1
0
mirror of https://github.com/MariaDB/server.git synced 2026-01-06 05:22:24 +03:00
Files
mariadb/storage/ndb/src/ndbapi/NdbEventOperationImpl.cpp
unknown 63aba7076c Bug #18106 Ndb: Online add index together with replication may cause mysqld core
sql/ha_ndbcluster_binlog.cc:
  Bug #18106  	Ndb: Online add index together with replication may cause mysqld core
  - move initialization of Ndb share ndb_values from ndbcluster_binlog_open_table to
    ndbcluster_binlog_init_share so that ndbcluster_binlog_open_table can be used for reinitializing
    after frm change
  - free table share on remote mysqld on online alter (call ndbcluster_binlog_close_table)
  - free share before calling ndb_create_table_from_engine to be able to handle trailing share correctly
  + debug printouts
  + extra nulling of some variables
storage/ndb/src/ndbapi/NdbEventOperationImpl.cpp:
  Bug #18106  	Ndb: Online add index together with replication may cause mysqld core
  - reinitialize event operation rec attrs after online schema change
2006-03-09 15:50:26 +01:00

2447 lines
62 KiB
C++

/* Copyright (C) 2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include <ndb_global.h>
#include <kernel_types.h>
#include "NdbDictionaryImpl.hpp"
#include "API.hpp"
#include <NdbOut.hpp>
#include "NdbApiSignal.hpp"
#include "TransporterFacade.hpp"
#include <signaldata/CreateEvnt.hpp>
#include <signaldata/SumaImpl.hpp>
#include <SimpleProperties.hpp>
#include <Bitmask.hpp>
#include <AttributeHeader.hpp>
#include <AttributeList.hpp>
#include <NdbError.hpp>
#include <BaseString.hpp>
#include <UtilBuffer.hpp>
#include <NdbDictionary.hpp>
#include <Ndb.hpp>
#include "NdbImpl.hpp"
#include "DictCache.hpp"
#include <portlib/NdbMem.h>
#include <NdbRecAttr.hpp>
#include <NdbBlob.hpp>
#include <NdbEventOperation.hpp>
#include "NdbEventOperationImpl.hpp"
#include <signaldata/AlterTable.hpp>
#include <EventLogger.hpp>
extern EventLogger g_eventLogger;
static Gci_container g_empty_gci_container;
static const Uint32 ACTIVE_GCI_DIRECTORY_SIZE = 4;
static const Uint32 ACTIVE_GCI_MASK = ACTIVE_GCI_DIRECTORY_SIZE - 1;
#ifdef VM_TRACE
static void
print_std(const SubTableData * sdata, LinearSectionPtr ptr[3])
{
printf("addr=%p gci=%d op=%d\n", (void*)sdata, sdata->gci, sdata->operation);
for (int i = 0; i <= 2; i++) {
printf("sec=%d addr=%p sz=%d\n", i, (void*)ptr[i].p, ptr[i].sz);
for (int j = 0; j < ptr[i].sz; j++)
printf("%08x ", ptr[i].p[j]);
printf("\n");
}
}
#endif
/*
* Class NdbEventOperationImpl
*
*
*/
//#define EVENT_DEBUG
#ifdef EVENT_DEBUG
#define DBUG_ENTER_EVENT(A) DBUG_ENTER(A)
#define DBUG_RETURN_EVENT(A) DBUG_RETURN(A)
#define DBUG_VOID_RETURN_EVENT DBUG_VOID_RETURN
#define DBUG_PRINT_EVENT(A,B) DBUG_PRINT(A,B)
#define DBUG_DUMP_EVENT(A,B,C) DBUG_DUMP(A,B,C)
#else
#define DBUG_ENTER_EVENT(A)
#define DBUG_RETURN_EVENT(A) return(A)
#define DBUG_VOID_RETURN_EVENT return
#define DBUG_PRINT_EVENT(A,B)
#define DBUG_DUMP_EVENT(A,B,C)
#endif
// todo handle several ndb objects
// todo free allocated data when closing NdbEventBuffer
NdbEventOperationImpl::NdbEventOperationImpl(NdbEventOperation &f,
Ndb *theNdb,
const char* eventName) :
NdbEventOperation(*this),
m_facade(&f),
m_ndb(theNdb),
m_state(EO_ERROR)
{
DBUG_ENTER("NdbEventOperationImpl::NdbEventOperationImpl");
assert(m_ndb != NULL);
NdbDictionary::Dictionary *myDict = m_ndb->getDictionary();
assert(myDict != NULL);
const NdbDictionary::Event *myEvnt = myDict->getEvent(eventName);
if (!myEvnt) { m_error.code= myDict->getNdbError().code; DBUG_VOID_RETURN; }
init(myEvnt->m_impl);
DBUG_VOID_RETURN;
}
NdbEventOperationImpl::NdbEventOperationImpl(Ndb *theNdb,
NdbEventImpl& evnt) :
NdbEventOperation(*this),
m_facade(this),
m_ndb(theNdb),
m_state(EO_ERROR)
{
DBUG_ENTER("NdbEventOperationImpl::NdbEventOperationImpl [evnt]");
init(evnt);
DBUG_VOID_RETURN;
}
void
NdbEventOperationImpl::init(NdbEventImpl& evnt)
{
DBUG_ENTER("NdbEventOperationImpl::init");
m_magic_number = 0;
mi_type = 0;
m_oid = ~(Uint32)0;
m_change_mask = 0;
#ifdef VM_TRACE
m_data_done_count = 0;
m_data_count = 0;
#endif
m_next = 0;
m_prev = 0;
m_eventId = 0;
theFirstPkAttrs[0] = NULL;
theCurrentPkAttrs[0] = NULL;
theFirstPkAttrs[1] = NULL;
theCurrentPkAttrs[1] = NULL;
theFirstDataAttrs[0] = NULL;
theCurrentDataAttrs[0] = NULL;
theFirstDataAttrs[1] = NULL;
theCurrentDataAttrs[1] = NULL;
theBlobList = NULL;
theBlobOpList = NULL;
theMainOp = NULL;
m_data_item= NULL;
m_eventImpl = NULL;
m_custom_data= 0;
m_has_error= 1;
// we should lookup id in Dictionary, TODO
// also make sure we only have one listener on each event
m_eventImpl = &evnt;
m_eventId = m_eventImpl->m_eventId;
m_oid= m_ndb->theImpl->theNdbObjectIdMap.map(this);
m_state= EO_CREATED;
#ifdef ndb_event_stores_merge_events_flag
m_mergeEvents = m_eventImpl->m_mergeEvents;
#else
m_mergeEvents = false;
#endif
m_has_error= 0;
DBUG_PRINT("exit",("this: 0x%x oid: %u", this, m_oid));
DBUG_VOID_RETURN;
}
NdbEventOperationImpl::~NdbEventOperationImpl()
{
DBUG_ENTER("NdbEventOperationImpl::~NdbEventOperationImpl");
m_magic_number= 0;
stop();
// m_bufferHandle->dropSubscribeEvent(m_bufferId);
; // ToDo? We should send stop signal here
m_ndb->theImpl->theNdbObjectIdMap.unmap(m_oid, this);
DBUG_PRINT("exit",("this: %p/%p oid: %u main: %p",
this, m_facade, m_oid, theMainOp));
if (m_eventImpl)
{
delete m_eventImpl->m_facade;
m_eventImpl= 0;
}
DBUG_VOID_RETURN;
}
NdbEventOperation::State
NdbEventOperationImpl::getState()
{
return m_state;
}
NdbRecAttr*
NdbEventOperationImpl::getValue(const char *colName, char *aValue, int n)
{
DBUG_ENTER("NdbEventOperationImpl::getValue");
if (m_state != EO_CREATED) {
ndbout_c("NdbEventOperationImpl::getValue may only be called between "
"instantiation and execute()");
DBUG_RETURN(NULL);
}
NdbColumnImpl *tAttrInfo = m_eventImpl->m_tableImpl->getColumn(colName);
if (tAttrInfo == NULL) {
ndbout_c("NdbEventOperationImpl::getValue attribute %s not found",colName);
DBUG_RETURN(NULL);
}
DBUG_RETURN(NdbEventOperationImpl::getValue(tAttrInfo, aValue, n));
}
NdbRecAttr*
NdbEventOperationImpl::getValue(const NdbColumnImpl *tAttrInfo, char *aValue, int n)
{
DBUG_ENTER("NdbEventOperationImpl::getValue");
// Insert Attribute Id into ATTRINFO part.
NdbRecAttr **theFirstAttr;
NdbRecAttr **theCurrentAttr;
if (tAttrInfo->getPrimaryKey())
{
theFirstAttr = &theFirstPkAttrs[n];
theCurrentAttr = &theCurrentPkAttrs[n];
}
else
{
theFirstAttr = &theFirstDataAttrs[n];
theCurrentAttr = &theCurrentDataAttrs[n];
}
/************************************************************************
* Get a Receive Attribute object and link it into the operation object.
