1
0
mirror of https://github.com/MariaDB/server.git synced 2026-01-06 05:22:24 +03:00
Files
mariadb/sql/ds_mrr.cc
Sergey Petrunya 96e092dc73 Backport into MariaDB-5.2 the following:
WL#2474 "Multi Range Read: Change the default MRR implementation to implement new MRR interface"
WL#2475 "Batched range read functions for MyISAM/InnoDb"
        "Index condition pushdown for MyISAM/InnoDB"
Igor's fix from sp1r-igor@olga.mysql.com-20080330055902-07614:
  There could be observed the following problems:
  1. EXPLAIN did not mention pushdown conditions from on expressions in the 
  'extra' column.  As a result if a query had no where conditions pushed 
  down to a table, but had on conditions pushed to this table the 'extra' 
  column in the EXPLAIN for the table missed 'using where'.
  2. Conditions for ref access were not eliminated from on expressions 
  though such conditions were eliminated from the where condition.
2009-12-15 10:16:46 +03:00

1334 lines
41 KiB
C++

#include "mysql_priv.h"
#include "sql_select.h"
/* **************************************************************************
* DS-MRR implementation
***************************************************************************/
/**
DS-MRR: Initialize and start MRR scan
Initialize and start the MRR scan. Depending on the mode parameter, this
may use default or DS-MRR implementation.
@param h Table handler to be used
@param key Index to be used
@param seq_funcs Interval sequence enumeration functions
@param seq_init_param Interval sequence enumeration parameter
@param n_ranges Number of ranges in the sequence.
@param mode HA_MRR_* modes to use
@param buf INOUT Buffer to use
@retval 0 Ok, Scan started.
@retval other Error
*/
int DsMrr_impl::dsmrr_init(handler *h_arg, RANGE_SEQ_IF *seq_funcs,
void *seq_init_param, uint n_ranges, uint mode,
HANDLER_BUFFER *buf)
{
uint elem_size;
Item *pushed_cond= NULL;
handler *new_h2= 0;
DBUG_ENTER("DsMrr_impl::dsmrr_init");
/*
index_merge may invoke a scan on an object for which dsmrr_info[_const]
has not been called, so set the owner handler here as well.
*/
h= h_arg;
if (mode & HA_MRR_USE_DEFAULT_IMPL || mode & HA_MRR_SORTED)
{
use_default_impl= TRUE;
const int retval=
h->handler::multi_range_read_init(seq_funcs, seq_init_param,
n_ranges, mode, buf);
DBUG_RETURN(retval);
}
rowids_buf= buf->buffer;
is_mrr_assoc= !test(mode & HA_MRR_NO_ASSOCIATION);
if (is_mrr_assoc)
status_var_increment(table->in_use->status_var.ha_multi_range_read_init_count);
rowids_buf_end= buf->buffer_end;
elem_size= h->ref_length + (int)is_mrr_assoc * sizeof(void*);
rowids_buf_last= rowids_buf +
((rowids_buf_end - rowids_buf)/ elem_size)*
elem_size;
rowids_buf_end= rowids_buf_last;
/*
There can be two cases:
- This is the first call since index_init(), h2==NULL
Need to setup h2 then.
- This is not the first call, h2 is initalized and set up appropriately.
The caller might have called h->index_init(), need to switch h to
rnd_pos calls.
*/
if (!h2)
{
/* Create a separate handler object to do rndpos() calls. */
THD *thd= current_thd;
/*
::clone() takes up a lot of stack, especially on 64 bit platforms.
The constant 5 is an empiric result.
*/
if (check_stack_overrun(thd, 5*STACK_MIN_SIZE, (uchar*) &new_h2))
DBUG_RETURN(1);
DBUG_ASSERT(h->active_index != MAX_KEY);
uint mrr_keyno= h->active_index;
/* Create a separate handler object to do rndpos() calls. */
if (!(new_h2= h->clone(thd->mem_root)) ||
new_h2->ha_external_lock(thd, F_RDLCK))
{
delete new_h2;
DBUG_RETURN(1);
}
if (mrr_keyno == h->pushed_idx_cond_keyno)
pushed_cond= h->pushed_idx_cond;
/*
Caution: this call will invoke this->dsmrr_close(). Do not put the
created secondary table handler into this->h2 or it will delete it.
*/
if (h->ha_index_end())
{
h2=new_h2;
goto error;
}
h2= new_h2; /* Ok, now can put it into h2 */
table->prepare_for_position();
h2->extra(HA_EXTRA_KEYREAD);
if (h2->ha_index_init(mrr_keyno, FALSE))
goto error;
use_default_impl= FALSE;
if (pushed_cond)
h2->idx_cond_push(mrr_keyno, pushed_cond);
}
else
{
/*
We get here when the access alternates betwen MRR scan(s) and non-MRR
scans.
Calling h->index_end() will invoke dsmrr_close() for this object,
which will delete h2. We need to keep it, so save put it away and dont
let it be deleted:
*/
handler *save_h2= h2;
h2= NULL;
int res= (h->inited == handler::INDEX && h->ha_index_end());
h2= save_h2;
use_default_impl= FALSE;
if (res)
goto error;
}
if (h2->handler::multi_range_read_init(seq_funcs, seq_init_param, n_ranges,
mode, buf) ||
dsmrr_fill_buffer())
{
goto error;
}
/*
If the above call has scanned through all intervals in *seq, then
adjust *buf to indicate that the remaining buffer space will not be used.
