mirror of
				https://github.com/MariaDB/server.git
				synced 2025-10-30 04:26:45 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			4550 lines
		
	
	
		
			125 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4550 lines
		
	
	
		
			125 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* Copyright (c) 2000, 2014, Oracle and/or its affiliates.
 | |
|    Copyright (c) 2009, 2014, Monty Program Ab.
 | |
| 
 | |
|    This program is free software; you can redistribute it and/or modify
 | |
|    it under the terms of the GNU General Public License as published by
 | |
|    the Free Software Foundation; version 2 of the License.
 | |
| 
 | |
|    This program is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|    GNU General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU General Public License
 | |
|    along with this program; if not, write to the Free Software
 | |
|    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA */
 | |
| 
 | |
| 
 | |
| /* A lexical scanner on a temporary buffer with a yacc interface */
 | |
| 
 | |
| #define MYSQL_LEX 1
 | |
| #include <my_global.h>
 | |
| #include "sql_priv.h"
 | |
| #include "unireg.h"                    // REQUIRED: for other includes
 | |
| #include "sql_class.h"                          // sql_lex.h: SQLCOM_END
 | |
| #include "sql_lex.h"
 | |
| #include "sql_parse.h"                          // add_to_list
 | |
| #include "item_create.h"
 | |
| #include <m_ctype.h>
 | |
| #include <hash.h>
 | |
| #include "sp_head.h"
 | |
| #include "sp.h"
 | |
| #include "sql_select.h"
 | |
| 
 | |
| static int lex_one_token(YYSTYPE *yylval, THD *thd);
 | |
| 
 | |
| /*
 | |
|   We are using pointer to this variable for distinguishing between assignment
 | |
|   to NEW row field (when parsing trigger definition) and structured variable.
 | |
| */
 | |
| 
 | |
| sys_var *trg_new_row_fake_var= (sys_var*) 0x01;
 | |
| 
 | |
| /**
 | |
|   LEX_STRING constant for null-string to be used in parser and other places.
 | |
| */
 | |
| const LEX_STRING null_lex_str= {NULL, 0};
 | |
| const LEX_STRING empty_lex_str= {(char *) "", 0};
 | |
| /**
 | |
|   @note The order of the elements of this array must correspond to
 | |
|   the order of elements in enum_binlog_stmt_unsafe.
 | |
| */
 | |
| const int
 | |
| Query_tables_list::binlog_stmt_unsafe_errcode[BINLOG_STMT_UNSAFE_COUNT] =
 | |
| {
 | |
|   ER_BINLOG_UNSAFE_LIMIT,
 | |
|   ER_BINLOG_UNSAFE_INSERT_DELAYED,
 | |
|   ER_BINLOG_UNSAFE_SYSTEM_TABLE,
 | |
|   ER_BINLOG_UNSAFE_AUTOINC_COLUMNS,
 | |
|   ER_BINLOG_UNSAFE_UDF,
 | |
|   ER_BINLOG_UNSAFE_SYSTEM_VARIABLE,
 | |
|   ER_BINLOG_UNSAFE_SYSTEM_FUNCTION,
 | |
|   ER_BINLOG_UNSAFE_NONTRANS_AFTER_TRANS,
 | |
|   ER_BINLOG_UNSAFE_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE,
 | |
|   ER_BINLOG_UNSAFE_MIXED_STATEMENT,
 | |
|   ER_BINLOG_UNSAFE_INSERT_IGNORE_SELECT,
 | |
|   ER_BINLOG_UNSAFE_INSERT_SELECT_UPDATE,
 | |
|   ER_BINLOG_UNSAFE_WRITE_AUTOINC_SELECT,
 | |
|   ER_BINLOG_UNSAFE_REPLACE_SELECT,
 | |
|   ER_BINLOG_UNSAFE_CREATE_IGNORE_SELECT,
 | |
|   ER_BINLOG_UNSAFE_CREATE_REPLACE_SELECT,
 | |
|   ER_BINLOG_UNSAFE_CREATE_SELECT_AUTOINC,
 | |
|   ER_BINLOG_UNSAFE_UPDATE_IGNORE,
 | |
|   ER_BINLOG_UNSAFE_INSERT_TWO_KEYS,
 | |
|   ER_BINLOG_UNSAFE_AUTOINC_NOT_FIRST
 | |
| };
 | |
| 
 | |
| 
 | |
| /* Longest standard keyword name */
 | |
| 
 | |
| #define TOCK_NAME_LENGTH 24
 | |
| 
 | |
| /*
 | |
|   The following data is based on the latin1 character set, and is only
 | |
|   used when comparing keywords
 | |
| */
 | |
| 
 | |
| static uchar to_upper_lex[]=
 | |
| {
 | |
|     0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