************************************************************************/
NdbRecAttr *tAttr = m_ndb->getRecAttr();
if (tAttr == NULL) {
exit(-1);
//setErrorCodeAbort(4000);
DBUG_RETURN(NULL);
}
/**********************************************************************
* Now set the attribute identity and the pointer to the data in
* the RecAttr object
* Also set attribute size, array size and attribute type
********************************************************************/
if (tAttr->setup(tAttrInfo, aValue)) {
//setErrorCodeAbort(4000);
m_ndb->releaseRecAttr(tAttr);
exit(-1);
DBUG_RETURN(NULL);
}
//theErrorLine++;
tAttr->setUNDEFINED();
// We want to keep the list sorted to make data insertion easier later
if (*theFirstAttr == NULL) {
*theFirstAttr = tAttr;
*theCurrentAttr = tAttr;
tAttr->next(NULL);
} else {
Uint32 tAttrId = tAttrInfo->m_attrId;
if (tAttrId > (*theCurrentAttr)->attrId()) { // right order
(*theCurrentAttr)->next(tAttr);
tAttr->next(NULL);
*theCurrentAttr = tAttr;
} else if ((*theFirstAttr)->next() == NULL || // only one in list
(*theFirstAttr)->attrId() > tAttrId) {// or first
tAttr->next(*theFirstAttr);
*theFirstAttr = tAttr;
} else { // at least 2 in list and not first and not last
NdbRecAttr *p = *theFirstAttr;
NdbRecAttr *p_next = p->next();
while (tAttrId > p_next->attrId()) {
p = p_next;
p_next = p->next();
}
if (tAttrId == p_next->attrId()) { // Using same attribute twice
tAttr->release(); // do I need to do this?
m_ndb->releaseRecAttr(tAttr);
exit(-1);
DBUG_RETURN(NULL);
}
// this is it, between p and p_next
p->next(tAttr);
tAttr->next(p_next);
}
}
DBUG_RETURN(tAttr);
}
NdbBlob*
NdbEventOperationImpl::getBlobHandle(const char *colName, int n)
{
DBUG_ENTER("NdbEventOperationImpl::getBlobHandle (colName)");
assert(m_mergeEvents);
if (m_state != EO_CREATED) {
ndbout_c("NdbEventOperationImpl::getBlobHandle may only be called between "
"instantiation and execute()");
DBUG_RETURN(NULL);
}
NdbColumnImpl *tAttrInfo = m_eventImpl->m_tableImpl->getColumn(colName);
if (tAttrInfo == NULL) {
ndbout_c("NdbEventOperationImpl::getBlobHandle attribute %s not found",colName);
DBUG_RETURN(NULL);
}
NdbBlob* bh = getBlobHandle(tAttrInfo, n);
DBUG_RETURN(bh);
}
NdbBlob*
NdbEventOperationImpl::getBlobHandle(const NdbColumnImpl *tAttrInfo, int n)
{
DBUG_ENTER("NdbEventOperationImpl::getBlobHandle");
DBUG_PRINT("info", ("attr=%s post/pre=%d", tAttrInfo->m_name.c_str(), n));
// as in NdbOperation, create only one instance
NdbBlob* tBlob = theBlobList;
NdbBlob* tLastBlob = NULL;
while (tBlob != NULL) {
if (tBlob->theColumn == tAttrInfo && tBlob->theEventBlobVersion == n)
DBUG_RETURN(tBlob);
tLastBlob = tBlob;
tBlob = tBlob->theNext;
}
NdbEventOperationImpl* tBlobOp = NULL;
const bool is_tinyblob = (tAttrInfo->getPartSize() == 0);
assert(is_tinyblob == (tAttrInfo->m_blobTable == NULL));
if (! is_tinyblob) {
// blob event name
char bename[MAX_TAB_NAME_SIZE];
NdbBlob::getBlobEventName(bename, m_eventImpl, tAttrInfo);
// find blob event op if any (it serves both post and pre handles)
tBlobOp = theBlobOpList;
NdbEventOperationImpl* tLastBlopOp = NULL;
while (tBlobOp != NULL) {
if (strcmp(tBlobOp->m_eventImpl->m_name.c_str(), bename) == 0) {
break;
}
tLastBlopOp = tBlobOp;
tBlobOp = tBlobOp->m_next;
}
DBUG_PRINT("info", ("%s blob event op for %s",
tBlobOp ? " reuse" : " create", bename));
// create blob event op if not found
if (tBlobOp == NULL) {
// get blob event
NdbDictionaryImpl& dict =
NdbDictionaryImpl::getImpl(*m_ndb->getDictionary());
NdbEventImpl* blobEvnt =
dict.getBlobEvent(*this->m_eventImpl, tAttrInfo->m_column_no);
if (blobEvnt == NULL) {
m_error.code = dict.m_error.code;
DBUG_RETURN(NULL);
}
// create blob event operation
tBlobOp =
m_ndb->theEventBuffer->createEventOperation(*blobEvnt, m_error);
if (tBlobOp == NULL)
DBUG_RETURN(NULL);
// pointer to main table op
tBlobOp->theMainOp = this;
tBlobOp->m_mergeEvents = m_mergeEvents;
// to hide blob op it is linked under main op, not under m_ndb
if (tLastBlopOp == NULL)
theBlobOpList = tBlobOp;
else
tLastBlopOp->m_next = tBlobOp;
tBlobOp->m_next = NULL;
}
}
tBlob = m_ndb->getNdbBlob();
if (tBlob == NULL) {
m_error.code = m_ndb->getNdbError().code;
DBUG_RETURN(NULL);
}
// calls getValue on inline and blob part
if (tBlob->atPrepare(this, tBlobOp, tAttrInfo, n) == -1) {
m_error.code = tBlob->getNdbError().code;
m_ndb->releaseNdbBlob(tBlob);
DBUG_RETURN(NULL);
}
// add to list end
if (tLastBlob == NULL)
theBlobList = tBlob;
else
tLastBlob->theNext = tBlob;
tBlob->theNext = NULL;
DBUG_RETURN(tBlob);
}
int
NdbEventOperationImpl::readBlobParts(char* buf, NdbBlob* blob,
Uint32 part, Uint32 count)
{
DBUG_ENTER_EVENT("NdbEventOperationImpl::readBlobParts");
DBUG_PRINT_EVENT("info", ("part=%u count=%u post/pre=%d",
part, count, blob->theEventBlobVersion));
NdbEventOperationImpl* blob_op = blob->theBlobEventOp;
EventBufData* main_data = m_data_item;
DBUG_PRINT_EVENT("info", ("main_data=%p", main_data));
assert(main_data != NULL);
// search for blob parts list head
EventBufData* head;
assert(m_data_item != NULL);
head = m_data_item->m_next_blob;
while (head != NULL)
{
if (head->m_event_op == blob_op)
{
DBUG_PRINT_EVENT("info", ("found blob parts head %p", head));
break;
}
head = head->m_next_blob;
}
Uint32 nparts = 0;
EventBufData* data = head;
// XXX optimize using part no ordering
while (data != NULL)
{
/*
* Hack part no directly out of buffer since it is not returned
* in pre data (PK buglet). For part data use receive_event().
* This means extra copy.
*/
blob_op->m_data_item = data;
int r = blob_op->receive_event();
assert(r > 0);
Uint32 no = data->get_blob_part_no();
Uint32 sz = blob->thePartSize;
const char* src = blob->theBlobEventDataBuf.data;
DBUG_PRINT_EVENT("info", ("part_data=%p part no=%u part sz=%u", data, no, sz));
if (part <= no && no < part + count)
{
DBUG_PRINT_EVENT("info", ("part within read range"));
memcpy(buf + (no - part) * sz, src, sz);
nparts++;
}
else
{
DBUG_PRINT_EVENT("info", ("part outside read range"));
}
data = data->m_next;
}
assert(nparts == count);
DBUG_RETURN_EVENT(0);
}
int
NdbEventOperationImpl::execute()
{
DBUG_ENTER("NdbEventOperationImpl::execute");
m_ndb->theEventBuffer->add_drop_lock();
int r = execute_nolock();
m_ndb->theEventBuffer->add_drop_unlock();
DBUG_RETURN(r);
}
int
NdbEventOperationImpl::execute_nolock()
{
DBUG_ENTER("NdbEventOperationImpl::execute_nolock");
DBUG_PRINT("info", ("this=%p type=%s", this, !theMainOp ? "main" : "blob"));
NdbDictionary::Dictionary *myDict = m_ndb->getDictionary();
if (!myDict) {
m_error.code= m_ndb->getNdbError().code;
DBUG_RETURN(-1);
}
if (theFirstPkAttrs[0] == NULL &&
theFirstDataAttrs[0] == NULL) { // defaults to get all
}
m_magic_number= NDB_EVENT_OP_MAGIC_NUMBER;
m_state= EO_EXECUTING;
mi_type= m_eventImpl->mi_type;
m_ndb->theEventBuffer->add_op();
int r= NdbDictionaryImpl::getImpl(*myDict).executeSubscribeEvent(*this);
if (r == 0) {
if (theMainOp == NULL) {
DBUG_PRINT("info", ("execute blob ops"));
NdbEventOperationImpl* blob_op = theBlobOpList;
while (blob_op != NULL) {
r = blob_op->execute_nolock();
if (r != 0)
break;
blob_op = blob_op->m_next;
}
}
if (r == 0)
DBUG_RETURN(0);
}
//Error
m_state= EO_ERROR;
mi_type= 0;
m_magic_number= 0;
m_error.code= myDict->getNdbError().code;
m_ndb->theEventBuffer->remove_op();
DBUG_RETURN(r);
}
int
NdbEventOperationImpl::stop()
{
DBUG_ENTER("NdbEventOperationImpl::stop");
int i;
for (i=0 ; i<2; i++) {
NdbRecAttr *p = theFirstPkAttrs[i];
while (p) {
NdbRecAttr *p_next = p->next();
m_ndb->releaseRecAttr(p);
p = p_next;
}
theFirstPkAttrs[i]= 0;
}
for (i=0 ; i<2; i++) {
NdbRecAttr *p = theFirstDataAttrs[i];
while (p) {
NdbRecAttr *p_next = p->next();
m_ndb->releaseRecAttr(p);
p = p_next;
}
theFirstDataAttrs[i]= 0;
}
if (m_state != EO_EXECUTING)
{
DBUG_RETURN(-1);
}
NdbDictionary::Dictionary *myDict = m_ndb->getDictionary();
if (!myDict) {
m_error.code= m_ndb->getNdbError().code;
DBUG_RETURN(-1);
}
