1
0
mirror of https://github.com/MariaDB/server.git synced 2025-04-23 07:05:53 +03:00
mariadb/mysql-test/lib/My/CoreDump.pm
Bjorn Munch ca3db65c9f Bug #43074 MTR2 is not accessing core dumps when a path is too long
Executable path is truncated in core
If we see truncated path, try to guess using strings and grep
If that doesn't work either, use known mysqld path
2009-03-20 16:39:06 +01:00

289 lines
7.8 KiB
Perl

# -*- cperl -*-
# Copyright (C) 2004-2006 MySQL AB
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; version 2 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
package My::CoreDump;
use strict;
use Carp;
use My::Platform;
use File::Temp qw/ tempfile tempdir /;
my $hint_mysqld; # Last resort guess for executable path
# If path in core file is 79 chars we assume it's been truncated
# Looks like we can still find the full path using 'strings'
# If that doesn't work, use the hint (mysqld path) as last resort.
sub _verify_binpath {
my ($binary, $core_name)= @_;
my $binpath;
if (length $binary != 79) {
$binpath= $binary;
print "Core generated by '$binpath'\n";
} else {
# Last occurrence of path ending in /mysql*, cut from first /
if (`strings '$core_name' | grep "/mysql[^/. ]*\$" | tail -1` =~ /(\/.*)/) {
$binpath= $1;
print "Guessing that core was generated by '$binpath'\n";
} else {
return unless $hint_mysqld;
$binpath= $hint_mysqld;
print "Wild guess that core was generated by '$binpath'\n";
}
}
return $binpath;
}
sub _gdb {
my ($core_name)= @_;
print "\nTrying 'gdb' to get a backtrace\n";
return unless -f $core_name;
# Find out name of binary that generated core
`gdb -c '$core_name' --batch 2>&1` =~
/Core was generated by `([^\s\'\`]+)/;
my $binary= $1 or return;
$binary= _verify_binpath ($binary, $core_name) or return;
# Create tempfile containing gdb commands
my ($tmp, $tmp_name) = tempfile();
print $tmp
"bt\n",
"thread apply all bt\n",
"quit\n";
close $tmp or die "Error closing $tmp_name: $!";
# Run gdb
my $gdb_output=
`gdb '$binary' -c '$core_name' -x '$tmp_name' --batch 2>&1`;
unlink $tmp_name or die "Error removing $tmp_name: $!";
return if $? >> 8;
return unless $gdb_output;
print <<EOF, $gdb_output, "\n";
Output from gdb follows. The first stack trace is from the failing thread.
The following stack traces are from all threads (so the failing one is
duplicated).
--------------------------
EOF
return 1;
}
sub _dbx {
my ($core_name)= @_;
print "\nTrying 'dbx' to get a backtrace\n";
return unless -f $core_name;
# Find out name of binary that generated core
`echo | dbx - '$core_name' 2>&1` =~
/Corefile specified executable: "([^"]+)"/;
my $binary= $1 or return;
$binary= _verify_binpath ($binary, $core_name) or return;
# Find all threads
my @thr_ids = `echo threads | dbx '$binary' '$core_name' 2>&1` =~ /t@\d+/g;
# Create tempfile containing dbx commands
my ($tmp, $tmp_name) = tempfile();
foreach my $thread (@thr_ids) {
print $tmp "where $thread\n";
}
print $tmp "exit\n";
close $tmp or die "Error closing $tmp_name: $!";
# Run dbx
my $dbx_output=
`cat '$tmp_name' | dbx '$binary' '$core_name' 2>&1`;
unlink $tmp_name or die "Error removing $tmp_name: $!";
return if $? >> 8;
return unless $dbx_output;
print <<EOF, $dbx_output, "\n";
Output from dbx follows. Stack trace is printed for all threads in order,
above this you should see info about which thread was the failing one.