*/
if (dsmrr_eof)
buf->end_of_used_area= rowids_buf_last;
/*
h->inited == INDEX may occur when 'range checked for each record' is
used.
*/
if ((h->inited != handler::RND) &&
((h->inited==handler::INDEX? h->ha_index_end(): FALSE) ||
(h->ha_rnd_init(FALSE))))
goto error;
use_default_impl= FALSE;
h->mrr_funcs= *seq_funcs;
DBUG_RETURN(0);
error:
h2->ha_index_or_rnd_end();
h2->ha_external_lock(current_thd, F_UNLCK);
h2->close();
delete h2;
h2= NULL;
DBUG_RETURN(1);
}
void DsMrr_impl::dsmrr_close()
{
DBUG_ENTER("DsMrr_impl::dsmrr_close");
if (h2)
{
h2->ha_index_or_rnd_end();
h2->ha_external_lock(current_thd, F_UNLCK);
h2->close();
delete h2;
h2= NULL;
}
use_default_impl= TRUE;
DBUG_VOID_RETURN;
}
static int rowid_cmp(void *h, uchar *a, uchar *b)
{
return ((handler*)h)->cmp_ref(a, b);
}
/**
DS-MRR: Fill the buffer with rowids and sort it by rowid
{This is an internal function of DiskSweep MRR implementation}
Scan the MRR ranges and collect ROWIDs (or {ROWID, range_id} pairs) into
buffer. When the buffer is full or scan is completed, sort the buffer by
rowid and return.
The function assumes that rowids buffer is empty when it is invoked.
@param h Table handler
@retval 0 OK, the next portion of rowids is in the buffer,
properly ordered
@retval other Error
*/
int DsMrr_impl::dsmrr_fill_buffer()
{
char *range_info;
int res;
DBUG_ENTER("DsMrr_impl::dsmrr_fill_buffer");
rowids_buf_cur= rowids_buf;
while ((rowids_buf_cur < rowids_buf_end) &&
!(res= h2->handler::multi_range_read_next(&range_info)))
{
KEY_MULTI_RANGE *curr_range= &h2->handler::mrr_cur_range;
if (h2->mrr_funcs.skip_index_tuple &&
h2->mrr_funcs.skip_index_tuple(h2->mrr_iter, curr_range->ptr))
continue;
/* Put rowid, or {rowid, range_id} pair into the buffer */
h2->position(table->record[0]);
memcpy(rowids_buf_cur, h2->ref, h2->ref_length);
rowids_buf_cur += h2->ref_length;
if (is_mrr_assoc)
{
memcpy(rowids_buf_cur, &range_info, sizeof(void*));
rowids_buf_cur += sizeof(void*);
}
}
if (res && res != HA_ERR_END_OF_FILE)
DBUG_RETURN(res);
dsmrr_eof= test(res == HA_ERR_END_OF_FILE);
/* Sort the buffer contents by rowid */
uint elem_size= h->ref_length + (int)is_mrr_assoc * sizeof(void*);
uint n_rowids= (rowids_buf_cur - rowids_buf) / elem_size;
my_qsort2(rowids_buf, n_rowids, elem_size, (qsort2_cmp)rowid_cmp,
(void*)h);
rowids_buf_last= rowids_buf_cur;
rowids_buf_cur= rowids_buf;
DBUG_RETURN(0);
}
/**
DS-MRR implementation: multi_range_read_next() function
*/
int DsMrr_impl::dsmrr_next(char **range_info)
{
int res;
uchar *cur_range_info= 0;
uchar *rowid;
if (use_default_impl)
return h->handler::multi_range_read_next(range_info);
do
{
if (rowids_buf_cur == rowids_buf_last)
{
if (dsmrr_eof)
{
res= HA_ERR_END_OF_FILE;
goto end;
}
res= dsmrr_fill_buffer();
if (res)
goto end;
}
/* return eof if there are no rowids in the buffer after re-fill attempt */
if (rowids_buf_cur == rowids_buf_last)
{
res= HA_ERR_END_OF_FILE;
goto end;
}
rowid= rowids_buf_cur;
if (is_mrr_assoc)
memcpy(&cur_range_info, rowids_buf_cur + h->ref_length, sizeof(uchar**));
rowids_buf_cur += h->ref_length + sizeof(void*) * test(is_mrr_assoc);
if (h2->mrr_funcs.skip_record &&
h2->mrr_funcs.skip_record(h2->mrr_iter, (char *) cur_range_info, rowid))
continue;
res= h->rnd_pos(table->record[0], rowid);
break;
} while (true);
if (is_mrr_assoc)
{
memcpy(range_info, rowid + h->ref_length, sizeof(void*));
}
end:
return res;
}
/**
DS-MRR implementation: multi_range_read_info() function
*/
ha_rows DsMrr_impl::dsmrr_info(uint keyno, uint n_ranges, uint rows,
uint *bufsz, uint *flags, COST_VECT *cost)
{
ha_rows res;
uint def_flags= *flags;
uint def_bufsz= *bufsz;
/* Get cost/flags/mem_usage of default MRR implementation */
res= h->handler::multi_range_read_info(keyno, n_ranges, rows, &def_bufsz,
&def_flags, cost);
DBUG_ASSERT(!res);
if ((*flags & HA_MRR_USE_DEFAULT_IMPL) ||
choose_mrr_impl(keyno, rows, &def_flags, &def_bufsz, cost))
{
/* Default implementation is choosen */
DBUG_PRINT("info", ("Default MRR implementation choosen"));
*flags= def_flags;
*bufsz= def_bufsz;
}
else
{
/* *flags and *bufsz were set by choose_mrr_impl */
DBUG_PRINT("info", ("DS-MRR implementation choosen"));
}
return 0;
}
/**
DS-MRR Implementation: multi_range_read_info_const() function
*/
ha_rows DsMrr_impl::dsmrr_info_const(uint keyno, RANGE_SEQ_IF *seq,
void *seq_init_param, uint n_ranges,
uint *bufsz, uint *flags, COST_VECT *cost)
{
ha_rows rows;
uint def_flags= *flags;
uint def_bufsz= *bufsz;
/* Get cost/flags/mem_usage of default MRR implementation */
rows= h->handler::multi_range_read_info_const(keyno, seq, seq_init_param,
n_ranges, &def_bufsz,
&def_flags, cost);
if (rows == HA_POS_ERROR)
{
/* Default implementation can't perform MRR scan => we can't either */
return rows;
}
/*
If HA_MRR_USE_DEFAULT_IMPL has been passed to us, that is an order to
use the default MRR implementation (we need it for UPDATE/DELETE).