m_ndb->theEventBuffer->add_drop_lock();
int r= NdbDictionaryImpl::getImpl(*myDict).stopSubscribeEvent(*this);
m_ndb->theEventBuffer->remove_op();
m_state= EO_DROPPED;
mi_type= 0;
if (r == 0) {
m_ndb->theEventBuffer->add_drop_unlock();
DBUG_RETURN(0);
}
//Error
m_error.code= NdbDictionaryImpl::getImpl(*myDict).m_error.code;
m_state= EO_ERROR;
m_ndb->theEventBuffer->add_drop_unlock();
DBUG_RETURN(r);
}
const bool NdbEventOperationImpl::tableNameChanged() const
{
return (bool)AlterTableReq::getNameFlag(m_change_mask);
}
const bool NdbEventOperationImpl::tableFrmChanged() const
{
return (bool)AlterTableReq::getFrmFlag(m_change_mask);
}
const bool NdbEventOperationImpl::tableFragmentationChanged() const
{
return (bool)AlterTableReq::getFragDataFlag(m_change_mask);
}
const bool NdbEventOperationImpl::tableRangeListChanged() const
{
return (bool)AlterTableReq::getRangeListFlag(m_change_mask);
}
Uint64
NdbEventOperationImpl::getGCI()
{
return m_data_item->sdata->gci;
}
Uint64
NdbEventOperationImpl::getLatestGCI()
{
return m_ndb->theEventBuffer->getLatestGCI();
}
bool
NdbEventOperationImpl::execSUB_TABLE_DATA(NdbApiSignal * signal,
LinearSectionPtr ptr[3])
{
DBUG_ENTER("NdbEventOperationImpl::execSUB_TABLE_DATA");
const SubTableData * const sdata=
CAST_CONSTPTR(SubTableData, signal->getDataPtr());
if(signal->isFirstFragment()){
m_fragmentId = signal->getFragmentId();
m_buffer.grow(4 * sdata->totalLen);
} else {
if(m_fragmentId != signal->getFragmentId()){
abort();
}
}
const Uint32 i = SubTableData::DICT_TAB_INFO;
DBUG_PRINT("info", ("Accumulated %u bytes for fragment %u",
4 * ptr[i].sz, m_fragmentId));
m_buffer.append(ptr[i].p, 4 * ptr[i].sz);
if(!signal->isLastFragment()){
DBUG_RETURN(FALSE);
}
DBUG_RETURN(TRUE);
}
int
NdbEventOperationImpl::receive_event()
{
DBUG_ENTER_EVENT("NdbEventOperationImpl::receive_event");
Uint32 operation= (Uint32)m_data_item->sdata->operation;
DBUG_PRINT_EVENT("info",("sdata->operation %u",operation));
if (operation == NdbDictionary::Event::_TE_ALTER)
{
// Parse the new table definition and
// create a table object
NdbDictionary::Dictionary *myDict = m_ndb->getDictionary();
NdbDictionaryImpl *dict = & NdbDictionaryImpl::getImpl(*myDict);
NdbError error;
NdbDictInterface dif(error);
NdbTableImpl *at;
m_change_mask = m_data_item->sdata->changeMask;
error.code = dif.parseTableInfo(&at,
(Uint32*)m_buffer.get_data(),
m_buffer.length() / 4,
true);
m_buffer.clear();
if (at)
at->buildColumnHash();
else
{
DBUG_PRINT_EVENT("info", ("Failed to parse DictTabInfo error %u",
error.code));
DBUG_RETURN_EVENT(1);
}
NdbTableImpl *tmp_table_impl= m_eventImpl->m_tableImpl;
m_eventImpl->m_tableImpl = at;
DBUG_PRINT("info", ("switching table impl 0x%x -> 0x%x",
tmp_table_impl, at));
// change the rec attrs to refer to the new table object
int i;
for (i = 0; i < 2; i++)
{
NdbRecAttr *p = theFirstPkAttrs[i];
while (p)
{
int no = p->getColumn()->getColumnNo();
NdbColumnImpl *tAttrInfo = at->getColumn(no);
DBUG_PRINT("info", ("rec_attr: 0x%x "
"switching column impl 0x%x -> 0x%x",
p, p->m_column, tAttrInfo));
p->m_column = tAttrInfo;
p = p->next();
}
}
for (i = 0; i < 2; i++)
{
NdbRecAttr *p = theFirstDataAttrs[i];
while (p)
{
int no = p->getColumn()->getColumnNo();
NdbColumnImpl *tAttrInfo = at->getColumn(no);
DBUG_PRINT("info", ("rec_attr: 0x%x "
"switching column impl 0x%x -> 0x%x",
p, p->m_column, tAttrInfo));
p->m_column = tAttrInfo;
p = p->next();
}
}
if (tmp_table_impl)
delete tmp_table_impl;
}
if (unlikely(operation >= NdbDictionary::Event::_TE_FIRST_NON_DATA_EVENT))
{
DBUG_RETURN_EVENT(1);
}
// now move the data into the RecAttrs
int is_update= operation == NdbDictionary::Event::_TE_UPDATE;
Uint32 *aAttrPtr = m_data_item->ptr[0].p;
Uint32 *aAttrEndPtr = aAttrPtr + m_data_item->ptr[0].sz;
Uint32 *aDataPtr = m_data_item->ptr[1].p;
DBUG_DUMP_EVENT("after",(char*)m_data_item->ptr[1].p, m_data_item->ptr[1].sz*4);
DBUG_DUMP_EVENT("before",(char*)m_data_item->ptr[2].p, m_data_item->ptr[2].sz*4);
// copy data into the RecAttr's
// we assume that the respective attribute lists are sorted
// first the pk's
{
NdbRecAttr *tAttr= theFirstPkAttrs[0];
NdbRecAttr *tAttr1= theFirstPkAttrs[1];
while(tAttr)
{
assert(aAttrPtr < aAttrEndPtr);
unsigned tDataSz= AttributeHeader(*aAttrPtr).getByteSize();
assert(tAttr->attrId() ==
AttributeHeader(*aAttrPtr).getAttributeId());
receive_data(tAttr, aDataPtr, tDataSz);
if (is_update)
receive_data(tAttr1, aDataPtr, tDataSz);
else
tAttr1->setUNDEFINED(); // do not leave unspecified
tAttr1= tAttr1->next();
// next
aAttrPtr++;
aDataPtr+= (tDataSz + 3) >> 2;
tAttr= tAttr->next();
}
}
NdbRecAttr *tWorkingRecAttr = theFirstDataAttrs[0];
Uint32 tRecAttrId;
Uint32 tAttrId;
Uint32 tDataSz;
int hasSomeData=0;
while ((aAttrPtr < aAttrEndPtr) && (tWorkingRecAttr != NULL)) {
tRecAttrId = tWorkingRecAttr->attrId();
tAttrId = AttributeHeader(*aAttrPtr).getAttributeId();
tDataSz = AttributeHeader(*aAttrPtr).getByteSize();
while (tAttrId > tRecAttrId) {
DBUG_PRINT_EVENT("info",("undef [%u] %u 0x%x [%u] 0x%x",
tAttrId, tDataSz, *aDataPtr, tRecAttrId, aDataPtr));
tWorkingRecAttr->setUNDEFINED();
tWorkingRecAttr = tWorkingRecAttr->next();
if (tWorkingRecAttr == NULL)
break;
tRecAttrId = tWorkingRecAttr->attrId();
}
if (tWorkingRecAttr == NULL)
break;
if (tAttrId == tRecAttrId) {
hasSomeData++;
DBUG_PRINT_EVENT("info",("set [%u] %u 0x%x [%u] 0x%x",
tAttrId, tDataSz, *aDataPtr, tRecAttrId, aDataPtr));
receive_data(tWorkingRecAttr, aDataPtr, tDataSz);
tWorkingRecAttr = tWorkingRecAttr->next();
}
aAttrPtr++;
aDataPtr += (tDataSz + 3) >> 2;
}
while (tWorkingRecAttr != NULL) {
tRecAttrId = tWorkingRecAttr->attrId();
//printf("set undefined [%u] %u %u [%u]\n",
// tAttrId, tDataSz, *aDataPtr, tRecAttrId);
tWorkingRecAttr->setUNDEFINED();
tWorkingRecAttr = tWorkingRecAttr->next();
}
tWorkingRecAttr = theFirstDataAttrs[1];
aDataPtr = m_data_item->ptr[2].p;
Uint32 *aDataEndPtr = aDataPtr + m_data_item->ptr[2].sz;
while ((aDataPtr < aDataEndPtr) && (tWorkingRecAttr != NULL)) {
tRecAttrId = tWorkingRecAttr->attrId();
tAttrId = AttributeHeader(*aDataPtr).getAttributeId();
tDataSz = AttributeHeader(*aDataPtr).getByteSize();
aDataPtr++;
while (tAttrId > tRecAttrId) {
tWorkingRecAttr->setUNDEFINED();
tWorkingRecAttr = tWorkingRecAttr->next();
if (tWorkingRecAttr == NULL)
break;
tRecAttrId = tWorkingRecAttr->attrId();
}
if (tWorkingRecAttr == NULL)
break;
if (tAttrId == tRecAttrId) {
assert(!m_eventImpl->m_tableImpl->getColumn(tRecAttrId)->getPrimaryKey());
hasSomeData++;
receive_data(tWorkingRecAttr, aDataPtr, tDataSz);
tWorkingRecAttr = tWorkingRecAttr->next();
}
aDataPtr += (tDataSz + 3) >> 2;
}
while (tWorkingRecAttr != NULL) {
tWorkingRecAttr->setUNDEFINED();
tWorkingRecAttr = tWorkingRecAttr->next();
}
if (hasSomeData || !is_update)
{
DBUG_RETURN_EVENT(1);
}
DBUG_RETURN_EVENT(0);
}
NdbDictionary::Event::TableEvent
NdbEventOperationImpl::getEventType()
{
return (NdbDictionary::Event::TableEvent)
(1 << (unsigned)m_data_item->sdata->operation);
}
void
NdbEventOperationImpl::print()
{
int i;
ndbout << "EventId " << m_eventId << "\n";
for (i = 0; i < 2; i++) {
NdbRecAttr *p = theFirstPkAttrs[i];
ndbout << " %u " << i;
while (p) {
ndbout << " : " << p->attrId() << " = " << *p;
p = p->next();
}
ndbout << "\n";
}
for (i = 0; i < 2; i++) {
NdbRecAttr *p = theFirstDataAttrs[i];
ndbout << " %u " << i;
while (p) {
ndbout << " : " << p->attrId() << " = " << *p;
p = p->next();
}
ndbout << "\n";
}
}
void
NdbEventOperationImpl::printAll()
{
Uint32 *aAttrPtr = m_data_item->ptr[0].p;
Uint32 *aAttrEndPtr = aAttrPtr + m_data_item->ptr[0].sz;
Uint32 *aDataPtr = m_data_item->ptr[1].p;
//tRecAttr->setup(tAttrInfo, aValue)) {
Uint32 tAttrId;
Uint32 tDataSz;
for (; aAttrPtr < aAttrEndPtr; ) {
tAttrId = AttributeHeader(*aAttrPtr).getAttributeId();
tDataSz = AttributeHeader(*aAttrPtr).getDataSize();
aAttrPtr++;
aDataPtr += tDataSz;
}
}
/*
* Class NdbEventBuffer
* Each Ndb object has a Object.
