1
0
mirror of https://github.com/tensorchord/pgvecto.rs.git synced 2025-04-21 19:45:54 +03:00
pgvecto.rs/bindings/python/examples/sqlalchemy_example.py
盐粒 Yanli f6e382d0fc
feat: add more ruff rules (#138)
* feat: add more ruff rules

Signed-off-by: 盐粒 Yanli <mail@yanli.one>

* chore: modified readme

Signed-off-by: 盐粒 Yanli <mail@yanli.one>

* rename error class

Signed-off-by: 盐粒 Yanli <mail@yanli.one>

---------

Signed-off-by: 盐粒 Yanli <mail@yanli.one>
2023-11-17 17:47:28 +08:00

71 lines
2.1 KiB
Python

import os
import numpy as np
from sqlalchemy import Integer, String, create_engine, insert, select
from sqlalchemy.orm import DeclarativeBase, Mapped, Session, mapped_column
from pgvecto_rs.sqlalchemy import Vector
URL = "postgresql+psycopg://{username}:{password}@{host}:{port}/{db_name}".format(
port=os.getenv("DB_PORT", "5432"),
host=os.getenv("DB_HOST", "localhost"),
username=os.getenv("DB_USER", "postgres"),
password=os.getenv("DB_PASS", "mysecretpassword"),
db_name=os.getenv("DB_NAME", "postgres"),
)
# Define the ORM model
class Base(DeclarativeBase):
pass
class Document(Base):
__tablename__ = "documents"
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
text: Mapped[str] = mapped_column(String)
embedding: Mapped[np.ndarray] = mapped_column(Vector(3))
def __repr__(self) -> str:
return f"{self.text}: {self.embedding}"
# Connect to the DB and create the table
engine = create_engine(URL)
Document.metadata.create_all(engine)
with Session(engine) as session:
# Insert 3 rows into the table
t1 = insert(Document).values(text="hello world", embedding=[1, 2, 3])
t2 = insert(Document).values(text="hello postgres", embedding=[1.0, 2.0, 4.0])
t3 = insert(Document).values(text="hello pgvecto.rs", embedding=np.array([1, 3, 4]))
for t in [t1, t2, t3]:
session.execute(t)
session.commit()
# Select the row "hello pgvecto.rs"
stmt = select(Document).where(Document.text == "hello pgvecto.rs")
target = session.scalar(stmt)
# Select all the rows and sort them
# by the squared_euclidean_distance to "hello pgvecto.rs"
stmt = select(
Document.text,
Document.embedding.squared_euclidean_distance(target.embedding).label(
"distance",
),
).order_by("distance")
for doc in session.execute(stmt):
print(doc)
# The output will be:
# ```
# ('hello pgvecto.rs', 0.0)
# ('hello postgres', 1.0)
# ('hello world', 2.0)
# ```
# Drop the table
Document.metadata.drop_all(engine)