Otherwise, make a choice based on cost and @@optimizer_use_mrr.
*/
if ((*flags & HA_MRR_USE_DEFAULT_IMPL) ||
choose_mrr_impl(keyno, rows, flags, bufsz, cost))
{
DBUG_PRINT("info", ("Default MRR implementation choosen"));
*flags= def_flags;
*bufsz= def_bufsz;
}
else
{
/* *flags and *bufsz were set by choose_mrr_impl */
DBUG_PRINT("info", ("DS-MRR implementation choosen"));
}
return rows;
}
/**
Check if key has partially-covered columns
We can't use DS-MRR to perform range scans when the ranges are over
partially-covered keys, because we'll not have full key part values
(we'll have their prefixes from the index) and will not be able to check
if we've reached the end the range.
@param keyno Key to check
@todo
Allow use of DS-MRR in cases where the index has partially-covered
components but they are not used for scanning.
@retval TRUE Yes
@retval FALSE No
*/
bool key_uses_partial_cols(TABLE *table, uint keyno)
{
KEY_PART_INFO *kp= table->key_info[keyno].key_part;
KEY_PART_INFO *kp_end= kp + table->key_info[keyno].key_parts;
for (; kp != kp_end; kp++)
{
if (!kp->field->part_of_key.is_set(keyno))
return TRUE;
}
return FALSE;
}
/**
DS-MRR Internals: Choose between Default MRR implementation and DS-MRR
Make the choice between using Default MRR implementation and DS-MRR.
This function contains common functionality factored out of dsmrr_info()
and dsmrr_info_const(). The function assumes that the default MRR
implementation's applicability requirements are satisfied.
@param keyno Index number
@param rows E(full rows to be retrieved)
@param flags IN MRR flags provided by the MRR user
OUT If DS-MRR is choosen, flags of DS-MRR implementation
else the value is not modified
@param bufsz IN If DS-MRR is choosen, buffer use of DS-MRR implementation
else the value is not modified
@param cost IN Cost of default MRR implementation
OUT If DS-MRR is choosen, cost of DS-MRR scan
else the value is not modified
@retval TRUE Default MRR implementation should be used
@retval FALSE DS-MRR implementation should be used
*/
bool DsMrr_impl::choose_mrr_impl(uint keyno, ha_rows rows, uint *flags,
uint *bufsz, COST_VECT *cost)
{
COST_VECT dsmrr_cost;
bool res;
THD *thd= current_thd;
if (thd->variables.optimizer_use_mrr == 2 || *flags & HA_MRR_INDEX_ONLY ||
(keyno == table->s->primary_key && h->primary_key_is_clustered()) ||
key_uses_partial_cols(table, keyno))
{
/* Use the default implementation */
*flags |= HA_MRR_USE_DEFAULT_IMPL;
return TRUE;
}
uint add_len= table->key_info[keyno].key_length + h->ref_length;
*bufsz -= add_len;
if (get_disk_sweep_mrr_cost(keyno, rows, *flags, bufsz, &dsmrr_cost))
return TRUE;
*bufsz += add_len;
bool force_dsmrr;
/*
If @@optimizer_use_mrr==force, then set cost of DS-MRR to be minimum of
DS-MRR and Default implementations cost. This allows one to force use of
DS-MRR whenever it is applicable without affecting other cost-based
choices.