*/
// ToDo ref count this so it get's destroyed
NdbMutex *NdbEventBuffer::p_add_drop_mutex= 0;
NdbEventBuffer::NdbEventBuffer(Ndb *ndb) :
m_system_nodes(ndb->theImpl->theNoOfDBnodes),
m_ndb(ndb),
m_latestGCI(0),
m_total_alloc(0),
m_free_thresh(10),
m_min_free_thresh(10),
m_max_free_thresh(100),
m_gci_slip_thresh(3),
m_dropped_ev_op(0),
m_active_op_count(0)
{
#ifdef VM_TRACE
m_latest_command= "NdbEventBuffer::NdbEventBuffer";
#endif
if ((p_cond = NdbCondition_Create()) == NULL) {
ndbout_c("NdbEventHandle: NdbCondition_Create() failed");
exit(-1);
}
m_mutex= ndb->theImpl->theWaiter.m_mutex;
lock();
if (p_add_drop_mutex == 0)
{
if ((p_add_drop_mutex = NdbMutex_Create()) == NULL) {
ndbout_c("NdbEventBuffer: NdbMutex_Create() failed");
exit(-1);
}
}
unlock();
// ToDo set event buffer size
// pre allocate event data array
m_sz= 0;
#ifdef VM_TRACE
m_free_data_count= 0;
#endif
m_free_data= 0;
m_free_data_sz= 0;
// initialize lists
bzero(&g_empty_gci_container, sizeof(Gci_container));
init_gci_containers();
}
NdbEventBuffer::~NdbEventBuffer()
{
// todo lock? what if receive thread writes here?
for (unsigned j= 0; j < m_allocated_data.size(); j++)
{
unsigned sz= m_allocated_data[j]->sz;
EventBufData *data= m_allocated_data[j]->data;
EventBufData *end_data= data+sz;
for (; data < end_data; data++)
{
if (data->sdata)
NdbMem_Free(data->sdata);
}
NdbMem_Free((char*)m_allocated_data[j]);
}
NdbCondition_Destroy(p_cond);
lock();
if (p_add_drop_mutex)
{
NdbMutex_Destroy(p_add_drop_mutex);
p_add_drop_mutex = 0;
}
unlock();
}
void
NdbEventBuffer::add_op()
{
if(m_active_op_count == 0)
{
init_gci_containers();
}
m_active_op_count++;
}
void
NdbEventBuffer::remove_op()
{
m_active_op_count--;
}
void
NdbEventBuffer::init_gci_containers()
{
bzero(&m_complete_data, sizeof(m_complete_data));
m_latest_complete_GCI = m_latestGCI = 0;
m_active_gci.clear();
m_active_gci.fill(2 * ACTIVE_GCI_DIRECTORY_SIZE - 1, g_empty_gci_container);
}
int NdbEventBuffer::expand(unsigned sz)
{
unsigned alloc_size=
sizeof(EventBufData_chunk) +(sz-1)*sizeof(EventBufData);
EventBufData_chunk *chunk_data=
(EventBufData_chunk *)NdbMem_Allocate(alloc_size);
chunk_data->sz= sz;
m_allocated_data.push_back(chunk_data);
EventBufData *data= chunk_data->data;
EventBufData *end_data= data+sz;
EventBufData *last_data= m_free_data;
bzero((void*)data, sz*sizeof(EventBufData));
for (; data < end_data; data++)
{
data->m_next= last_data;
last_data= data;
}
m_free_data= last_data;
m_sz+= sz;
#ifdef VM_TRACE
m_free_data_count+= sz;
#endif
return 0;
}
int
NdbEventBuffer::pollEvents(int aMillisecondNumber, Uint64 *latestGCI)
{
int ret= 1;
#ifdef VM_TRACE
const char *m_latest_command_save= m_latest_command;
m_latest_command= "NdbEventBuffer::pollEvents";
#endif
NdbMutex_Lock(m_mutex);
NdbEventOperationImpl *ev_op= move_data();
if (unlikely(ev_op == 0 && aMillisecondNumber))
{
NdbCondition_WaitTimeout(p_cond, m_mutex, aMillisecondNumber);
ev_op= move_data();
if (unlikely(ev_op == 0))
ret= 0;
}
if (latestGCI)
*latestGCI= m_latestGCI;
#ifdef VM_TRACE
if (ev_op)
{
// m_mutex is locked
// update event ops data counters
ev_op->m_data_count-= ev_op->m_data_done_count;
ev_op->m_data_done_count= 0;
}
m_latest_command= m_latest_command_save;
#endif
NdbMutex_Unlock(m_mutex); // we have moved the data
return ret;
}
NdbEventOperation *
NdbEventBuffer::nextEvent()
{
DBUG_ENTER_EVENT("NdbEventBuffer::nextEvent");
#ifdef VM_TRACE
const char *m_latest_command_save= m_latest_command;
#endif
if (m_used_data.m_count > 1024)
{
#ifdef VM_TRACE
m_latest_command= "NdbEventBuffer::nextEvent (lock)";
#endif
NdbMutex_Lock(m_mutex);
// return m_used_data to m_free_data
free_list(m_used_data);
NdbMutex_Unlock(m_mutex);
}
#ifdef VM_TRACE
m_latest_command= "NdbEventBuffer::nextEvent";
#endif
EventBufData *data;
while ((data= m_available_data.m_head))
{
NdbEventOperationImpl *op= data->m_event_op;
DBUG_PRINT_EVENT("info", ("available data=%p op=%p", data, op));
// blob table ops must not be seen at this level
assert(op->theMainOp == NULL);
// set NdbEventOperation data
op->m_data_item= data;
// remove item from m_available_data
m_available_data.remove_first();
// add it to used list
m_used_data.append(data);
#ifdef VM_TRACE
op->m_data_done_count++;
#endif
// NUL event is not returned
if (data->sdata->operation == NdbDictionary::Event::_TE_NUL)
{
DBUG_PRINT_EVENT("info", ("skip _TE_NUL"));
continue;
}
int r= op->receive_event();
if (r > 0)
{
if (op->m_state == NdbEventOperation::EO_EXECUTING)
{
#ifdef VM_TRACE
m_latest_command= m_latest_command_save;
#endif
NdbBlob* tBlob = op->theBlobList;
while (tBlob != NULL)
{
(void)tBlob->atNextEvent();
tBlob = tBlob->theNext;
}
DBUG_RETURN_EVENT(op->m_facade);
}
// the next event belonged to an event op that is no
// longer valid, skip to next
continue;
}
#ifdef VM_TRACE
m_latest_command= m_latest_command_save;
#endif
}
m_error.code= 0;
#ifdef VM_TRACE
m_latest_command= m_latest_command_save;
#endif
DBUG_RETURN_EVENT(0);
}
NdbEventOperationImpl*
NdbEventBuffer::getGCIEventOperations(Uint32* iter, Uint32* event_types)
{
if (*iter < m_available_data.m_gci_op_count)
{
EventBufData_list::Gci_op g = m_available_data.m_gci_op_list[(*iter)++];
if (event_types != NULL)
*event_types = g.event_types;
return g.op;
}
return NULL;
}
void
NdbEventBuffer::lock()
{
NdbMutex_Lock(m_mutex);
}
void
NdbEventBuffer::unlock()
{
NdbMutex_Unlock(m_mutex);
}
void
NdbEventBuffer::add_drop_lock()
{
NdbMutex_Lock(p_add_drop_mutex);
}
void
NdbEventBuffer::add_drop_unlock()
{
NdbMutex_Unlock(p_add_drop_mutex);
}
static
NdbOut&
operator<<(NdbOut& out, const Gci_container& gci)
{
out << "[ GCI: " << gci.m_gci
<< " state: " << hex << gci.m_state
<< " head: " << hex << gci.m_data.m_head
<< " tail: " << hex << gci.m_data.m_tail
#ifdef VM_TRACE
<< " cnt: " << dec << gci.m_data.m_count
#endif
<< " gcp: " << dec << gci.m_gcp_complete_rep_count
<< "]";
return out;
}
static
Gci_container*
find_bucket_chained(Vector<Gci_container> * active, Uint64 gci)
{
Uint32 pos = (gci & ACTIVE_GCI_MASK);
Gci_container *bucket= active->getBase() + pos;
if(gci > bucket->m_gci)
{
Gci_container* move;
Uint32 move_pos = pos + ACTIVE_GCI_DIRECTORY_SIZE;
do
{
active->fill(move_pos, g_empty_gci_container);
bucket = active->getBase() + pos; // Needs to recomputed after fill
move = active->getBase() + move_pos;
if(move->m_gcp_complete_rep_count == 0)
{
memcpy(move, bucket, sizeof(Gci_container));
bzero(bucket, sizeof(Gci_container));
bucket->m_gci = gci;
bucket->m_gcp_complete_rep_count = ~(Uint32)0;
return bucket;
}
move_pos += ACTIVE_GCI_DIRECTORY_SIZE;
} while(true);
}
else /** gci < bucket->m_gci */
{
Uint32 size = active->size() - ACTIVE_GCI_DIRECTORY_SIZE;
do
{
pos += ACTIVE_GCI_DIRECTORY_SIZE;
bucket += ACTIVE_GCI_DIRECTORY_SIZE;
if(bucket->m_gci == gci)
return bucket;
} while(pos < size);
return 0;
}
}
inline
Gci_container*
find_bucket(Vector<Gci_container> * active, Uint64 gci)
{
Uint32 pos = (gci & ACTIVE_GCI_MASK);
Gci_container *bucket= active->getBase() + pos;
if(likely(gci == bucket->m_gci))
return bucket;
return find_bucket_chained(active,gci);
}
void
NdbEventBuffer::execSUB_GCP_COMPLETE_REP(const SubGcpCompleteRep * const rep)
{
if (unlikely(m_active_op_count == 0))
{
return;
}
DBUG_ENTER_EVENT("NdbEventBuffer::execSUB_GCP_COMPLETE_REP");
const Uint64 gci= rep->gci;
const Uint32 cnt= rep->gcp_complete_rep_count;
Gci_container *bucket = find_bucket(&m_active_gci, gci);
if (unlikely(bucket == 0))
{
/**
* Already completed GCI...
