1
0
mirror of https://github.com/MariaDB/server.git synced 2025-08-09 22:24:09 +03:00
Files
mariadb/sql/mem_root_array.h
Oleg Smirnov c329c43be7 MDEV-35856: implement index hints
Part of an umbrella task MDEV-33281 for implementing optimizer hints.

This commit introduces hints affecting the use of indexes:
  - JOIN_INDEX, NO_JOIN_INDEX
  - GROUP_INDEX, NO_GROUP_INDEX
  - ORDER_INDEX, NO_ORDER_INDEX
  - INDEX, NO_INDEX

Syntax of index hints:
  hint_name([@query_block_name] tbl_name [index_name [, index_name] ...])
  hint_name(tbl_name@query_block_name [index_name [, index_name] ...])

JOIN_INDEX, NO_JOIN_INDEX: Forces the server to use or ignore the specified
index or indexes for any access method, such as ref, range, index_merge,
and so on. Equivalent to FORCE INDEX FOR JOIN, IGNORE INDEX FOR JOIN.

GROUP_INDEX, NO_GROUP_INDEX: Enable or disable the specified index or indexes
for index scans for GROUP BY operations. Equivalent to the index hints
FORCE INDEX FOR GROUP BY, IGNORE INDEX FOR GROUP BY.

ORDER_INDEX, NO_ORDER_INDEX: Causes the server to use or to ignore
the specified index or indexes for sorting rows. Equivalent to
FORCE INDEX FOR ORDER BY, IGNORE INDEX FOR ORDER BY.

INDEX, NO_INDEX: Acts as the combination of JOIN_INDEX, GROUP_INDEX
and ORDER_INDEX, forcing the server to use the specified index or indexes
for any and all scopes, or as the combination of NO_JOIN_INDEX, NO_GROUP_INDEX
and NO_ORDER_INDEX, which causes the server to ignore the specified index
or indexes for any and all scopes. Equivalent to FORCE INDEX, IGNORE INDEX.

Two kinds of index hints were introduced during implementation:
the global kind for [NO_]INDEX hint, and the non-global kind for all others.

Possible conflicts which will generate warnings:
- for a table level hint
  - a hint of the same type or the opposite kind has already been specified
    for the same table
- for a index level hint
  - the same type of hint has already been specified for the same
    table or for the same index, OR
  - the opposite kind of hint has already been specified for the
    same index
- For a multi index hint like JOIN_INDEX(t1 i1, i2, i3), it conflicts
    with a previous hint if any of the JOIN_INDEX(t1 i1), JOIN_INDEX(t1 i2),
    JOIN_INDEX(t1 i3) conflicts with a previous hint
2025-08-04 20:24:01 +02:00