*/
if ((force_dsmrr= (thd->variables.optimizer_use_mrr == 1)) &&
dsmrr_cost.total_cost() > cost->total_cost())
dsmrr_cost= *cost;
if (force_dsmrr || dsmrr_cost.total_cost() <= cost->total_cost())
{
*flags &= ~HA_MRR_USE_DEFAULT_IMPL; /* Use the DS-MRR implementation */
*flags &= ~HA_MRR_SORTED; /* We will return unordered output */
*cost= dsmrr_cost;
res= FALSE;
}
else
{
/* Use the default MRR implementation */
res= TRUE;
}
return res;
}
static void get_sort_and_sweep_cost(TABLE *table, ha_rows nrows, COST_VECT *cost);
/**
Get cost of DS-MRR scan
@param keynr Index to be used
@param rows E(Number of rows to be scanned)
@param flags Scan parameters (HA_MRR_* flags)
@param buffer_size INOUT Buffer size
@param cost OUT The cost
@retval FALSE OK
@retval TRUE Error, DS-MRR cannot be used (the buffer is too small
for even 1 rowid)
*/
bool DsMrr_impl::get_disk_sweep_mrr_cost(uint keynr, ha_rows rows, uint flags,
uint *buffer_size, COST_VECT *cost)
{
ulong max_buff_entries, elem_size;
ha_rows rows_in_full_step, rows_in_last_step;
uint n_full_steps;
double index_read_cost;
elem_size= h->ref_length + sizeof(void*) * (!test(flags & HA_MRR_NO_ASSOCIATION));
max_buff_entries = *buffer_size / elem_size;
if (!max_buff_entries)
return TRUE; /* Buffer has not enough space for even 1 rowid */
/* Number of iterations we'll make with full buffer */
n_full_steps= (uint)floor(rows2double(rows) / max_buff_entries);
/*
Get numbers of rows we'll be processing in
- non-last sweep, with full buffer
- last iteration, with non-full buffer
*/
rows_in_full_step= max_buff_entries;
rows_in_last_step= rows % max_buff_entries;
/* Adjust buffer size if we expect to use only part of the buffer */
if (n_full_steps)
{
get_sort_and_sweep_cost(table, rows, cost);
cost->multiply(n_full_steps);
}
else
{
cost->zero();
*buffer_size= max(*buffer_size,
(size_t)(1.2*rows_in_last_step) * elem_size +
h->ref_length + table->key_info[keynr].key_length);
}
COST_VECT last_step_cost;
get_sort_and_sweep_cost(table, rows_in_last_step, &last_step_cost);
cost->add(&last_step_cost);
if (n_full_steps != 0)
cost->mem_cost= *buffer_size;
else
cost->mem_cost= (double)rows_in_last_step * elem_size;
/* Total cost of all index accesses */
index_read_cost= h->index_only_read_time(keynr, (double)rows);
cost->add_io(index_read_cost, 1 /* Random seeks */);
return FALSE;
}
/*
Get cost of one sort-and-sweep step
SYNOPSIS
get_sort_and_sweep_cost()
table Table being accessed
nrows Number of rows to be sorted and retrieved
cost OUT The cost
DESCRIPTION
Get cost of these operations:
- sort an array of #nrows ROWIDs using qsort
- read #nrows records from table in a sweep.
*/
static
void get_sort_and_sweep_cost(TABLE *table, ha_rows nrows, COST_VECT *cost)
{
if (nrows)
{
get_sweep_read_cost(table, nrows, FALSE, cost);
/* Add cost of qsort call: n * log2(n) * cost(rowid_comparison) */
double cmp_op= rows2double(nrows) * (1.0 / TIME_FOR_COMPARE_ROWID);
if (cmp_op < 3)
cmp_op= 3;
cost->cpu_cost += cmp_op * log2(cmp_op);
}
else
cost->zero();
}
/**
Get cost of reading nrows table records in a "disk sweep"
A disk sweep read is a sequence of handler->rnd_pos(rowid) calls that made
for an ordered sequence of rowids.
We assume hard disk IO. The read is performed as follows:
1. The disk head is moved to the needed cylinder
2. The controller waits for the plate to rotate
3. The data is transferred
Time to do #3 is insignificant compared to #2+#1.
Time to move the disk head is proportional to head travel distance.
Time to wait for the plate to rotate depends on whether the disk head
was moved or not.
If disk head wasn't moved, the wait time is proportional to distance
between the previous block and the block we're reading.
If the head was moved, we don't know how much we'll need to wait for the
plate to rotate. We assume the wait time to be a variate with a mean of
0.5 of full rotation time.
Our cost units are "random disk seeks". The cost of random disk seek is
actually not a constant, it depends one range of cylinders we're going
to access. We make it constant by introducing a fuzzy concept of "typical
datafile length" (it's fuzzy as it's hard to tell whether it should
include index file, temp.tables etc). Then random seek cost is:
1 = half_rotation_cost + move_cost * 1/3 * typical_data_file_length
We define half_rotation_cost as DISK_SEEK_BASE_COST=0.9.
@param table Table to be accessed
@param nrows Number of rows to retrieve
@param interrupted TRUE <=> Assume that the disk sweep will be
interrupted by other disk IO. FALSE - otherwise.
@param cost OUT The cost.