* Possible in case of resend during NF handling
*/
#ifdef VM_TRACE
ndbout << "bucket == 0, gci:" << gci
<< " complete: " << m_complete_data << endl;
for(Uint32 i = 0; i<m_active_gci.size(); i++)
{
ndbout << i << " - " << m_active_gci[i] << endl;
}
#endif
DBUG_VOID_RETURN_EVENT;
}
Uint32 old_cnt = bucket->m_gcp_complete_rep_count;
if(unlikely(old_cnt == ~(Uint32)0))
{
old_cnt = m_system_nodes;
}
assert(old_cnt >= cnt);
bucket->m_gcp_complete_rep_count = old_cnt - cnt;
if(old_cnt == cnt)
{
if(likely(gci == m_latestGCI + 1 || m_latestGCI == 0))
{
m_latestGCI = m_complete_data.m_gci = gci; // before reportStatus
if(!bucket->m_data.is_empty())
{
#ifdef VM_TRACE
assert(bucket->m_data.m_count);
#endif
m_complete_data.m_data.append(bucket->m_data);
}
reportStatus();
bzero(bucket, sizeof(Gci_container));
bucket->m_gci = gci + ACTIVE_GCI_DIRECTORY_SIZE;
bucket->m_gcp_complete_rep_count = m_system_nodes;
if(unlikely(m_latest_complete_GCI > gci))
{
complete_outof_order_gcis();
}
// signal that somethings happened
NdbCondition_Signal(p_cond);
}
else
{
/** out of order something */
ndbout_c("out of order bucket: %d gci: %lld m_latestGCI: %lld",
bucket-m_active_gci.getBase(), gci, m_latestGCI);
bucket->m_state = Gci_container::GC_COMPLETE;
bucket->m_gcp_complete_rep_count = 1; // Prevent from being reused
m_latest_complete_GCI = gci;
}
}
DBUG_VOID_RETURN_EVENT;
}
void
NdbEventBuffer::complete_outof_order_gcis()
{
Uint64 start_gci = m_latestGCI + 1;
Uint64 stop_gci = m_latest_complete_GCI;
const Uint32 size = m_active_gci.size();
Gci_container* array= m_active_gci.getBase();
ndbout_c("complete_outof_order_gcis");
for(Uint32 i = 0; i<size; i++)
{
ndbout << i << " - " << array[i] << endl;
}
for(; start_gci <= stop_gci; start_gci++)
{
/**
* Find gci
*/
Uint32 i;
Gci_container* bucket= 0;
for(i = 0; i<size; i++)
{
Gci_container* tmp = array + i;
if(tmp->m_gci == start_gci && tmp->m_state == Gci_container::GC_COMPLETE)
{
bucket= tmp;
break;
}
}
if(bucket == 0)
{
break;
}
printf("complete_outof_order_gcis - completing %lld", start_gci);
if(!bucket->m_data.is_empty())
{
#ifdef VM_TRACE
assert(bucket->m_data.m_count);
#endif
m_complete_data.m_data.append(bucket->m_data);
#ifdef VM_TRACE
ndbout_c(" moved %lld rows -> %lld", bucket->m_data.m_count,
m_complete_data.m_data.m_count);
#else
ndbout_c("");
#endif
}
bzero(bucket, sizeof(Gci_container));
if(i < ACTIVE_GCI_DIRECTORY_SIZE)
{
bucket->m_gci = start_gci + ACTIVE_GCI_DIRECTORY_SIZE;
bucket->m_gcp_complete_rep_count = m_system_nodes;
}
m_latestGCI = m_complete_data.m_gci = start_gci;
}
ndbout_c("complete_outof_order_gcis: m_latestGCI: %lld", m_latestGCI);
}
void
NdbEventBuffer::report_node_failure(Uint32 node_id)
{
DBUG_ENTER("NdbEventBuffer::report_node_failure");
SubTableData data;
LinearSectionPtr ptr[3];
bzero(&data, sizeof(data));
bzero(ptr, sizeof(ptr));
data.tableId = ~0;
data.operation = NdbDictionary::Event::_TE_NODE_FAILURE;
data.req_nodeid = (Uint8)node_id;
data.ndbd_nodeid = (Uint8)node_id;
data.logType = SubTableData::LOG;
/**
* Insert this event for each operation
*/
NdbEventOperation* op= 0;
while((op = m_ndb->getEventOperation(op)))
{
NdbEventOperationImpl* impl= &op->m_impl;
data.senderData = impl->m_oid;
insertDataL(impl, &data, ptr);
}
DBUG_VOID_RETURN;
}
void
NdbEventBuffer::completeClusterFailed()
{
DBUG_ENTER("NdbEventBuffer::completeClusterFailed");
SubTableData data;
LinearSectionPtr ptr[3];
bzero(&data, sizeof(data));
bzero(ptr, sizeof(ptr));
data.tableId = ~0;
data.operation = NdbDictionary::Event::_TE_CLUSTER_FAILURE;
data.logType = SubTableData::LOG;
/**
* Find min not completed GCI
*/
Uint32 sz= m_active_gci.size();
Uint64 gci= ~0;
Gci_container* bucket = 0;
Gci_container* array = m_active_gci.getBase();
for(Uint32 i = 0; i<sz; i++)
{
if(array[i].m_gcp_complete_rep_count && array[i].m_gci < gci)
{
bucket= array + i;
gci = bucket->m_gci;
}
}
if(bucket == 0)
{
/**
* Did not find any not completed GCI's
* lets fake one...
*/
gci = m_latestGCI + 1;
bucket = array + ( gci & ACTIVE_GCI_MASK );
bucket->m_gcp_complete_rep_count = 1;
}
const Uint32 cnt= bucket->m_gcp_complete_rep_count = 1;
/**
* Release all GCI's
*/
for(Uint32 i = 0; i<sz; i++)
{
Gci_container* tmp = array + i;
if(!tmp->m_data.is_empty())
{
free_list(tmp->m_data);
#if 0
m_free_data_count++;
EventBufData* loop= tmp->m_head;
while(loop != tmp->m_tail)
{
m_free_data_count++;
loop = loop->m_next;
}
#endif
}
bzero(tmp, sizeof(Gci_container));
}
bucket->m_gci = gci;
bucket->m_gcp_complete_rep_count = cnt;
data.gci = gci;
/**
* Insert this event for each operation
*/
NdbEventOperation* op= 0;
while((op = m_ndb->getEventOperation(op)))
{
NdbEventOperationImpl* impl= &op->m_impl;
data.senderData = impl->m_oid;
insertDataL(impl, &data, ptr);
}
/**
* And finally complete this GCI
*/
SubGcpCompleteRep rep;
rep.gci= gci;
rep.gcp_complete_rep_count= cnt;
execSUB_GCP_COMPLETE_REP(&rep);
DBUG_VOID_RETURN;
}
Uint64
NdbEventBuffer::getLatestGCI()
{
return m_latestGCI;
}
int
NdbEventBuffer::insertDataL(NdbEventOperationImpl *op,
const SubTableData * const sdata,
LinearSectionPtr ptr[3])
{
DBUG_ENTER_EVENT("NdbEventBuffer::insertDataL");
Uint64 gci= sdata->gci;
if ( likely((Uint32)op->mi_type & (1 << (Uint32)sdata->operation)) )
{
Gci_container* bucket= find_bucket(&m_active_gci, gci);
DBUG_PRINT_EVENT("info", ("data insertion in eventId %d", op->m_eventId));
DBUG_PRINT_EVENT("info", ("gci=%d tab=%d op=%d node=%d",
sdata->gci, sdata->tableId, sdata->operation,
sdata->req_nodeid));
if (unlikely(bucket == 0))
{
/**
* Already completed GCI...
