mirror of
				https://github.com/MariaDB/server.git
				synced 2025-11-03 14:33:32 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			218 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			218 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Copyright (C) 2000 MySQL AB
 | 
						|
 | 
						|
   This program is free software; you can redistribute it and/or modify
 | 
						|
   it under the terms of the GNU General Public License as published by
 | 
						|
   the Free Software Foundation; either version 2 of the License, or
 | 
						|
   (at your option) any later version.
 | 
						|
 | 
						|
   This program is distributed in the hope that it will be useful,
 | 
						|
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
   GNU General Public License for more details.
 | 
						|
 | 
						|
   You should have received a copy of the GNU General Public License
 | 
						|
   along with this program; if not, write to the Free Software
 | 
						|
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */
 | 
						|
 | 
						|
/*
 | 
						|
  qsort implementation optimized for comparison of pointers
 | 
						|
  Inspired by the qsort implementations by Douglas C. Schmidt,
 | 
						|
  and Bentley & McIlroy's "Engineering a Sort Function".
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
#include "mysys_priv.h"
 | 
						|
#ifndef SCO
 | 
						|
#include <m_string.h>
 | 
						|
#endif
 | 
						|
 | 
						|
/* We need to use qsort with 2 different compare functions */
 | 
						|
#ifdef QSORT_EXTRA_CMP_ARGUMENT
 | 
						|
#define CMP(A,B) ((*cmp)(cmp_argument,(A),(B)))
 | 
						|
#else
 | 
						|
#define CMP(A,B) ((*cmp)((A),(B)))
 | 
						|
#endif
 | 
						|
 | 
						|
#define SWAP(A, B, size,swap_ptrs)			\
 | 
						|
do {							\
 | 
						|
   if (swap_ptrs)					\
 | 
						|
   {							\
 | 
						|
     reg1 char **a = (char**) (A), **b = (char**) (B);  \
 | 
						|
     char *tmp = *a; *a++ = *b; *b++ = tmp;		\
 | 
						|
   }							\
 | 
						|
   else							\
 | 
						|
   {							\
 | 
						|
     reg1 char *a = (A), *b = (B);			\
 | 
						|
     reg3 char *end= a+size;				\
 | 
						|
     do							\
 | 
						|
     {							\
 | 
						|
       char tmp = *a; *a++ = *b; *b++ = tmp;		\
 | 
						|
     } while (a < end);					\
 | 
						|
   }							\
 | 
						|
} while (0)
 | 
						|
 | 
						|
/* Put the median in the middle argument */
 | 
						|
#define MEDIAN(low, mid, high)				\
 | 
						|
{							\
 | 
						|
    if (CMP(high,low) < 0)				\
 | 
						|
      SWAP(high, low, size, ptr_cmp);			\
 | 
						|
    if (CMP(mid, low) < 0)				\
 | 
						|
      SWAP(mid, low, size, ptr_cmp);			\
 | 
						|
    else if (CMP(high, mid) < 0)			\
 | 
						|
      SWAP(mid, high, size, ptr_cmp);			\
 | 
						|
}
 | 
						|
 | 
						|
/* The following node is used to store ranges to avoid recursive calls */
 | 
						|
 | 
						|
typedef struct st_stack
 | 
						|
{
 | 
						|
  char *low,*high;
 | 
						|
} stack_node;
 | 
						|
 | 
						|
#define PUSH(LOW,HIGH)  {stack_ptr->low = LOW; stack_ptr++->high = HIGH;}
 | 
						|
#define POP(LOW,HIGH)   {LOW = (--stack_ptr)->low; HIGH = stack_ptr->high;}
 | 
						|
 | 
						|
/* The following stack size is enough for ulong ~0 elements */
 | 
						|
#define STACK_SIZE	(8 * sizeof(unsigned long int))
 | 
						|
#define THRESHOLD_FOR_INSERT_SORT 10
 | 
						|
#if defined(QSORT_TYPE_IS_VOID)
 | 
						|
#define SORT_RETURN return
 | 
						|
#else
 | 
						|
#define SORT_RETURN return 0
 | 
						|
#endif
 | 
						|
 | 
						|
/****************************************************************************
 | 
						|
** 'standard' quicksort with the following extensions:
 | 
						|
**
 | 
						|
** Can be compiled with the qsort2_cmp compare function
 | 
						|
** Store ranges on stack to avoid recursion
 | 
						|
** Use insert sort on small ranges
 | 
						|
** Optimize for sorting of pointers (used often by MySQL)
 | 
						|
** Use median comparison to find partition element
 | 
						|
*****************************************************************************/
 | 
						|
 | 
						|
#ifdef QSORT_EXTRA_CMP_ARGUMENT
 | 
						|
qsort_t qsort2(void *base_ptr, size_t count, size_t size, qsort2_cmp cmp,
 | 
						|
	       void *cmp_argument)
 | 
						|
#else
 | 
						|