*/
void get_sweep_read_cost(TABLE *table, ha_rows nrows, bool interrupted,
COST_VECT *cost)
{
DBUG_ENTER("get_sweep_read_cost");
cost->zero();
if (table->file->primary_key_is_clustered())
{
cost->io_count= table->file->read_time(table->s->primary_key,
(uint) nrows, nrows);
}
else
{
double n_blocks=
ceil(ulonglong2double(table->file->stats.data_file_length) / IO_SIZE);
double busy_blocks=
n_blocks * (1.0 - pow(1.0 - 1.0/n_blocks, rows2double(nrows)));
if (busy_blocks < 1.0)
busy_blocks= 1.0;
DBUG_PRINT("info",("sweep: nblocks=%g, busy_blocks=%g", n_blocks,
busy_blocks));
cost->io_count= busy_blocks;
if (!interrupted)
{
/* Assume reading is done in one 'sweep' */
cost->avg_io_cost= (DISK_SEEK_BASE_COST +
DISK_SEEK_PROP_COST*n_blocks/busy_blocks);
}
}
DBUG_PRINT("info",("returning cost=%g", cost->total_cost()));
DBUG_VOID_RETURN;
}
/* **************************************************************************
* DS-MRR implementation ends
***************************************************************************/
/* **************************************************************************
* Index Condition Pushdown code starts
***************************************************************************/
/*
Check if given expression uses only table fields covered by the given index
SYNOPSIS
uses_index_fields_only()
item Expression to check
tbl The table having the index
keyno The index number
other_tbls_ok TRUE <=> Fields of other non-const tables are allowed
DESCRIPTION
Check if given expression only uses fields covered by index #keyno in the
table tbl. The expression can use any fields in any other tables.
The expression is guaranteed not to be AND or OR - those constructs are
handled outside of this function.
RETURN
TRUE Yes
FALSE No
*/
bool uses_index_fields_only(Item *item, TABLE *tbl, uint keyno,
bool other_tbls_ok)
{
if (item->const_item())
return TRUE;
/*
Don't push down the triggered conditions. Nested outer joins execution
code may need to evaluate a condition several times (both triggered and
untriggered), and there is no way to put thi
TODO: Consider cloning the triggered condition and using the copies for:
1. push the first copy down, to have most restrictive index condition
possible
2. Put the second copy into tab->select_cond.
*/
if (item->type() == Item::FUNC_ITEM &&
((Item_func*)item)->functype() == Item_func::TRIG_COND_FUNC)
return FALSE;
if (!(item->used_tables() & tbl->map))
return other_tbls_ok;
Item::Type item_type= item->type();
switch (item_type) {
case Item::FUNC_ITEM:
{
/* This is a function, apply condition recursively to arguments */
Item_func *item_func= (Item_func*)item;
Item **child;
Item **item_end= (item_func->arguments()) + item_func->argument_count();
for (child= item_func->arguments(); child != item_end; child++)
{
if (!uses_index_fields_only(*child, tbl, keyno, other_tbls_ok))
return FALSE;
}
return TRUE;
}
case Item::COND_ITEM:
{
/*
This is a AND/OR condition. Regular AND/OR clauses are handled by
make_cond_for_index() which will chop off the part that can be
checked with index. This code is for handling non-top-level AND/ORs,
e.g. func(x AND y).
*/
List_iterator<Item> li(*((Item_cond*)item)->argument_list());
Item *item;
while ((item=li++))
{
if (!uses_index_fields_only(item, tbl, keyno, other_tbls_ok))
return FALSE;
}
return TRUE;
}
case Item::FIELD_ITEM:
{
Item_field *item_field= (Item_field*)item;
if (item_field->field->table != tbl)
return TRUE;
/*
The below is probably a repetition - the first part checks the
other two, but let's play it safe:
*/
return item_field->field->part_of_key.is_set(keyno) &&
item_field->field->type() != MYSQL_TYPE_GEOMETRY &&
item_field->field->type() != MYSQL_TYPE_BLOB;
}
case Item::REF_ITEM:
return uses_index_fields_only(item->real_item(), tbl, keyno,
other_tbls_ok);
default:
return FALSE; /* Play it safe, don't push unknown non-const items */
}
}
#define ICP_COND_USES_INDEX_ONLY 10
/*
Get a part of the condition that can be checked using only index fields
SYNOPSIS
make_cond_for_index()
cond The source condition
table The table that is partially available
keyno The index in the above table. Only fields covered by the index
are available
other_tbls_ok TRUE <=> Fields of other non-const tables are allowed
DESCRIPTION
Get a part of the condition that can be checked when for the given table
we have values only of fields covered by some index. The condition may
refer to other tables, it is assumed that we have values of all of their
fields.
Example:
make_cond_for_index(
"cond(t1.field) AND cond(t2.key1) AND cond(t2.non_key) AND cond(t2.key2)",
t2, keyno(t2.key1))
will return
"cond(t1.field) AND cond(t2.key2)"
RETURN
Index condition, or NULL if no condition could be inferred.