 | |
|    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
 | |
|    32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
 | |
|    48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
 | |
|    64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
 | |
|    80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
 | |
|    96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
 | |
|    80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,123,124,125,126,127,
 | |
|   128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
 | |
|   144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,
 | |
|   160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,
 | |
|   176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,
 | |
|   192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,
 | |
|   208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,
 | |
|   192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,
 | |
|   208,209,210,211,212,213,214,247,216,217,218,219,220,221,222,255
 | |
| };
 | |
| 
 | |
| /* 
 | |
|   Names of the index hints (for error messages). Keep in sync with 
 | |
|   index_hint_type 
 | |
| */
 | |
| 
 | |
| const char * index_hint_type_name[] =
 | |
| {
 | |
|   "IGNORE INDEX", 
 | |
|   "USE INDEX", 
 | |
|   "FORCE INDEX"
 | |
| };
 | |
| 
 | |
| inline int lex_casecmp(const char *s, const char *t, uint len)
 | |
| {
 | |
|   while (len-- != 0 &&
 | |
| 	 to_upper_lex[(uchar) *s++] == to_upper_lex[(uchar) *t++]) ;
 | |
|   return (int) len+1;
 | |
| }
 | |
| 
 | |
| #include <lex_hash.h>
 | |
| 
 | |
| 
 | |
| void lex_init(void)
 | |
| {
 | |
|   uint i;
 | |
|   DBUG_ENTER("lex_init");
 | |
|   for (i=0 ; i < array_elements(symbols) ; i++)
 | |
|     symbols[i].length=(uchar) strlen(symbols[i].name);
 | |
|   for (i=0 ; i < array_elements(sql_functions) ; i++)
 | |
|     sql_functions[i].length=(uchar) strlen(sql_functions[i].name);
 | |
| 
 | |
|   DBUG_VOID_RETURN;
 | |
| }
 | |
| 
 | |
| 
 | |
| void lex_free(void)
 | |
| {					// Call this when daemon ends
 | |
|   DBUG_ENTER("lex_free");
 | |
|   DBUG_VOID_RETURN;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Initialize lex object for use in fix_fields and parsing.
 | |
| 
 | |
|   SYNOPSIS
 | |
|     init_lex_with_single_table()
 | |
|     @param thd                 The thread object
 | |
|     @param table               The table object
 | |
|   @return Operation status
 | |
|     @retval TRUE                An error occurred, memory allocation error
 | |
|     @retval FALSE               Ok
 | |
| 
 | |
|   DESCRIPTION
 | |
|     This function is used to initialize a lex object on the
 | |
|     stack for use by fix_fields and for parsing. In order to
 | |
|     work properly it also needs to initialize the
 | |
|     Name_resolution_context object of the lexer.
 | |
|     Finally it needs to set a couple of variables to ensure
 | |
|     proper functioning of fix_fields.
 | |
| */
 | |
| 
 | |
| int
 | |
| init_lex_with_single_table(THD *thd, TABLE *table, LEX *lex)
 | |
| {
 | |
|   TABLE_LIST *table_list;
 | |
|   Table_ident *table_ident;
 | |
|   SELECT_LEX *select_lex= &lex->select_lex;
 | |
|   Name_resolution_context *context= &select_lex->context;
 | |
|   /*
 | |
|     We will call the parser to create a part_info struct based on the
 | |
|     partition string stored in the frm file.
 | |
|     We will use a local lex object for this purpose. However we also
 | |
|     need to set the Name_resolution_object for this lex object. We
 | |
|     do this by using add_table_to_list where we add the table that
 | |
|     we're working with to the Name_resolution_context.
