ishift,
|
||||
i;
|
||||
int e, s1, e1;
|
||||
bits8 * result;
|
||||
bits8 mask, *r, *ps;
|
||||
|
||||
if (!PointerIsValid(arg))
|
||||
return NULL;
|
||||
|
||||
bitlen = VARBITLEN(arg);
|
||||
e = s+l;
|
||||
s1 = Max(s,1);
|
||||
e1 = Min(e,bitlen+1);
|
||||
if (s1>bitlen || e1<1)
|
||||
{
|
||||
/* Need to return a null string */
|
||||
len = VARBITDATALEN(0);
|
||||
result = (bits8 *) palloc(len);
|
||||
VARBITLEN(result) = 0;
|
||||
VARSIZE(result) = len;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* OK, we've got a true substring starting at position s1-1 and
|
||||
ending at position e1-1 */
|
||||
rbitlen = e1-s1;
|
||||
len = VARBITDATALEN(rbitlen);
|
||||
result = (bits8 *) palloc(len);
|
||||
VARBITLEN(result) = rbitlen;
|
||||
VARSIZE(result) = len;
|
||||
len -= VARHDRSZ + VARBITHDRSZ;
|
||||
/* Are we copying from a byte boundary? */
|
||||
if ((s1-1)%BITSPERBYTE==0)
|
||||
{
|
||||
/* Yep, we are copying bytes */
|
||||
memcpy(VARBITS(result),VARBITS(arg)+(s1-1)/BITSPERBYTE,len);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Figure out how much we need to shift the sequence by */
|
||||
ishift = (s1-1)%BITSPERBYTE;
|
||||
r = VARBITS(result);
|
||||
ps = VARBITS(arg) + (s1-1)/BITSPERBYTE;
|
||||
for (i=0; i<len; i++)
|
||||
{
|
||||
*r = (*ps <<ishift) & BITMASK;
|
||||
if ((++ps) < VARBITEND(arg))
|
||||
*r |= *ps >>(BITSPERBYTE-ishift);
|
||||
r++;
|
||||
}
|
||||
}
|
||||
/* Do we need to pad at the end? */
|
||||
ipad = VARBITPAD(result);
|
||||
if (ipad > 0)
|
||||
{
|
||||
mask = BITMASK << ipad;
|
||||
*(VARBITS(result) + len - 1) &= mask;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* bitand
|
||||
* perform a logical AND on two bit strings. The result is automatically
|
||||
* truncated to the shorter bit string
|
||||
*/
|
||||
bits8 *
|
||||
bitand (bits8 * arg1, bits8 * arg2)
|
||||
{
|
||||
int len,
|
||||
i;
|
||||
bits8 *result;
|
||||
bits8 *p1,
|
||||
*p2,
|
||||
*r;
|
||||
|
||||
if (!PointerIsValid(arg1) || !PointerIsValid(arg2))
|
||||
return (bool) 0;
|
||||
|
||||
len = Min(VARSIZE(arg1),VARSIZE(arg2));
|
||||
result = (bits8 *) palloc(len);
|
||||
VARSIZE(result) = len;
|
||||
VARBITLEN(result) = Min(VARBITLEN(arg1),VARBITLEN(arg2));
|
||||
|
||||
p1 = (bits8 *) VARBITS(arg1);
|
||||
p2 = (bits8 *) VARBITS(arg2);
|
||||
r = (bits8 *) VARBITS(result);
|
||||
for (i=0; i<Min(VARBITBYTES(arg1),VARBITBYTES(arg2)); i++)
|
||||
*r++ = *p1++ & *p2++;
|
||||
|
||||
/* Padding is not needed as & of 0 pad is 0 */
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* bitor
|
||||
* perform a logical OR on two bit strings. The result is automatically
|
||||
* truncated to the shorter bit string.
|
||||
*/
|
||||
bits8 *
|
||||
bitor (bits8 * arg1, bits8 * arg2)
|
||||
{
|
||||
int len,
|
||||
i;
|
||||
bits8 *result;
|
||||
bits8 *p1,
|
||||
*p2,
|
||||
*r;
|
||||
bits8 mask;
|
||||
|
||||
if (!PointerIsValid(arg1) || !PointerIsValid(arg2))
|
||||
return (bool) 0;
|
||||
|
||||
len = Min(VARSIZE(arg1),VARSIZE(arg2));
|
||||
result = (bits8 *) palloc(len);
|
||||
VARSIZE(result) = len;
|
||||
VARBITLEN(result) = Min(VARBITLEN(arg1),VARBITLEN(arg2));
|
||||
|
||||
p1 = (bits8 *) VARBITS(arg1);
|
||||
p2 = (bits8 *) VARBITS(arg2);
|
||||
r = (bits8 *) VARBITS(result);
|
||||
for (i=0; i<Min(VARBITBYTES(arg1),VARBITBYTES(arg2)); i++)
|
||||
*r++ = *p1++ | *p2++;
|
||||
|
||||
/* Pad the result */
|
||||
mask = BITMASK << VARBITPAD(result);
|
||||
*r &= mask;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* bitxor
|
||||
* perform a logical XOR on two bit strings. The result is automatically
|
||||
* truncated to the shorter bit string.