*/
Item *make_cond_for_index(Item *cond, TABLE *table, uint keyno,
bool other_tbls_ok)
{
if (!cond)
return NULL;
if (cond->type() == Item::COND_ITEM)
{
uint n_marked= 0;
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
table_map used_tables= 0;
Item_cond_and *new_cond=new Item_cond_and;
if (!new_cond)
return (COND*) 0;
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
{
Item *fix= make_cond_for_index(item, table, keyno, other_tbls_ok);
if (fix)
{
new_cond->argument_list()->push_back(fix);
used_tables|= fix->used_tables();
}
n_marked += test(item->marker == ICP_COND_USES_INDEX_ONLY);
}
if (n_marked ==((Item_cond*)cond)->argument_list()->elements)
cond->marker= ICP_COND_USES_INDEX_ONLY;
switch (new_cond->argument_list()->elements) {
case 0:
return (COND*) 0;
case 1:
new_cond->used_tables_cache= used_tables;
return new_cond->argument_list()->head();
default:
new_cond->quick_fix_field();
new_cond->used_tables_cache= used_tables;
return new_cond;
}
}
else /* It's OR */
{
Item_cond_or *new_cond=new Item_cond_or;
if (!new_cond)
return (COND*) 0;
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
{
Item *fix= make_cond_for_index(item, table, keyno, other_tbls_ok);
if (!fix)
return (COND*) 0;
new_cond->argument_list()->push_back(fix);
n_marked += test(item->marker == ICP_COND_USES_INDEX_ONLY);
}
if (n_marked ==((Item_cond*)cond)->argument_list()->elements)
cond->marker= ICP_COND_USES_INDEX_ONLY;
new_cond->quick_fix_field();
new_cond->used_tables_cache= ((Item_cond_or*) cond)->used_tables_cache;
new_cond->top_level_item();
return new_cond;
}
}
if (!uses_index_fields_only(cond, table, keyno, other_tbls_ok))
return (COND*) 0;
cond->marker= ICP_COND_USES_INDEX_ONLY;
return cond;
}
Item *make_cond_remainder(Item *cond, bool exclude_index)
{
if (exclude_index && cond->marker == ICP_COND_USES_INDEX_ONLY)
return 0; /* Already checked */
if (cond->type() == Item::COND_ITEM)
{
table_map tbl_map= 0;
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
/* Create new top level AND item */
Item_cond_and *new_cond=new Item_cond_and;
if (!new_cond)
return (COND*) 0;
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
{
Item *fix= make_cond_remainder(item, exclude_index);
if (fix)
{
new_cond->argument_list()->push_back(fix);
tbl_map |= fix->used_tables();
}
}
switch (new_cond->argument_list()->elements) {
case 0:
return (COND*) 0;
case 1:
return new_cond->argument_list()->head();
default:
new_cond->quick_fix_field();
((Item_cond*)new_cond)->used_tables_cache= tbl_map;
return new_cond;
}
}
else /* It's OR */
{
Item_cond_or *new_cond=new Item_cond_or;
if (!new_cond)
return (COND*) 0;
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
{
Item *fix= make_cond_remainder(item, FALSE);
if (!fix)
return (COND*) 0;
new_cond->argument_list()->push_back(fix);
tbl_map |= fix->used_tables();
}
new_cond->quick_fix_field();
((Item_cond*)new_cond)->used_tables_cache= tbl_map;
new_cond->top_level_item();
return new_cond;
}
}
return cond;
}
/*
Try to extract and push the index condition
SYNOPSIS
push_index_cond()
tab A join tab that has tab->table->file and its condition
in tab->select_cond
keyno Index for which extract and push the condition
other_tbls_ok TRUE <=> Fields of other non-const tables are allowed
DESCRIPTION
Try to extract and push the index condition down to table handler
*/
void push_index_cond(JOIN_TAB *tab, uint keyno, bool other_tbls_ok)
{
DBUG_ENTER("push_index_cond");
Item *idx_cond;
bool do_index_cond_pushdown=
((tab->table->file->index_flags(keyno, 0, 1) &
HA_DO_INDEX_COND_PUSHDOWN) &&
tab->join->thd->variables.engine_condition_pushdown);
// psergey:
//
KEY *key_info= tab->table->key_info + keyno;
for (uint kp= 0; kp < key_info->key_parts; kp++)
{
if ((key_info->key_part[kp].key_part_flag & HA_PART_KEY_SEG))
{
do_index_cond_pushdown= FALSE;
break;
}
}
// :psergey
/*
When WL#5116 is done this DBUG statement must be removed. It's just a
temporary hack to allow us to discriminate whether a test failure relates
to *Engine* or *Index* Condition Pushdown.
*/
DBUG_EXECUTE_IF("optimizer_no_icp", do_index_cond_pushdown= false;);
if (do_index_cond_pushdown)
{
DBUG_EXECUTE("where",
print_where(tab->select_cond, "full cond", QT_ORDINARY););
idx_cond= make_cond_for_index(tab->select_cond, tab->table, keyno,
other_tbls_ok);
DBUG_EXECUTE("where",
print_where(idx_cond, "idx cond", QT_ORDINARY););
if (idx_cond)
{
Item *idx_remainder_cond= 0;
tab->pre_idx_push_select_cond= tab->select_cond;
#if 0
// The following is only needed for BKA:
/*
For BKA cache we store condition to special BKA cache field
because evaluation of the condition requires additional operations
before the evaluation. This condition is used in
JOIN_CACHE_BKA[_UNIQUE]::skip_index_tuple() functions.
*/
if (tab->use_join_cache &&
/*
if cache is used then the value is TRUE only
for BKA[_UNIQUE] cache (see check_join_cache_usage func).
In this case other_tbls_ok is an equivalent of
cache->is_key_access().