270 lines
7.4 KiB
C++

/* Copyright (c) 2011, 2012, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
#ifndef MEM_ROOT_ARRAY_INCLUDED
#define MEM_ROOT_ARRAY_INCLUDED
#include <type_traits>
#include <my_alloc.h>
/**
A typesafe replacement for DYNAMIC_ARRAY.
We use MEM_ROOT for allocating storage, rather than the C++ heap.
The interface is chosen to be similar to std::vector.
@remark
Unlike DYNAMIC_ARRAY, elements are properly copied
(rather than memcpy()d) if the underlying array needs to be expanded.
@remark
Depending on has_trivial_destructor, we destroy objects which are
removed from the array (including when the array object itself is destroyed).
@remark
Note that MEM_ROOT has no facility for reusing free space,
so don't use this if multiple re-expansions are likely to happen.
@param Element_type The type of the elements of the container.
Elements must be copyable.
@param has_trivial_destructor If true, we don't destroy elements.
We could have used type traits to determine this.
__has_trivial_destructor is supported by some (but not all)
compilers we use.
*/
template<typename Element_type,
bool has_trivial_destructor=
std::is_trivially_destructible<Element_type>::value>
class Mem_root_array
{
public:
/// Convenience typedef, same typedef name as std::vector
typedef Element_type value_type;
Mem_root_array(MEM_ROOT *root)
: m_root(root), m_array(NULL), m_size(0), m_capacity(0)
{
}
Mem_root_array(MEM_ROOT *root, size_t n, const value_type &val= value_type())
: m_root(root), m_array(NULL), m_size(0), m_capacity(0)
{
resize(n, val);
}
Mem_root_array(const Mem_root_array& other)
{
do_copy_construct(other);
}
Mem_root_array &operator=(const Mem_root_array& other)
{
if(this != &other)
{
clear();
do_copy_construct(other);
}
}
~Mem_root_array()
{
clear();
}
Element_type &at(size_t n)
{
DBUG_ASSERT(n < size());
return m_array[n];
}
const Element_type &at(size_t n) const
{
DBUG_ASSERT(n < size());
return m_array[n];
}
Element_type &operator[](size_t n) { return at(n); }
const Element_type &operator[](size_t n) const { return at(n); }
Element_type &back() { return at(size() - 1); }
const Element_type &back() const { return at(size() - 1); }
// Returns a pointer to the first element in the array.
Element_type *begin() { return &m_array[0]; }
const Element_type *begin() const { return &m_array[0]; }
// Returns a pointer to the past-the-end element in the array.
Element_type *end() { return &m_array[size()]; }
const Element_type *end() const { return &m_array[size()]; }
// Erases all of the elements.
void clear()
{
if (!empty())
chop(0);
}
/*
Chops the tail off the array, erasing all tail elements.
@param pos Index of first element to erase.
*/
void chop(const size_t pos)
{
DBUG_ASSERT(pos < m_size);
if (!has_trivial_destructor)
{
for (size_t ix= pos; ix < m_size; ++ix)
{
Element_type *p= &m_array[ix];
p->~Element_type(); // Destroy discarded element.
}
}
m_size= pos;
}
/*
Reserves space for array elements.
Copies over existing elements, in case we are re-expanding the array.
@param n number of elements.
@retval true if out-of-memory, false otherwise.
*/
bool reserve(size_t n)
{
if (n <= m_capacity)
return false;
void *mem= alloc_root(m_root, n * element_size());
if (!mem)
return true;
Element_type *array= static_cast<Element_type*>(mem);
// Copy all the existing elements into the new array.
for (size_t ix= 0; ix < m_size; ++ix)
{
Element_type *new_p= &array[ix];
Element_type *old_p= &m_array[ix];
new (new_p) Element_type(*old_p); // Copy into new location.
if (!has_trivial_destructor)
old_p->~Element_type(); // Destroy the old element.
}
// Forget the old array.
m_array= array;
m_capacity= n;
return false;
}
/*
Adds a new element at the end of the array, after its current last
element. The content of this new element is initialized to a copy of
the input argument.
@param element Object to copy.
@retval true if out-of-memory, false otherwise.
*/
bool push_back(const Element_type &element)
{
const size_t min_capacity= 20;
const size_t expansion_factor= 2;
if (0 == m_capacity && reserve(min_capacity))
return true;
if (m_size == m_capacity && reserve(m_capacity * expansion_factor))
return true;
Element_type *p= &m_array[m_size++];
new (p) Element_type(element);
return false;
}
/**
Removes the last element in the array, effectively reducing the
container size by one. This destroys the removed element.
*/
void pop_back()
{
DBUG_ASSERT(!empty());
if (!has_trivial_destructor)
back().~Element_type();
m_size-= 1;
}
/**
Resizes the container so that it contains n elements.
If n is smaller than the current container size, the content is
reduced to its first n elements, removing those beyond (and
destroying them).
If n is greater than the current container size, the content is
expanded by inserting at the end as many elements as needed to
reach a size of n. If val is specified, the new elements are
initialized as copies of val, otherwise, they are
value-initialized.
If n is also greater than the current container capacity, an automatic
reallocation of the allocated storage space takes place.
Notice that this function changes the actual content of the
container by inserting or erasing elements from it.
*/
void resize(size_t n, const value_type &val= value_type())
{
if (n == m_size)
return;
if (n > m_size)
{
if (!reserve(n))
{
while (n != m_size)
push_back(val);
}
return;
}
if (!has_trivial_destructor)
{
while (n != m_size)
pop_back();
}
m_size= n;
}
size_t capacity() const { return m_capacity; }
size_t element_size() const { return sizeof(Element_type); }
bool empty() const { return size() == 0; }
size_t size() const { return m_size; }
const MEM_ROOT *mem_root() const { return m_root; }
private:
MEM_ROOT *m_root;
Element_type *m_array= nullptr;
size_t m_size= 0;
size_t m_capacity= 0;
void do_copy_construct(const Mem_root_array& other)
{
m_root= other.m_root;
reserve(other.size());
for (size_t ix= 0; ix < other.size(); ++ix)
{
Element_type *p= &m_array[ix];
new (p) Element_type(other[ix]);
}
m_size= other.m_size;
}
};
#endif // MEM_ROOT_ARRAY_INCLUDED