 | |
|   */
 | |
|   thd->lex= lex;
 | |
|   lex_start(thd);
 | |
|   context->init();
 | |
|   if ((!(table_ident= new Table_ident(thd,
 | |
|                                       table->s->table_name,
 | |
|                                       table->s->db, TRUE))) ||
 | |
|       (!(table_list= select_lex->add_table_to_list(thd,
 | |
|                                                    table_ident,
 | |
|                                                    NULL,
 | |
|                                                    0))))
 | |
|     return TRUE;
 | |
|   context->resolve_in_table_list_only(table_list);
 | |
|   lex->use_only_table_context= TRUE;
 | |
|   lex->context_analysis_only|= CONTEXT_ANALYSIS_ONLY_VCOL_EXPR;
 | |
|   select_lex->cur_pos_in_select_list= UNDEF_POS;
 | |
|   table->map= 1; //To ensure correct calculation of const item
 | |
|   table->get_fields_in_item_tree= TRUE;
 | |
|   table_list->table= table;
 | |
|   table_list->cacheable_table= false;
 | |
|   return FALSE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   End use of local lex with single table
 | |
| 
 | |
|   SYNOPSIS
 | |
|     end_lex_with_single_table()
 | |
|     @param thd               The thread object
 | |
|     @param table             The table object
 | |
|     @param old_lex           The real lex object connected to THD
 | |
| 
 | |
|   DESCRIPTION
 | |
|     This function restores the real lex object after calling
 | |
|     init_lex_with_single_table and also restores some table
 | |
|     variables temporarily set.
 | |
| */
 | |
| 
 | |
| void
 | |
| end_lex_with_single_table(THD *thd, TABLE *table, LEX *old_lex)
 | |
| {
 | |
|   LEX *lex= thd->lex;
 | |
|   table->map= 0;
 | |
|   table->get_fields_in_item_tree= FALSE;
 | |
|   lex_end(lex);
 | |
|   thd->lex= old_lex;
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| st_parsing_options::reset()
 | |
| {
 | |
|   allows_variable= TRUE;
 | |
|   allows_select_into= TRUE;
 | |
|   allows_select_procedure= TRUE;
 | |
|   allows_derived= TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   Perform initialization of Lex_input_stream instance.
 | |
| 
 | |
|   Basically, a buffer for pre-processed query. This buffer should be large
 | |
|   enough to keep multi-statement query. The allocation is done once in
 | |
|   Lex_input_stream::init() in order to prevent memory pollution when
 | |
|   the server is processing large multi-statement queries.
 | |
| */
 | |
| 
 | |
| bool Lex_input_stream::init(THD *thd,
 | |
| 			    char* buff,
 | |
| 			    unsigned int length)
 | |
| {
 | |
|   DBUG_EXECUTE_IF("bug42064_simulate_oom",
 | |
|                   DBUG_SET("+d,simulate_out_of_memory"););
 | |
| 
 | |
|   m_cpp_buf= (char*) thd->alloc(length + 1);
 | |
| 
 | |
|   DBUG_EXECUTE_IF("bug42064_simulate_oom",
 | |
|                   DBUG_SET("-d,bug42064_simulate_oom");); 
 | |
| 
 | |
|   if (m_cpp_buf == NULL)
 | |
|     return TRUE;
 | |
| 
 | |
|   m_thd= thd;
 | |
|   reset(buff, length);
 | |
| 
 | |
|   return FALSE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   Prepare Lex_input_stream instance state for use for handling next SQL statement.
 | |
| 
 | |
|   It should be called between two statements in a multi-statement query.
 | |
|   The operation resets the input stream to the beginning-of-parse state,
 | |
|   but does not reallocate m_cpp_buf.