|
||||
*/
|
||||
bits8 *
|
||||
bitxor (bits8 * arg1, bits8 * arg2)
|
||||
{
|
||||
int len,
|
||||
i;
|
||||
bits8 *result;
|
||||
bits8 *p1,
|
||||
*p2,
|
||||
*r;
|
||||
bits8 mask;
|
||||
|
||||
if (!PointerIsValid(arg1) || !PointerIsValid(arg2))
|
||||
return (bool) 0;
|
||||
|
||||
len = Min(VARSIZE(arg1),VARSIZE(arg2));
|
||||
result = (bits8 *) palloc(len);
|
||||
VARSIZE(result) = len;
|
||||
VARBITLEN(result) = Min(VARBITLEN(arg1),VARBITLEN(arg2));
|
||||
|
||||
p1 = (bits8 *) VARBITS(arg1);
|
||||
p2 = (bits8 *) VARBITS(arg2);
|
||||
r = (bits8 *) VARBITS(result);
|
||||
for (i=0; i<Min(VARBITBYTES(arg1),VARBITBYTES(arg2)); i++)
|
||||
{
|
||||
*r++ = *p1++ ^ *p2++;
|
||||
}
|
||||
|
||||
/* Pad the result */
|
||||
mask = BITMASK << VARBITPAD(result);
|
||||
*r &= mask;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* bitnot
|
||||
* perform a logical NOT on a bit strings.
|
||||
*/
|
||||
bits8 *
|
||||
bitnot (bits8 * arg)
|
||||
{
|
||||
bits8 *result;
|
||||
bits8 *p,
|
||||
*r;
|
||||
bits8 mask;
|
||||
|
||||
if (!PointerIsValid(arg))
|
||||
return (bool) 0;
|
||||
|
||||
result = (bits8 *) palloc(VARSIZE(arg));
|
||||
VARSIZE(result) = VARSIZE(arg);
|
||||
VARBITLEN(result) = VARBITLEN(arg);
|
||||
|
||||
p = (bits8 *) VARBITS(arg);
|
||||
r = (bits8 *) VARBITS(result);
|
||||
for ( ; p < VARBITEND(arg); p++, r++)
|
||||
*r = ~*p;
|
||||
|
||||
/* Pad the result */
|
||||
mask = BITMASK << VARBITPAD(result);
|
||||
*r &= mask;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* bitshiftleft
|
||||
* do a left shift (i.e. to the beginning of the string) of the bit string
|
||||
*/
|
||||
bits8 *
|
||||
bitshiftleft (bits8 * arg, int shft)
|
||||
{
|
||||
int byte_shift, ishift, len;
|
||||
bits8 *result;
|
||||
bits8 *p,
|
||||
*r;
|
||||
|
||||
if (!PointerIsValid(arg))
|
||||
return (bool) 0;
|
||||
|
||||
/* Negative shift is a shift to the right */
|
||||
if (shft < 0)
|
||||
return bitshiftright(arg, -shft);
|
||||
|
||||
result = (bits8 *) palloc(VARSIZE(arg));
|
||||
VARSIZE(result) = VARSIZE(arg);
|
||||
VARBITLEN(result) = VARBITLEN(arg);
|
||||
r = (bits8 *) VARBITS(result);
|
||||
|
||||
byte_shift = shft/BITSPERBYTE;
|
||||
ishift = shft % BITSPERBYTE;
|
||||
p = ((bits8 *) VARBITS(arg)) + byte_shift;
|
||||
|
||||
if (ishift == 0) {
|
||||
/* Special case: we can do a memcpy */
|
||||
len = VARBITBYTES(arg) - byte_shift;
|
||||
memcpy(r, p, len);
|
||||
memset(r+len, 0, byte_shift);
|
||||
} else {
|
||||
for ( ; p < VARBITEND(arg); r++) {
|
||||
*r = *p <<ishift;
|
||||
if ((++p) < VARBITEND(arg))
|
||||
*r |= *p >>(BITSPERBYTE-ishift);
|
||||
}
|
||||
for ( ; r < VARBITEND(result) ; r++ )
|
||||
*r = (bits8) 0;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* bitshiftright
|
||||
* do a right shift (i.e. to the beginning of the string) of the bit string
|
||||
*/
|
||||
bits8 *
|
||||
bitshiftright (bits8 * arg, int shft)