* Possible in case of resend during NF handling
*/
DBUG_RETURN_EVENT(0);
}
const bool is_blob_event = (op->theMainOp != NULL);
const bool is_data_event =
sdata->operation < NdbDictionary::Event::_TE_FIRST_NON_DATA_EVENT;
const bool use_hash = op->m_mergeEvents && is_data_event;
if (! is_data_event && is_blob_event)
{
// currently subscribed to but not used
DBUG_PRINT_EVENT("info", ("ignore non-data event on blob table"));
DBUG_RETURN_EVENT(0);
}
// find position in bucket hash table
EventBufData* data = 0;
EventBufData_hash::Pos hpos;
if (use_hash)
{
bucket->m_data_hash.search(hpos, op, ptr);
data = hpos.data;
}
if (data == 0)
{
// allocate new result buffer
data = alloc_data();
if (unlikely(data == 0))
{
op->m_has_error = 2;
DBUG_RETURN_EVENT(-1);
}
if (unlikely(copy_data(sdata, ptr, data)))
{
op->m_has_error = 3;
DBUG_RETURN_EVENT(-1);
}
data->m_event_op = op;
if (! is_blob_event || ! is_data_event)
{
bucket->m_data.append(data);
}
else
{
// find or create main event for this blob event
EventBufData_hash::Pos main_hpos;
int ret = get_main_data(bucket, main_hpos, data);
if (ret == -1)
{
op->m_has_error = 4;
DBUG_RETURN_EVENT(-1);
}
EventBufData* main_data = main_hpos.data;
if (ret != 0) // main event was created
{
main_data->m_event_op = op->theMainOp;
bucket->m_data.append(main_data);
if (use_hash)
{
main_data->m_pkhash = main_hpos.pkhash;
bucket->m_data_hash.append(main_hpos, main_data);
}
}
// link blob event under main event
add_blob_data(main_data, data);
}
if (use_hash)
{
data->m_pkhash = hpos.pkhash;
bucket->m_data_hash.append(hpos, data);
}
#ifdef VM_TRACE
op->m_data_count++;
#endif
}
else
{
// event with same op, PK found, merge into old buffer
if (unlikely(merge_data(sdata, ptr, data)))
{
op->m_has_error = 3;
DBUG_RETURN_EVENT(-1);
}
}
DBUG_RETURN_EVENT(0);
}
#ifdef VM_TRACE
if ((Uint32)op->m_eventImpl->mi_type & (1 << (Uint32)sdata->operation))
{
DBUG_PRINT_EVENT("info",("Data arrived before ready eventId", op->m_eventId));
DBUG_RETURN_EVENT(0);
}
else {
DBUG_PRINT_EVENT("info",("skipped"));
DBUG_RETURN_EVENT(0);
}
#else
DBUG_RETURN_EVENT(0);
#endif
}
// allocate EventBufData
EventBufData*
NdbEventBuffer::alloc_data()
{
DBUG_ENTER_EVENT("alloc_data");
EventBufData* data = m_free_data;
if (unlikely(data == 0))
{
#ifdef VM_TRACE
assert(m_free_data_count == 0);
assert(m_free_data_sz == 0);
#endif
expand(4000);
reportStatus();
data = m_free_data;
if (unlikely(data == 0))
{
#ifdef VM_TRACE
printf("m_latest_command: %s\n", m_latest_command);
printf("no free data, m_latestGCI %lld\n",
m_latestGCI);
printf("m_free_data_count %d\n", m_free_data_count);
printf("m_available_data_count %d first gci %d last gci %d\n",
m_available_data.m_count,
m_available_data.m_head ? m_available_data.m_head->sdata->gci : 0,
m_available_data.m_tail ? m_available_data.m_tail->sdata->gci : 0);
printf("m_used_data_count %d\n", m_used_data.m_count);
#endif
DBUG_RETURN_EVENT(0); // TODO handle this, overrun, or, skip?
}
}
// remove data from free list
m_free_data = data->m_next;
data->m_next = 0;
#ifdef VM_TRACE
m_free_data_count--;
assert(m_free_data_sz >= data->sz);
#endif
m_free_data_sz -= data->sz;
DBUG_RETURN_EVENT(data);
}
// allocate initial or bigger memory area in EventBufData
// takes sizes from given ptr and sets up data->ptr
int
NdbEventBuffer::alloc_mem(EventBufData* data, LinearSectionPtr ptr[3])
{
DBUG_ENTER("NdbEventBuffer::alloc_mem");
DBUG_PRINT("info", ("ptr sz %u + %u + %u", ptr[0].sz, ptr[1].sz, ptr[2].sz));
const Uint32 min_alloc_size = 128;
Uint32 sz4 = (sizeof(SubTableData) + 3) >> 2;
Uint32 alloc_size = (sz4 + ptr[0].sz + ptr[1].sz + ptr[2].sz) << 2;
if (alloc_size < min_alloc_size)
alloc_size = min_alloc_size;
if (data->sz < alloc_size)
{
NdbMem_Free((char*)data->memory);
assert(m_total_alloc >= data->sz);
m_total_alloc -= data->sz;
data->memory = 0;
data->sz = 0;
data->memory = (Uint32*)NdbMem_Allocate(alloc_size);
if (data->memory == 0)
DBUG_RETURN(-1);
data->sz = alloc_size;
m_total_alloc += data->sz;
}
Uint32* memptr = data->memory;
memptr += sz4;
int i;
for (i = 0; i <= 2; i++)
{
data->ptr[i].p = memptr;
data->ptr[i].sz = ptr[i].sz;
memptr += ptr[i].sz;
}
DBUG_RETURN(0);
}
int
NdbEventBuffer::copy_data(const SubTableData * const sdata,
LinearSectionPtr ptr[3],
EventBufData* data)
{
DBUG_ENTER_EVENT("NdbEventBuffer::copy_data");
if (alloc_mem(data, ptr) != 0)
DBUG_RETURN_EVENT(-1);
memcpy(data->sdata, sdata, sizeof(SubTableData));
int i;
for (i = 0; i <= 2; i++)
memcpy(data->ptr[i].p, ptr[i].p, ptr[i].sz << 2);
DBUG_RETURN_EVENT(0);
}
static struct Ev_t {
enum {
enum_INS = NdbDictionary::Event::_TE_INSERT,
enum_DEL = NdbDictionary::Event::_TE_DELETE,
enum_UPD = NdbDictionary::Event::_TE_UPDATE,
enum_NUL = NdbDictionary::Event::_TE_NUL,
enum_ERR = 255
};
int t1, t2, t3;
} ev_t[] = {
{ Ev_t::enum_INS, Ev_t::enum_INS, Ev_t::enum_ERR },
{ Ev_t::enum_INS, Ev_t::enum_DEL, Ev_t::enum_NUL }, //ok
{ Ev_t::enum_INS, Ev_t::enum_UPD, Ev_t::enum_INS }, //ok
{ Ev_t::enum_DEL, Ev_t::enum_INS, Ev_t::enum_UPD }, //ok
{ Ev_t::enum_DEL, Ev_t::enum_DEL, Ev_t::enum_ERR },
{ Ev_t::enum_DEL, Ev_t::enum_UPD, Ev_t::enum_ERR },
{ Ev_t::enum_UPD, Ev_t::enum_INS, Ev_t::enum_ERR },
{ Ev_t::enum_UPD, Ev_t::enum_DEL, Ev_t::enum_DEL }, //ok
{ Ev_t::enum_UPD, Ev_t::enum_UPD, Ev_t::enum_UPD } //ok
};
/*
* | INS | DEL | UPD
* 0 | pk ah + all ah | pk ah | pk ah + new ah
* 1 | pk ad + all ad | old pk ad | new pk ad + new ad
* 2 | empty | old non-pk ah+ad | old ah+ad
*/
static AttributeHeader
copy_head(Uint32& i1, Uint32* p1, Uint32& i2, const Uint32* p2,
Uint32 flags)
{
AttributeHeader ah(p2[i2]);
bool do_copy = (flags & 1);
if (do_copy)
p1[i1] = p2[i2];
i1++;
i2++;
return ah;
}
static void
copy_attr(AttributeHeader ah,
Uint32& j1, Uint32* p1, Uint32& j2, const Uint32* p2,
Uint32 flags)
{
bool do_copy = (flags & 1);
bool with_head = (flags & 2);
Uint32 n = with_head + ah.getDataSize();
if (do_copy)
{
Uint32 k;
for (k = 0; k < n; k++)
p1[j1 + k] = p2[j2 + k];
}
j1 += n;
j2 += n;
}
int
NdbEventBuffer::merge_data(const SubTableData * const sdata,
LinearSectionPtr ptr2[3],
EventBufData* data)
{
DBUG_ENTER_EVENT("NdbEventBuffer::merge_data");
Uint32 nkey = data->m_event_op->m_eventImpl->m_tableImpl->m_noOfKeys;
int t1 = data->sdata->operation;
int t2 = sdata->operation;
if (t1 == Ev_t::enum_NUL)
DBUG_RETURN_EVENT(copy_data(sdata, ptr2, data));
Ev_t* tp = 0;
int i;
for (i = 0; i < sizeof(ev_t)/sizeof(ev_t[0]); i++) {
if (ev_t[i].t1 == t1 && ev_t[i].t2 == t2) {
tp = &ev_t[i];
break;
}
}
assert(tp != 0 && tp->t3 != Ev_t::enum_ERR);
// save old data
EventBufData olddata = *data;
data->memory = 0;
data->sz = 0;
// compose ptr1 o ptr2 = ptr
LinearSectionPtr (&ptr1)[3] = olddata.ptr;
LinearSectionPtr (&ptr)[3] = data->ptr;
// loop twice where first loop only sets sizes
int loop;
for (loop = 0; loop <= 1; loop++)
{
if (loop == 1)
{