 | |
| */
 | |
| 
 | |
| void
 | |
| Lex_input_stream::reset(char *buffer, unsigned int length)
 | |
| {
 | |
|   yylineno= 1;
 | |
|   yylval= NULL;
 | |
|   lookahead_token= -1;
 | |
|   lookahead_yylval= NULL;
 | |
|   m_ptr= buffer;
 | |
|   m_tok_start= NULL;
 | |
|   m_tok_end= NULL;
 | |
|   m_end_of_query= buffer + length;
 | |
|   m_tok_start_prev= NULL;
 | |
|   m_buf= buffer;
 | |
|   m_buf_length= length;
 | |
|   m_echo= TRUE;
 | |
|   m_cpp_tok_start= NULL;
 | |
|   m_cpp_tok_start_prev= NULL;
 | |
|   m_cpp_tok_end= NULL;
 | |
|   m_body_utf8= NULL;
 | |
|   m_cpp_utf8_processed_ptr= NULL;
 | |
|   next_state= MY_LEX_START;
 | |
|   found_semicolon= NULL;
 | |
|   ignore_space= MY_TEST(m_thd->variables.sql_mode & MODE_IGNORE_SPACE);
 | |
|   stmt_prepare_mode= FALSE;
 | |
|   multi_statements= TRUE;
 | |
|   in_comment=NO_COMMENT;
 | |
|   m_underscore_cs= NULL;
 | |
|   m_cpp_ptr= m_cpp_buf;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   The operation is called from the parser in order to
 | |
|   1) designate the intention to have utf8 body;
 | |
|   1) Indicate to the lexer that we will need a utf8 representation of this
 | |
|      statement;
 | |
|   2) Determine the beginning of the body.
 | |
| 
 | |
|   @param thd        Thread context.
 | |
|   @param begin_ptr  Pointer to the start of the body in the pre-processed
 | |
|                     buffer.
 | |
| */
 | |
| 
 | |
| void Lex_input_stream::body_utf8_start(THD *thd, const char *begin_ptr)
 | |
| {
 | |
|   DBUG_ASSERT(begin_ptr);
 | |
|   DBUG_ASSERT(m_cpp_buf <= begin_ptr && begin_ptr <= m_cpp_buf + m_buf_length);
 | |
| 
 | |
|   uint body_utf8_length=
 | |
|     (m_buf_length / thd->variables.character_set_client->mbminlen) *
 | |
|     my_charset_utf8_bin.mbmaxlen;
 | |
| 
 | |
|   m_body_utf8= (char *) thd->alloc(body_utf8_length + 1);
 | |
|   m_body_utf8_ptr= m_body_utf8;
 | |
|   *m_body_utf8_ptr= 0;
 | |
| 
 | |
|   m_cpp_utf8_processed_ptr= begin_ptr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   @brief The operation appends unprocessed part of pre-processed buffer till
 | |
|   the given pointer (ptr) and sets m_cpp_utf8_processed_ptr to end_ptr.
 | |
| 
 | |
|   The idea is that some tokens in the pre-processed buffer (like character
 | |
|   set introducers) should be skipped.
 | |
| 
 | |
|   Example:
 | |
|     CPP buffer: SELECT 'str1', _latin1 'str2';
 | |
|     m_cpp_utf8_processed_ptr -- points at the "SELECT ...";
 | |
|     In order to skip "_latin1", the following call should be made:
 | |
|       body_utf8_append(<pointer to "_latin1 ...">, <pointer to " 'str2'...">)
 | |
| 
 | |
|   @param ptr      Pointer in the pre-processed buffer, which specifies the
 | |
|                   end of the chunk, which should be appended to the utf8
 | |
|                   body.
 | |
|   @param end_ptr  Pointer in the pre-processed buffer, to which
 | |
|                   m_cpp_utf8_processed_ptr will be set in the end of the
 | |
|                   operation.
 | |
| */
 | |
| 
 | |
| void Lex_input_stream::body_utf8_append(const char *ptr,
 | |
|                                         const char *end_ptr)
 | |
| {
 | |
|   DBUG_ASSERT(m_cpp_buf <= ptr && ptr <= m_cpp_buf + m_buf_length);
 | |
|   DBUG_ASSERT(m_cpp_buf <= end_ptr && end_ptr <= m_cpp_buf + m_buf_length);
 | |
| 
 | |
|   if (!m_body_utf8)
 | |
|     return;
 | |
| 
 | |
|   if (m_cpp_utf8_processed_ptr >= ptr)
 | |
|     return;
 | |
| 
 | |
|   int bytes_to_copy= ptr - m_cpp_utf8_processed_ptr;
 | |
| 
 | |
|   memcpy(m_body_utf8_ptr, m_cpp_utf8_processed_ptr, bytes_to_copy);
 | |
|   m_body_utf8_ptr += bytes_to_copy;
 | |
|   *m_body_utf8_ptr= 0;
 | |
| 
 | |
|   m_cpp_utf8_processed_ptr= end_ptr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   The operation appends unprocessed part of the pre-processed buffer till
 | |
|   the given pointer (ptr) and sets m_cpp_utf8_processed_ptr to ptr.