|
||||
{
|
||||
int byte_shift, ishift, len;
|
||||
bits8 *result;
|
||||
bits8 *p,
|
||||
*r;
|
||||
|
||||
if (!PointerIsValid(arg))
|
||||
return (bits8 *) 0;
|
||||
|
||||
/* Negative shift is a shift to the left */
|
||||
if (shft < 0)
|
||||
return bitshiftleft(arg, -shft);
|
||||
|
||||
result = (bits8 *) palloc(VARSIZE(arg));
|
||||
VARSIZE(result) = VARSIZE(arg);
|
||||
VARBITLEN(result) = VARBITLEN(arg);
|
||||
r = (bits8 *) VARBITS(result);
|
||||
|
||||
byte_shift = shft/BITSPERBYTE;
|
||||
ishift = shft % BITSPERBYTE;
|
||||
p = (bits8 *) VARBITS(arg);
|
||||
|
||||
/* Set the first part of the result to 0 */
|
||||
memset(r, 0, byte_shift);
|
||||
|
||||
if (ishift == 0)
|
||||
{
|
||||
/* Special case: we can do a memcpy */
|
||||
len = VARBITBYTES(arg) - byte_shift;
|
||||
memcpy(r+byte_shift, p, len);
|
||||
}
|
||||
else
|
||||
{
|
||||
r += byte_shift;
|
||||
*r = 0; /* Initialise first byte */
|
||||
for ( ; r < VARBITEND(result); p++) {
|
||||
*r |= *p >> ishift;
|
||||
if ((++r) < VARBITEND(result))
|
||||
*r = (*p <<(BITSPERBYTE-ishift)) & BITMASK;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
bool
|
||||
varbiteq (bits8 *arg1, bits8 *arg2)
|
||||
{
|
||||
return biteq(arg1, arg2);
|
||||
}
|
||||
|
||||
bool
|
||||
varbitne (bits8 *arg1, bits8 *arg2)
|
||||
{
|
||||
return bitne(arg1, arg2);
|
||||
}
|
||||
|
||||
bool
|
||||
varbitge (bits8 *arg1, bits8 *arg2)
|
||||
{
|
||||
return bitge(arg1, arg2);
|
||||
}
|
||||
|
||||
bool
|
||||
varbitgt (bits8 *arg1, bits8 *arg2)
|
||||
{
|
||||
return bitgt(arg1, arg2);
|
||||
}
|
||||
|
||||
bool
|
||||
varbitle (bits8 *arg1, bits8 *arg2)
|
||||
{
|
||||
return bitle(arg1, arg2);
|
||||
}
|
||||
|
||||
bool
|
||||
varbitlt (bits8 *arg1, bits8 *arg2)
|
||||
{
|
||||
return bitlt(arg1, arg2);
|
||||
}
|
||||
|
||||
int
|
||||
varbitcmp (bits8 *arg1, bits8 *arg2)
|
||||
{
|
||||
return bitcmp(arg1, arg2);
|
||||
}
|
||||
|
||||
bits8 *
|
||||
varbitand (bits8 * arg1, bits8 * arg2)
|
||||
{
|
||||
return bitand(arg1, arg2);
|
||||
}
|
||||
|
||||
bits8 *
|
||||
varbitor (bits8 * arg1, bits8 * arg2)
|
||||
{
|
||||
return bitor(arg1, arg2);
|
||||
}
|
||||
|
||||
bits8 *
|
||||
varbitxor (bits8 * arg1, bits8 * arg2)
|
||||
{
|
||||
return bitxor(arg1, arg2);
|
||||
}
|
||||
|
||||
bits8 *
|
||||
varbitnot (bits8 * arg)
|
||||
{
|
||||
return bitnot(arg);
|
||||
}
|
||||
|
||||
bits8 *
|
||||
varbitshiftright (bits8 * arg, int shft)
|
||||
{
|
||||
return bitshiftright(arg, shft);
|
||||
}
|
||||
|
||||
bits8 *
|
||||
varbitshiftleft (bits8 * arg, int shft)
|
||||
{
|
||||
return bitshiftleft(arg, shft);
|
||||
}
|
||||
|
||||
bits8 *
|
||||
varbitcat (bits8 *arg1, bits8 *arg2)
|
||||
{
|
||||
return bitcat(arg1, arg2);
|
||||
}
|
||||
|
||||
bits8 *
|
||||
varbitsubstr (bits8 *arg, int32 s, int32 l)
|
||||
{
|
||||
return bitsubstr(arg, s, l);
|
||||
}
|
Reference in New Issue
Block a user