*/
other_tbls_ok &&
(idx_cond->used_tables() &
~(tab->table->map | tab->join->const_table_map)))
tab->cache_idx_cond= idx_cond;
else
#endif
idx_remainder_cond= tab->table->file->idx_cond_push(keyno, idx_cond);
/*
Disable eq_ref's "lookup cache" if we've pushed down an index
condition.
TODO: This check happens to work on current ICP implementations, but
there may exist a compliant implementation that will not work
correctly with it. Sort this out when we stabilize the condition
pushdown APIs.
*/
if (idx_remainder_cond != idx_cond)
tab->ref.disable_cache= TRUE;
Item *row_cond= make_cond_remainder(tab->select_cond, TRUE);
DBUG_EXECUTE("where",
print_where(row_cond, "remainder cond", QT_ORDINARY););
if (row_cond)
{
if (!idx_remainder_cond)
tab->select_cond= row_cond;
else
{
COND *new_cond= new Item_cond_and(row_cond, idx_remainder_cond);
tab->select_cond= new_cond;
tab->select_cond->quick_fix_field();
((Item_cond_and*)tab->select_cond)->used_tables_cache=
row_cond->used_tables() | idx_remainder_cond->used_tables();
}
}
else
tab->select_cond= idx_remainder_cond;
if (tab->select)
{
DBUG_EXECUTE("where",
print_where(tab->select->cond,
"select_cond",
QT_ORDINARY););
tab->select->cond= tab->select_cond;
}
}
}
DBUG_VOID_RETURN;
}
/* **************************************************************************
* Default MRR implementation starts
***************************************************************************/
/****************************************************************************
* Default MRR implementation (MRR to non-MRR converter)
***************************************************************************/
/**
Get cost and other information about MRR scan over a known list of ranges
Calculate estimated cost and other information about an MRR scan for given
sequence of ranges.
@param keyno Index number
@param seq Range sequence to be traversed
@param seq_init_param First parameter for seq->init()
@param n_ranges_arg Number of ranges in the sequence, or 0 if the caller
can't efficiently determine it
@param bufsz INOUT IN: Size of the buffer available for use
OUT: Size of the buffer that is expected to be actually
used, or 0 if buffer is not needed.
@param flags INOUT A combination of HA_MRR_* flags
@param cost OUT Estimated cost of MRR access
@note
This method (or an overriding one in a derived class) must check for
thd->killed and return HA_POS_ERROR if it is not zero. This is required
for a user to be able to interrupt the calculation by killing the
connection/query.
@retval
HA_POS_ERROR Error or the engine is unable to perform the requested
scan. Values of OUT parameters are undefined.
@retval
other OK, *cost contains cost of the scan, *bufsz and *flags
contain scan parameters.
*/
ha_rows
handler::multi_range_read_info_const(uint keyno, RANGE_SEQ_IF *seq,
void *seq_init_param, uint n_ranges_arg,
uint *bufsz, uint *flags, COST_VECT *cost)
{
KEY_MULTI_RANGE range;
range_seq_t seq_it;
ha_rows rows, total_rows= 0;
uint n_ranges=0;
THD *thd= current_thd;
/* Default MRR implementation doesn't need buffer */
*bufsz= 0;
seq_it= seq->init(seq_init_param, n_ranges, *flags);
while (!seq->next(seq_it, &range))
{
if (unlikely(thd->killed != 0))
return HA_POS_ERROR;
n_ranges++;
key_range *min_endp, *max_endp;
if (range.range_flag & GEOM_FLAG)
{
/* In this case tmp_min_flag contains the handler-read-function */
range.start_key.flag= (ha_rkey_function) (range.range_flag ^ GEOM_FLAG);
min_endp= &range.start_key;
max_endp= NULL;
}
else
{
min_endp= range.start_key.length? &range.start_key : NULL;
max_endp= range.end_key.length? &range.end_key : NULL;
}
if ((range.range_flag & UNIQUE_RANGE) && !(range.range_flag & NULL_RANGE))
rows= 1; /* there can be at most one row */
else
{
if (HA_POS_ERROR == (rows= this->records_in_range(keyno, min_endp,
max_endp)))
{
/* Can't scan one range => can't do MRR scan at all */
total_rows= HA_POS_ERROR;
break;
}
}
total_rows += rows;
}
if (total_rows != HA_POS_ERROR)
{
/* The following calculation is the same as in multi_range_read_info(): */
*flags |= HA_MRR_USE_DEFAULT_IMPL;
cost->zero();
cost->avg_io_cost= 1; /* assume random seeks */
if ((*flags & HA_MRR_INDEX_ONLY) && total_rows > 2)
cost->io_count= index_only_read_time(keyno, (uint)total_rows);
else
cost->io_count= read_time(keyno, n_ranges, total_rows);
cost->cpu_cost= (double) total_rows / TIME_FOR_COMPARE + 0.01;
}
return total_rows;
}
/**
Get cost and other information about MRR scan over some sequence of ranges
Calculate estimated cost and other information about an MRR scan for some
sequence of ranges.
The ranges themselves will be known only at execution phase. When this
function is called we only know number of ranges and a (rough) E(#records)
within those ranges.
Currently this function is only called for "n-keypart singlepoint" ranges,
i.e. each range is "keypart1=someconst1 AND ... AND keypartN=someconstN"
The flags parameter is a combination of those flags: HA_MRR_SORTED,
HA_MRR_INDEX_ONLY, HA_MRR_NO_ASSOCIATION, HA_MRR_LIMITS.