 | |
| 
 | |
|   @param ptr  Pointer in the pre-processed buffer, which specifies the end
 | |
|               of the chunk, which should be appended to the utf8 body.
 | |
| */
 | |
| 
 | |
| void Lex_input_stream::body_utf8_append(const char *ptr)
 | |
| {
 | |
|   body_utf8_append(ptr, ptr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|   The operation converts the specified text literal to the utf8 and appends
 | |
|   the result to the utf8-body.
 | |
| 
 | |
|   @param thd      Thread context.
 | |
|   @param txt      Text literal.
 | |
|   @param txt_cs   Character set of the text literal.
 | |
|   @param end_ptr  Pointer in the pre-processed buffer, to which
 | |
|                   m_cpp_utf8_processed_ptr will be set in the end of the
 | |
|                   operation.
 | |
| */
 | |
| 
 | |
| void Lex_input_stream::body_utf8_append_literal(THD *thd,
 | |
|                                                 const LEX_STRING *txt,
 | |
|                                                 CHARSET_INFO *txt_cs,
 | |
|                                                 const char *end_ptr)
 | |
| {
 | |
|   if (!m_cpp_utf8_processed_ptr)
 | |
|     return;
 | |
| 
 | |
|   LEX_STRING utf_txt;
 | |
| 
 | |
|   if (!my_charset_same(txt_cs, &my_charset_utf8_general_ci))
 | |
|   {
 | |
|     thd->convert_string(&utf_txt,
 | |
|                         &my_charset_utf8_general_ci,
 | |
|                         txt->str, (uint) txt->length,
 | |
|                         txt_cs);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     utf_txt.str= txt->str;
 | |
|     utf_txt.length= txt->length;
 | |
|   }
 | |
| 
 | |
|   /* NOTE: utf_txt.length is in bytes, not in symbols. */
 | |
| 
 | |
|   memcpy(m_body_utf8_ptr, utf_txt.str, utf_txt.length);
 | |
|   m_body_utf8_ptr += utf_txt.length;
 | |
|   *m_body_utf8_ptr= 0;
 | |
| 
 | |
|   m_cpp_utf8_processed_ptr= end_ptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   This is called before every query that is to be parsed.
 | |
|   Because of this, it's critical to not do too much things here.
 | |
|   (We already do too much here)
 | |
| */
 | |
| 
 | |
| void lex_start(THD *thd)
 | |
| {
 | |
|   LEX *lex= thd->lex;
 | |
|   DBUG_ENTER("lex_start");
 | |
| 
 | |
|   lex->thd= lex->unit.thd= thd;
 | |
|   
 | |
|   DBUG_ASSERT(!lex->explain);
 | |
| 
 | |
|   lex->context_stack.empty();
 | |
|   lex->unit.init_query();
 | |
|   lex->unit.init_select();
 | |
|   /* 'parent_lex' is used in init_query() so it must be before it. */
 | |
|   lex->select_lex.parent_lex= lex;
 | |
|   lex->select_lex.init_query();
 | |
|   lex->value_list.empty();
 | |
|   lex->update_list.empty();
 | |
|   lex->set_var_list.empty();
 | |
|   lex->param_list.empty();
 | |
|   lex->view_list.empty();
 | |
|   lex->with_persistent_for_clause= FALSE;
 | |
|   lex->column_list= NULL;
 | |
|   lex->index_list= NULL;
 | |
|   lex->prepared_stmt_params.empty();
 | |
|   lex->auxiliary_table_list.empty();
 | |
|   lex->unit.next= lex->unit.master=
 | |
|     lex->unit.link_next= lex->unit.return_to= 0;
 | |
|   lex->unit.prev= lex->unit.link_prev= 0;