if (alloc_mem(data, ptr) != 0)
DBUG_RETURN_EVENT(-1);
*data->sdata = *sdata;
data->sdata->operation = tp->t3;
}
ptr[0].sz = ptr[1].sz = ptr[2].sz = 0;
// copy pk from new version
{
AttributeHeader ah;
Uint32 i = 0;
Uint32 j = 0;
Uint32 i2 = 0;
Uint32 j2 = 0;
while (i < nkey)
{
ah = copy_head(i, ptr[0].p, i2, ptr2[0].p, loop);
copy_attr(ah, j, ptr[1].p, j2, ptr2[1].p, loop);
}
ptr[0].sz = i;
ptr[1].sz = j;
}
// merge after values, new version overrides
if (tp->t3 != Ev_t::enum_DEL)
{
AttributeHeader ah;
Uint32 i = ptr[0].sz;
Uint32 j = ptr[1].sz;
Uint32 i1 = 0;
Uint32 j1 = 0;
Uint32 i2 = nkey;
Uint32 j2 = ptr[1].sz;
while (i1 < nkey)
{
j1 += AttributeHeader(ptr1[0].p[i1++]).getDataSize();
}
while (1)
{
bool b1 = (i1 < ptr1[0].sz);
bool b2 = (i2 < ptr2[0].sz);
if (b1 && b2)
{
Uint32 id1 = AttributeHeader(ptr1[0].p[i1]).getAttributeId();
Uint32 id2 = AttributeHeader(ptr2[0].p[i2]).getAttributeId();
if (id1 < id2)
b2 = false;
else if (id1 > id2)
b1 = false;
else
{
j1 += AttributeHeader(ptr1[0].p[i1++]).getDataSize();
b1 = false;
}
}
if (b1)
{
ah = copy_head(i, ptr[0].p, i1, ptr1[0].p, loop);
copy_attr(ah, j, ptr[1].p, j1, ptr1[1].p, loop);
}
else if (b2)
{
ah = copy_head(i, ptr[0].p, i2, ptr2[0].p, loop);
copy_attr(ah, j, ptr[1].p, j2, ptr2[1].p, loop);
}
else
break;
}
ptr[0].sz = i;
ptr[1].sz = j;
}
// merge before values, old version overrides
if (tp->t3 != Ev_t::enum_INS)
{
AttributeHeader ah;
Uint32 k = 0;
Uint32 k1 = 0;
Uint32 k2 = 0;
while (1)
{
bool b1 = (k1 < ptr1[2].sz);
bool b2 = (k2 < ptr2[2].sz);
if (b1 && b2)
{
Uint32 id1 = AttributeHeader(ptr1[2].p[k1]).getAttributeId();
Uint32 id2 = AttributeHeader(ptr2[2].p[k2]).getAttributeId();
if (id1 < id2)
b2 = false;
else if (id1 > id2)
b1 = false;
else
{
k2 += 1 + AttributeHeader(ptr2[2].p[k2]).getDataSize();
b2 = false;
}
}
if (b1)
{
ah = AttributeHeader(ptr1[2].p[k1]);
copy_attr(ah, k, ptr[2].p, k1, ptr1[2].p, loop | 2);
}
else if (b2)
{
ah = AttributeHeader(ptr2[2].p[k2]);
copy_attr(ah, k, ptr[2].p, k2, ptr2[2].p, loop | 2);
}
else
break;
}
ptr[2].sz = k;
}
}
// free old data
NdbMem_Free((char*)olddata.memory);
DBUG_RETURN_EVENT(0);
}
/*
* Given blob part event, find main table event on inline part. It
* should exist (force in TUP) but may arrive later. If so, create
* NUL event on main table. The real event replaces it later.
*/
// write attribute headers for concatened PK
static void
split_concatenated_pk(const NdbTableImpl* t, Uint32* ah_buffer,
const Uint32* pk_buffer, Uint32 pk_sz)
{
Uint32 sz = 0; // words parsed so far
Uint32 n; // pk attr count
Uint32 i;
for (i = n = 0; i < t->m_columns.size() && n < t->m_noOfKeys; i++)
{
const NdbColumnImpl* c = t->getColumn(i);
assert(c != NULL);
if (! c->m_pk)
continue;
assert(sz < pk_sz);
Uint32 bytesize = c->m_attrSize * c->m_arraySize;
Uint32 lb, len;
bool ok = NdbSqlUtil::get_var_length(c->m_type, &pk_buffer[sz], bytesize,
lb, len);
assert(ok);
AttributeHeader ah(i, lb + len);
ah_buffer[n++] = ah.m_value;
sz += ah.getDataSize();
}
assert(n == t->m_noOfKeys && sz == pk_sz);
}
int
NdbEventBuffer::get_main_data(Gci_container* bucket,
EventBufData_hash::Pos& hpos,
EventBufData* blob_data)
{
DBUG_ENTER_EVENT("NdbEventBuffer::get_main_data");
NdbEventOperationImpl* main_op = blob_data->m_event_op->theMainOp;
assert(main_op != NULL);
const NdbTableImpl* mainTable = main_op->m_eventImpl->m_tableImpl;
// create LinearSectionPtr for main table key
LinearSectionPtr ptr[3];
Uint32 ah_buffer[NDB_MAX_NO_OF_ATTRIBUTES_IN_KEY];
ptr[0].sz = mainTable->m_noOfKeys;
ptr[0].p = ah_buffer;
ptr[1].sz = AttributeHeader(blob_data->ptr[0].p[0]).getDataSize();
ptr[1].p = blob_data->ptr[1].p;
ptr[2].sz = 0;
ptr[2].p = 0;
split_concatenated_pk(mainTable, ptr[0].p, ptr[1].p, ptr[1].sz);
DBUG_DUMP_EVENT("ah", (char*)ptr[0].p, ptr[0].sz << 2);
DBUG_DUMP_EVENT("pk", (char*)ptr[1].p, ptr[1].sz << 2);
// search for main event buffer
bucket->m_data_hash.search(hpos, main_op, ptr);
if (hpos.data != NULL)
DBUG_RETURN_EVENT(0);
// not found, create a place-holder
EventBufData* main_data = alloc_data();
if (main_data == NULL)
DBUG_RETURN_EVENT(-1);
SubTableData sdata = *blob_data->sdata;
sdata.tableId = main_op->m_eventImpl->m_tableImpl->m_id;
sdata.operation = NdbDictionary::Event::_TE_NUL;
if (copy_data(&sdata, ptr, main_data) != 0)
DBUG_RETURN_EVENT(-1);
hpos.data = main_data;
DBUG_RETURN_EVENT(1);
}
void
NdbEventBuffer::add_blob_data(EventBufData* main_data,
EventBufData* blob_data)
{
DBUG_ENTER_EVENT("NdbEventBuffer::add_blob_data");
DBUG_PRINT_EVENT("info", ("main_data=%p blob_data=%p", main_data, blob_data));
EventBufData* head;
head = main_data->m_next_blob;
while (head != NULL)
{
if (head->m_event_op == blob_data->m_event_op)
break;
head = head->m_next_blob;
}
if (head == NULL)
{
head = blob_data;
head->m_next_blob = main_data->m_next_blob;
main_data->m_next_blob = head;
}
else
{
blob_data->m_next = head->m_next;
head->m_next = blob_data;
}
DBUG_VOID_RETURN_EVENT;
}
NdbEventOperationImpl *
NdbEventBuffer::move_data()
{
// handle received data
if (!m_complete_data.m_data.is_empty())
{
// move this list to last in m_available_data
m_available_data.append(m_complete_data.m_data);
bzero(&m_complete_data, sizeof(m_complete_data));
}
// handle used data
if (!m_used_data.is_empty())
{
// return m_used_data to m_free_data
free_list(m_used_data);
}
if (!m_available_data.is_empty())
{
DBUG_ENTER_EVENT("NdbEventBuffer::move_data");
#ifdef VM_TRACE
DBUG_PRINT_EVENT("exit",("m_available_data_count %u", m_available_data.m_count));
#endif
DBUG_RETURN_EVENT(m_available_data.m_head->m_event_op);
}
return 0;
}
void
NdbEventBuffer::free_list(EventBufData_list &list)
{
// return list to m_free_data
list.m_tail->m_next= m_free_data;
m_free_data= list.m_head;
#ifdef VM_TRACE
m_free_data_count+= list.m_count;
#endif
m_free_data_sz+= list.m_sz;
// free blobs XXX unacceptable performance, fix later
{
EventBufData* data = list.m_head;
while (1) {
while (data->m_next_blob != NULL) {
EventBufData* blob_head = data->m_next_blob;
data->m_next_blob = blob_head->m_next_blob;
blob_head->m_next_blob = NULL;
while (blob_head != NULL) {
EventBufData* blob_part = blob_head;
blob_head = blob_head->m_next;
blob_part->m_next = m_free_data;
m_free_data = blob_part;
#ifdef VM_TRACE
m_free_data_count++;
#endif
m_free_data_sz += blob_part->sz;
}
}
if (data == list.m_tail)
break;
data = data->m_next;
}
}
// list returned to m_free_data
list.m_head = list.m_tail = NULL;
list.m_count = list.m_sz = 0;
}
void
EventBufData_list::add_gci_op(Gci_op g)
{
assert(g.op != NULL);
Uint32 i;
for (i = 0; i < m_gci_op_count; i++) {
if (m_gci_op_list[i].op == g.op)
break;
}
if (i < m_gci_op_count) {
m_gci_op_list[i].event_types |= g.event_types;
} else {
if (m_gci_op_count == m_gci_op_alloc) {
Uint32 n = 1 + 2 * m_gci_op_alloc;
Gci_op* old_list = m_gci_op_list;
m_gci_op_list = new Gci_op [n];