qsort_t qsort(void *base_ptr, size_t count, size_t size, qsort_cmp cmp)
 | 
						|
#endif
 | 
						|
{
 | 
						|
  char *low, *high, *pivot;
 | 
						|
  stack_node stack[STACK_SIZE], *stack_ptr;
 | 
						|
  my_bool ptr_cmp;
 | 
						|
  /* Handle the simple case first */
 | 
						|
  /* This will also make the rest of the code simpler */
 | 
						|
  if (count <= 1)
 | 
						|
    SORT_RETURN;
 | 
						|
 | 
						|
  low  = (char*) base_ptr;
 | 
						|
  high = low+ size * (count - 1);
 | 
						|
  stack_ptr = stack + 1;
 | 
						|
#ifdef HAVE_purify
 | 
						|
  /* The first element in the stack will be accessed for the last POP */
 | 
						|
  stack[0].low=stack[0].high=0;
 | 
						|
#endif
 | 
						|
  pivot = (char *) my_alloca((int) size);
 | 
						|
  ptr_cmp= size == sizeof(char*) && !((low - (char*) 0)& (sizeof(char*)-1));
 | 
						|
 | 
						|
  /* The following loop sorts elements between high and low */
 | 
						|
  do
 | 
						|
  {
 | 
						|
    char *low_ptr, *high_ptr, *mid;
 | 
						|
 | 
						|
    count=((size_t) (high - low) / size)+1;
 | 
						|
    /* If count is small, then an insert sort is faster than qsort */
 | 
						|
    if (count < THRESHOLD_FOR_INSERT_SORT)
 | 
						|
    {
 | 
						|
      for (low_ptr = low + size; low_ptr <= high; low_ptr += size)
 | 
						|
      {
 | 
						|
	char *ptr;
 | 
						|
	for (ptr = low_ptr; ptr > low && CMP(ptr - size, ptr) > 0;
 | 
						|
	     ptr -= size)
 | 
						|
	  SWAP(ptr, ptr - size, size, ptr_cmp);
 | 
						|
      }
 | 
						|
      POP(low, high);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Try to find a good middle element */
 | 
						|
    mid= low + size * (count >> 1);
 | 
						|
    if (count > 40)				/* Must be bigger than 24 */
 | 
						|
    {
 | 
						|
      size_t step = size* (count / 8);
 | 
						|
      MEDIAN(low, low + step, low+step*2);
 | 
						|
      MEDIAN(mid - step, mid, mid+step);
 | 
						|
      MEDIAN(high - 2 * step, high-step, high);
 | 
						|
      /* Put best median in 'mid' */
 | 
						|
      MEDIAN(low+step, mid, high-step);
 | 
						|
      low_ptr  = low;
 | 
						|
      high_ptr = high;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      MEDIAN(low, mid, high);
 | 
						|
      /* The low and high argument are already in sorted against 'pivot' */
 | 
						|
      low_ptr  = low + size;
 | 
						|
      high_ptr = high - size;
 | 
						|
    }
 | 
						|
    memcpy(pivot, mid, size);
 | 
						|
 | 
						|
    do
 | 
						|
    {
 | 
						|
      while (CMP(low_ptr, pivot) < 0)
 | 
						|
	low_ptr += size;
 | 
						|
      while (CMP(pivot, high_ptr) < 0)
 | 
						|
	high_ptr -= size;
 | 
						|
 | 
						|
      if (low_ptr < high_ptr)
 | 
						|
      {
 | 
						|
	SWAP(low_ptr, high_ptr, size, ptr_cmp);
 | 
						|
	low_ptr += size;
 | 
						|
	high_ptr -= size;
 | 
						|
      }
 | 
						|
      else 
 | 
						|
      {
 | 
						|
	if (low_ptr == high_ptr)
 | 
						|
	{
 | 
						|
	  low_ptr += size;
 | 
						|
	  high_ptr -= size;
 | 
						|
	}
 | 
						|
	break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    while (low_ptr <= high_ptr);
 | 
						|
 | 
						|
    /*
 | 
						|
      Prepare for next iteration.
 | 
						|
       Skip partitions of size 1 as these doesn't have to be sorted
 | 
						|
       Push the larger partition and sort the smaller one first.
 | 
						|
       This ensures that the stack is keept small.
 | 
						|
    */
 | 
						|
 | 
						|
    if ((int) (high_ptr - low) <= 0)
 | 
						|
    {
 | 
						|
      if ((int) (high - low_ptr) <= 0)
 | 
						|
      {
 | 
						|
	POP(low, high);			/* Nothing more to sort */
 | 
						|
      }
 | 
						|
      else
 | 
						|
	low = low_ptr;			/* Ignore small left part. */
 | 
						|
    }
 | 
						|
    else if ((int) (high - low_ptr) <= 0)
 | 
						|
      high = high_ptr;			/* Ignore small right part. */
 | 
						|
    else if ((high_ptr - low) > (high - low_ptr))
 | 
						|
    {
 | 
						|
      PUSH(low, high_ptr);		/* Push larger left part */
 | 
						|
      low = low_ptr;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      PUSH(low_ptr, high);		/* Push larger right part */
 | 
						|
      high = high_ptr;
 | 
						|
    }
 | 
						|
  } while (stack_ptr > stack);
 | 
						|
  my_afree(pivot);
 | 
						|
  SORT_RETURN;
 | 
						|
}
 |