 | |
|   lex->unit.slave= lex->current_select=
 | |
|     lex->all_selects_list= &lex->select_lex;
 | |
|   lex->select_lex.master= &lex->unit;
 | |
|   lex->select_lex.prev= &lex->unit.slave;
 | |
|   lex->select_lex.link_next= lex->select_lex.slave= lex->select_lex.next= 0;
 | |
|   lex->select_lex.link_prev= (st_select_lex_node**)&(lex->all_selects_list);
 | |
|   lex->select_lex.options= 0;
 | |
|   lex->select_lex.sql_cache= SELECT_LEX::SQL_CACHE_UNSPECIFIED;
 | |
|   lex->select_lex.init_order();
 | |
|   lex->select_lex.group_list.empty();
 | |
|   if (lex->select_lex.group_list_ptrs)
 | |
|     lex->select_lex.group_list_ptrs->clear();
 | |
|   lex->describe= 0;
 | |
|   lex->analyze_stmt= 0;
 | |
|   lex->explain_json= false;
 | |
|   lex->subqueries= FALSE;
 | |
|   lex->context_analysis_only= 0;
 | |
|   lex->derived_tables= 0;
 | |
|   lex->safe_to_cache_query= 1;
 | |
|   lex->parsing_options.reset();
 | |
|   lex->empty_field_list_on_rset= 0;
 | |
|   lex->select_lex.select_number= 1;
 | |
|   lex->length=0;
 | |
|   lex->part_info= 0;
 | |
|   lex->select_lex.in_sum_expr=0;
 | |
|   lex->select_lex.ftfunc_list_alloc.empty();
 | |
|   lex->select_lex.ftfunc_list= &lex->select_lex.ftfunc_list_alloc;
 | |
|   lex->select_lex.group_list.empty();
 | |
|   lex->select_lex.order_list.empty();
 | |
|   lex->select_lex.gorder_list.empty();
 | |
|   lex->m_sql_cmd= NULL;
 | |
|   lex->duplicates= DUP_ERROR;
 | |
|   lex->ignore= 0;
 | |
|   lex->spname= NULL;
 | |
|   lex->spcont= NULL;
 | |
|   lex->proc_list.first= 0;
 | |
|   lex->escape_used= FALSE;
 | |
|   lex->query_tables= 0;
 | |
|   lex->reset_query_tables_list(FALSE);
 | |
|   lex->expr_allows_subselect= TRUE;
 | |
|   lex->use_only_table_context= FALSE;
 | |
|   lex->parse_vcol_expr= FALSE;
 | |
|   lex->check_exists= FALSE;
 | |
|   lex->create_info.lex_start();
 | |
|   lex->verbose= 0;
 | |
| 
 | |
|   lex->name= null_lex_str;
 | |
|   lex->event_parse_data= NULL;
 | |
|   lex->profile_options= PROFILE_NONE;
 | |
|   lex->nest_level=0 ;
 | |
|   lex->select_lex.nest_level_base= &lex->unit;
 | |
|   lex->allow_sum_func= 0;
 | |
|   lex->in_sum_func= NULL;
 | |
| 
 | |
|   lex->is_lex_started= TRUE;
 | |
|   lex->used_tables= 0;
 | |
|   lex->reset_slave_info.all= false;
 | |
|   lex->limit_rows_examined= 0;
 | |
|   lex->limit_rows_examined_cnt= ULONGLONG_MAX;
 | |
|   lex->var_list.empty();
 | |
|   lex->stmt_var_list.empty();
 | |
|   DBUG_VOID_RETURN;
 | |
| }
 | |
| 
 | |
| void lex_end(LEX *lex)
 | |
| {
 | |
|   DBUG_ENTER("lex_end");
 | |
|   DBUG_PRINT("enter", ("lex: 0x%lx", (long) lex));
 | |
| 
 | |
|   /* release used plugins */
 | |
|   if (lex->plugins.elements) /* No function call and no mutex if no plugins. */
 | |
|   {
 | |
|     plugin_unlock_list(0, (plugin_ref*)lex->plugins.buffer, 
 | |
|                        lex->plugins.elements);
 | |
|   }
 | |
|   reset_dynamic(&lex->plugins);
 | |
| 
 | |
|   if (lex->context_analysis_only & CONTEXT_ANALYSIS_ONLY_PREPARE)
 | |
|   {
 | |
|     /*
 | |
|       Don't delete lex->sphead, it'll be needed for EXECUTE.