if (m_gci_op_alloc != 0) {
Uint32 bytes = m_gci_op_alloc * sizeof(Gci_op);
memcpy(m_gci_op_list, old_list, bytes);
delete [] old_list;
}
m_gci_op_alloc = n;
}
assert(m_gci_op_count < m_gci_op_alloc);
m_gci_op_list[m_gci_op_count++] = g;
}
}
NdbEventOperation*
NdbEventBuffer::createEventOperation(const char* eventName,
NdbError &theError)
{
DBUG_ENTER("NdbEventBuffer::createEventOperation");
NdbEventOperation* tOp= new NdbEventOperation(m_ndb, eventName);
if (tOp == 0)
{
theError.code= 4000;
DBUG_RETURN(NULL);
}
if (tOp->getState() != NdbEventOperation::EO_CREATED) {
theError.code= tOp->getNdbError().code;
delete tOp;
DBUG_RETURN(NULL);
}
DBUG_RETURN(tOp);
}
NdbEventOperationImpl*
NdbEventBuffer::createEventOperation(NdbEventImpl& evnt,
NdbError &theError)
{
DBUG_ENTER("NdbEventBuffer::createEventOperation [evnt]");
NdbEventOperationImpl* tOp= new NdbEventOperationImpl(m_ndb, evnt);
if (tOp == 0)
{
theError.code= 4000;
DBUG_RETURN(NULL);
}
if (tOp->getState() != NdbEventOperation::EO_CREATED) {
theError.code= tOp->getNdbError().code;
delete tOp;
DBUG_RETURN(NULL);
}
DBUG_RETURN(tOp);
}
void
NdbEventBuffer::dropEventOperation(NdbEventOperation* tOp)
{
NdbEventOperationImpl* op= getEventOperationImpl(tOp);
op->stop();
op->m_next= m_dropped_ev_op;
op->m_prev= 0;
if (m_dropped_ev_op)
m_dropped_ev_op->m_prev= op;
m_dropped_ev_op= op;
// stop blob event ops
if (op->theMainOp == NULL)
{
NdbEventOperationImpl* tBlobOp = op->theBlobOpList;
while (tBlobOp != NULL)
{
tBlobOp->stop();
tBlobOp = tBlobOp->m_next;
}
// release blob handles now, further access is user error
while (op->theBlobList != NULL)
{
NdbBlob* tBlob = op->theBlobList;
op->theBlobList = tBlob->theNext;
m_ndb->releaseNdbBlob(tBlob);
}
}
// ToDo, take care of these to be deleted at the
// appropriate time, after we are sure that there
// are _no_ more events coming
// delete tOp;
}
void
NdbEventBuffer::reportStatus()
{
EventBufData *apply_buf= m_available_data.m_head;
Uint64 apply_gci, latest_gci= m_latestGCI;
if (apply_buf == 0)
apply_buf= m_complete_data.m_data.m_head;
if (apply_buf)
apply_gci= apply_buf->sdata->gci;
else
apply_gci= latest_gci;
if (100*m_free_data_sz < m_min_free_thresh*m_total_alloc &&
m_total_alloc > 1024*1024)
{
/* report less free buffer than m_free_thresh,
next report when more free than 2 * m_free_thresh
*/
m_min_free_thresh= 0;
m_max_free_thresh= 2 * m_free_thresh;
goto send_report;
}
if (100*m_free_data_sz > m_max_free_thresh*m_total_alloc &&
m_total_alloc > 1024*1024)
{
/* report more free than 2 * m_free_thresh
next report when less free than m_free_thresh
*/
m_min_free_thresh= m_free_thresh;
m_max_free_thresh= 100;
goto send_report;
}
if (latest_gci-apply_gci >= m_gci_slip_thresh)
{
goto send_report;
}
return;
send_report:
Uint32 data[8];
data[0]= NDB_LE_EventBufferStatus;
data[1]= m_total_alloc-m_free_data_sz;
data[2]= m_total_alloc;
data[3]= 0;
data[4]= apply_gci & ~(Uint32)0;
data[5]= apply_gci >> 32;
data[6]= latest_gci & ~(Uint32)0;
data[7]= latest_gci >> 32;
m_ndb->theImpl->send_event_report(data,8);
#ifdef VM_TRACE
assert(m_total_alloc >= m_free_data_sz);
#endif
}
// hash table routines
// could optimize the all-fixed case
Uint32
EventBufData_hash::getpkhash(NdbEventOperationImpl* op, LinearSectionPtr ptr[3])
{
DBUG_ENTER_EVENT("EventBufData_hash::getpkhash");
DBUG_DUMP_EVENT("ah", (char*)ptr[0].p, ptr[0].sz << 2);
DBUG_DUMP_EVENT("pk", (char*)ptr[1].p, ptr[1].sz << 2);
const NdbTableImpl* tab = op->m_eventImpl->m_tableImpl;
// in all cases ptr[0] = pk ah.. ptr[1] = pk ad..
// for pk update (to equivalent pk) post/pre values give same hash
Uint32 nkey = tab->m_noOfKeys;
assert(nkey != 0 && nkey <= ptr[0].sz);
const Uint32* hptr = ptr[0].p;
const uchar* dptr = (uchar*)ptr[1].p;
// hash registers
ulong nr1 = 0;
ulong nr2 = 0;
while (nkey-- != 0)
{
AttributeHeader ah(*hptr++);
Uint32 bytesize = ah.getByteSize();
assert(dptr + bytesize <= (uchar*)(ptr[1].p + ptr[1].sz));
Uint32 i = ah.getAttributeId();
const NdbColumnImpl* col = tab->getColumn(i);
assert(col != 0);
Uint32 lb, len;
bool ok = NdbSqlUtil::get_var_length(col->m_type, dptr, bytesize, lb, len);
assert(ok);
CHARSET_INFO* cs = col->m_cs ? col->m_cs : &my_charset_bin;
(*cs->coll->hash_sort)(cs, dptr + lb, len, &nr1, &nr2);
dptr += ((bytesize + 3) / 4) * 4;
}
DBUG_PRINT_EVENT("info", ("hash result=%08x", nr1));
DBUG_RETURN_EVENT(nr1);
}
bool
EventBufData_hash::getpkequal(NdbEventOperationImpl* op, LinearSectionPtr ptr1[3], LinearSectionPtr ptr2[3])
{
DBUG_ENTER_EVENT("EventBufData_hash::getpkequal");
DBUG_DUMP_EVENT("ah1", (char*)ptr1[0].p, ptr1[0].sz << 2);
DBUG_DUMP_EVENT("pk1", (char*)ptr1[1].p, ptr1[1].sz << 2);
DBUG_DUMP_EVENT("ah2", (char*)ptr2[0].p, ptr2[0].sz << 2);
DBUG_DUMP_EVENT("pk2", (char*)ptr2[1].p, ptr2[1].sz << 2);
const NdbTableImpl* tab = op->m_eventImpl->m_tableImpl;
Uint32 nkey = tab->m_noOfKeys;
assert(nkey != 0 && nkey <= ptr1[0].sz && nkey <= ptr2[0].sz);
const Uint32* hptr1 = ptr1[0].p;
const Uint32* hptr2 = ptr2[0].p;
const uchar* dptr1 = (uchar*)ptr1[1].p;
const uchar* dptr2 = (uchar*)ptr2[1].p;
bool equal = true;
while (nkey-- != 0)
{
AttributeHeader ah1(*hptr1++);
AttributeHeader ah2(*hptr2++);
// sizes can differ on update of varchar endspace
Uint32 bytesize1 = ah1.getByteSize();
Uint32 bytesize2 = ah2.getByteSize();
assert(dptr1 + bytesize1 <= (uchar*)(ptr1[1].p + ptr1[1].sz));
assert(dptr2 + bytesize2 <= (uchar*)(ptr2[1].p + ptr2[1].sz));
assert(ah1.getAttributeId() == ah2.getAttributeId());
Uint32 i = ah1.getAttributeId();
const NdbColumnImpl* col = tab->getColumn(i);
assert(col != 0);
Uint32 lb1, len1;
bool ok1 = NdbSqlUtil::get_var_length(col->m_type, dptr1, bytesize1, lb1, len1);
Uint32 lb2, len2;
bool ok2 = NdbSqlUtil::get_var_length(col->m_type, dptr2, bytesize2, lb2, len2);
assert(ok1 && ok2 && lb1 == lb2);
CHARSET_INFO* cs = col->m_cs ? col->m_cs : &my_charset_bin;
int res = (cs->coll->strnncollsp)(cs, dptr1 + lb1, len1, dptr2 + lb2, len2, false);
if (res != 0)
{
equal = false;
break;
}
dptr1 += ((bytesize1 + 3) / 4) * 4;
dptr2 += ((bytesize2 + 3) / 4) * 4;
}
DBUG_PRINT_EVENT("info", ("equal=%s", equal ? "true" : "false"));
DBUG_RETURN_EVENT(equal);
}
void
EventBufData_hash::search(Pos& hpos, NdbEventOperationImpl* op, LinearSectionPtr ptr[3])
{
DBUG_ENTER_EVENT("EventBufData_hash::search");
Uint32 pkhash = getpkhash(op, ptr);
Uint32 index = (op->m_oid ^ pkhash) % GCI_EVENT_HASH_SIZE;
EventBufData* data = m_hash[index];
while (data != 0)
{
if (data->m_event_op == op &&
data->m_pkhash == pkhash &&
getpkequal(op, data->ptr, ptr))
break;
data = data->m_next_hash;
}
hpos.index = index;
hpos.data = data;
hpos.pkhash = pkhash;
DBUG_PRINT_EVENT("info", ("search result=%p", data));
DBUG_VOID_RETURN_EVENT;
}
template class Vector<Gci_container>;
template class Vector<NdbEventBuffer::EventBufData_chunk*>;