@param keyno Index number
@param n_ranges Estimated number of ranges (i.e. intervals) in the
range sequence.
@param n_rows Estimated total number of records contained within all
of the ranges
@param bufsz INOUT IN: Size of the buffer available for use
OUT: Size of the buffer that will be actually used, or
0 if buffer is not needed.
@param flags INOUT A combination of HA_MRR_* flags
@param cost OUT Estimated cost of MRR access
@retval
0 OK, *cost contains cost of the scan, *bufsz and *flags contain scan
parameters.
@retval
other Error or can't perform the requested scan
*/
ha_rows handler::multi_range_read_info(uint keyno, uint n_ranges, uint n_rows,
uint *bufsz, uint *flags, COST_VECT *cost)
{
*bufsz= 0; /* Default implementation doesn't need a buffer */
*flags |= HA_MRR_USE_DEFAULT_IMPL;
cost->zero();
cost->avg_io_cost= 1; /* assume random seeks */
/* Produce the same cost as non-MRR code does */
if (*flags & HA_MRR_INDEX_ONLY)
cost->io_count= index_only_read_time(keyno, n_rows);
else
cost->io_count= read_time(keyno, n_ranges, n_rows);
return 0;
}
/**
Initialize the MRR scan
Initialize the MRR scan. This function may do heavyweight scan
initialization like row prefetching/sorting/etc (NOTE: but better not do
it here as we may not need it, e.g. if we never satisfy WHERE clause on
previous tables. For many implementations it would be natural to do such
initializations in the first multi_read_range_next() call)
mode is a combination of the following flags: HA_MRR_SORTED,
HA_MRR_INDEX_ONLY, HA_MRR_NO_ASSOCIATION
@param seq Range sequence to be traversed
@param seq_init_param First parameter for seq->init()
@param n_ranges Number of ranges in the sequence
@param mode Flags, see the description section for the details
@param buf INOUT: memory buffer to be used
@note
One must have called index_init() before calling this function. Several
multi_range_read_init() calls may be made in course of one query.
Until WL#2623 is done (see its text, section 3.2), the following will
also hold:
The caller will guarantee that if "seq->init == mrr_ranges_array_init"
then seq_init_param is an array of n_ranges KEY_MULTI_RANGE structures.
This property will only be used by NDB handler until WL#2623 is done.
Buffer memory management is done according to the following scenario:
The caller allocates the buffer and provides it to the callee by filling
the members of HANDLER_BUFFER structure.
The callee consumes all or some fraction of the provided buffer space, and
sets the HANDLER_BUFFER members accordingly.
The callee may use the buffer memory until the next multi_range_read_init()
call is made, all records have been read, or until index_end() call is
made, whichever comes first.
@retval 0 OK
@retval 1 Error
*/
int
handler::multi_range_read_init(RANGE_SEQ_IF *seq_funcs, void *seq_init_param,
uint n_ranges, uint mode, HANDLER_BUFFER *buf)
{
DBUG_ENTER("handler::multi_range_read_init");
mrr_iter= seq_funcs->init(seq_init_param, n_ranges, mode);
mrr_funcs= *seq_funcs;
mrr_is_output_sorted= test(mode & HA_MRR_SORTED);
mrr_have_range= FALSE;
DBUG_RETURN(0);
}
/**
Get next record in MRR scan
Default MRR implementation: read the next record
@param range_info OUT Undefined if HA_MRR_NO_ASSOCIATION flag is in effect
Otherwise, the opaque value associated with the range
that contains the returned record.
@retval 0 OK
@retval other Error code
*/
int handler::multi_range_read_next(char **range_info)
{
int UNINIT_VAR(result);
int range_res;
DBUG_ENTER("handler::multi_range_read_next");
if (!mrr_have_range)
{
mrr_have_range= TRUE;
goto start;
}
do
{
/* Save a call if there can be only one row in range. */
if (mrr_cur_range.range_flag != (UNIQUE_RANGE | EQ_RANGE))
{
result= read_range_next();
/* On success or non-EOF errors jump to the end. */
if (result != HA_ERR_END_OF_FILE)
break;
}
else
{
if (was_semi_consistent_read())
goto scan_it_again;
/*
We need to set this for the last range only, but checking this
condition is more expensive than just setting the result code.
*/
result= HA_ERR_END_OF_FILE;
}
start:
/* Try the next range(s) until one matches a record. */
while (!(range_res= mrr_funcs.next(mrr_iter, &mrr_cur_range)))
{
scan_it_again:
result= read_range_first(mrr_cur_range.start_key.keypart_map ?
&mrr_cur_range.start_key : 0,
mrr_cur_range.end_key.keypart_map ?
&mrr_cur_range.end_key : 0,
test(mrr_cur_range.range_flag & EQ_RANGE),
mrr_is_output_sorted);
if (result != HA_ERR_END_OF_FILE)
break;
}
}
while ((result == HA_ERR_END_OF_FILE) && !range_res);
*range_info= mrr_cur_range.ptr;
DBUG_PRINT("exit",("handler::multi_range_read_next result %d", result));
DBUG_RETURN(result);
}