----------------------------
EOF
return 1;
}
# Check that Debugging tools for Windows are installed
sub cdb_check {
`cdb -? 2>&1`;
if ($? >> 8)
{
print "Cannot find cdb. Please Install Debugging tools for Windows\n";
print "from http://www.microsoft.com/whdc/devtools/debugging/";
if($ENV{'ProgramW6432'})
{
print "install64bit.mspx (native x64 version)\n";
}
else
{
print "installx86.mspx\n";
}
}
}
sub _cdb {
my ($core_name)= @_;
print "\nTrying 'cdb' to get a backtrace\n";
return unless -f $core_name;
# Try to set environment for debugging tools for Windows
if ($ENV{'PATH'} !~ /Debugging Tools/)
{
if ($ENV{'ProgramW6432'})
{
# On x64 computer
$ENV{'PATH'}.= ";".$ENV{'ProgramW6432'}."\\Debugging Tools For Windows (x64)";
}
else
{
# On x86 computer. Newest versions of Debugging tools are installed in the
# directory with (x86) suffix, older versions did not have this suffix.
$ENV{'PATH'}.= ";".$ENV{'ProgramFiles'}."\\Debugging Tools For Windows (x86)";
$ENV{'PATH'}.= ";".$ENV{'ProgramFiles'}."\\Debugging Tools For Windows";
}
}
# Read module list, find out the name of executable and
# build symbol path (required by cdb if executable was built on
# different machine)
my $tmp_name= $core_name.".cdb_lmv";
`cdb -z $core_name -c \"lmv;q\" > $tmp_name 2>&1`;
if ($? >> 8)
{
unlink($tmp_name);
# check if cdb is installed and complain if not
cdb_check();
return;
}
open(temp,"< $tmp_name");
my %dirhash=();
while(<temp>)
{
if($_ =~ /Image path\: (.*)/)
{
if (rindex($1,'\\') != -1)
{
my $dir= substr($1, 0, rindex($1,'\\'));
$dirhash{$dir}++;
}
}
}
close(temp);
unlink($tmp_name);
my $image_path= join(";", (keys %dirhash),".");
# For better callstacks, setup _NT_SYMBOL_PATH to include
# OS symbols. Note : Dowloading symbols for the first time
# can take some minutes
if (!$ENV{'_NT_SYMBOL_PATH'})
{
my $windir= $ENV{'windir'};
my $symbol_cache= substr($windir ,0, index($windir,'\\'))."\\cdb_symbols";
print "OS debug symbols will be downloaded and stored in $symbol_cache.\n";
print "You can control the location of symbol cache with _NT_SYMBOL_PATH\n";
print "environment variable. Please refer to Microsoft KB article\n";
print "http://support.microsoft.com/kb/311503 for details about _NT_SYMBOL_PATH\n";
print "-------------------------------------------------------------------------\n";
$ENV{'_NT_SYMBOL_PATH'}.=
"srv*".$symbol_cache."*http://msdl.microsoft.com/download/symbols";
}
my $symbol_path= $image_path.";".$ENV{'_NT_SYMBOL_PATH'};
# Run cdb. Use "analyze" extension to print crashing thread stacktrace
# and "uniqstack" to print other threads
my $cdb_cmd = "!sym prompts off; !analyze -v; .ecxr; !for_each_frame dv /t;!uniqstack -p;q";
my $cdb_output=
`cdb -z $core_name -i "$image_path" -y "$symbol_path" -t 0 -lines -c "$cdb_cmd" 2>&1`;
return if $? >> 8;
return unless $cdb_output;
# Remove comments (lines starting with *), stack pointer and frame
# pointer adresses and offsets to function to make output better readable
$cdb_output=~ s/^\*.*\n//gm;
$cdb_output=~ s/^([\:0-9a-fA-F\`]+ )+//gm;
$cdb_output=~ s/^ChildEBP RetAddr//gm;
$cdb_output=~ s/^Child\-SP RetAddr Call Site//gm;
$cdb_output=~ s/\+0x([0-9a-fA-F]+)//gm;
print <<EOF, $cdb_output, "\n";
Output from cdb follows. Faulting thread is printed twice,with and without function parameters
Search for STACK_TEXT to see the stack trace of
the faulting thread. Callstacks of other threads are printed after it.
EOF
return 1;
}
sub show {
my ($class, $core_name, $exe_mysqld)= @_;
$hint_mysqld= $exe_mysqld;
# On Windows, rely on cdb to be there...
if (IS_WINDOWS)
{
_cdb($core_name);
return;
}
# We try dbx first; gdb itself may coredump if run on a Sun Studio
# compiled binary on Solaris.
my @debuggers =
(
\&_dbx,
\&_gdb,
# TODO...
);
# Try debuggers until one succeeds
foreach my $debugger (@debuggers){
if ($debugger->($core_name)){
return;
}
}
return;
}
1;