 | |
|       Note that of all statements that populate lex->sphead
 | |
|       only SQLCOM_COMPOUND can be PREPAREd
 | |
|     */
 | |
|     DBUG_ASSERT(lex->sphead == 0 || lex->sql_command == SQLCOM_COMPOUND);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     delete lex->sphead;
 | |
|     lex->sphead= NULL;
 | |
|   }
 | |
| 
 | |
|   lex->mi.reset();
 | |
| 
 | |
|   DBUG_VOID_RETURN;
 | |
| }
 | |
| 
 | |
| Yacc_state::~Yacc_state()
 | |
| {
 | |
|   if (yacc_yyss)
 | |
|   {
 | |
|     my_free(yacc_yyss);
 | |
|     my_free(yacc_yyvs);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static int find_keyword(Lex_input_stream *lip, uint len, bool function)
 | |
| {
 | |
|   const char *tok= lip->get_tok_start();
 | |
| 
 | |
|   SYMBOL *symbol= get_hash_symbol(tok, len, function);
 | |
|   if (symbol)
 | |
|   {
 | |
|     lip->yylval->symbol.symbol=symbol;
 | |
|     lip->yylval->symbol.str= (char*) tok;
 | |
|     lip->yylval->symbol.length=len;
 | |
| 
 | |
|     if ((symbol->tok == NOT_SYM) &&
 | |
|         (lip->m_thd->variables.sql_mode & MODE_HIGH_NOT_PRECEDENCE))
 | |
|       return NOT2_SYM;
 | |
|     if ((symbol->tok == OR_OR_SYM) &&
 | |
| 	!(lip->m_thd->variables.sql_mode & MODE_PIPES_AS_CONCAT))
 | |
|       return OR2_SYM;
 | |
| 
 | |
|     return symbol->tok;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Check if name is a keyword
 | |
| 
 | |
|   SYNOPSIS
 | |
|     is_keyword()
 | |
|     name      checked name (must not be empty)
 | |
|     len       length of checked name
 | |
| 
 | |
|   RETURN VALUES
 | |
|     0         name is a keyword
 | |
|     1         name isn't a keyword
 | |
| */
 | |
| 
 | |
| bool is_keyword(const char *name, uint len)
 | |
| {
 | |
|   DBUG_ASSERT(len != 0);
 | |
|   return get_hash_symbol(name,len,0)!=0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Check if name is a sql function
 | |
| 
 | |
|     @param name      checked name
 | |
| 
 | |
|     @return is this a native function or not
 | |
|     @retval 0         name is a function
 | |
|     @retval 1         name isn't a function
 | |
| */
 | |
| 
 | |
| bool is_lex_native_function(const LEX_STRING *name)
 | |
| {
 | |
|   DBUG_ASSERT(name != NULL);
 | |
|   return (get_hash_symbol(name->str, (uint) name->length, 1) != 0);
 | |
| }
 | |
| 
 | |
| /* make a copy of token before ptr and set yytoklen */
 | |
| 
 | |
| static LEX_STRING get_token(Lex_input_stream *lip, uint skip, uint length)
 | |
| {
 | |
|   LEX_STRING tmp;
 | |
|   lip->yyUnget();                       // ptr points now after last token char
 | |
|   tmp.length= length;
 | |
|   tmp.str= lip->m_thd->strmake(lip->get_tok_start() + skip, tmp.length);
 | |
| 
 | |
|   lip->m_cpp_text_start= lip->get_cpp_tok_start() + skip;
 | |
|   lip->m_cpp_text_end= lip->m_cpp_text_start + tmp.length;
 | |
| 
 | |
|   return tmp;
 | |
| }
 | |
| 
 | |
| /* 
 | |
|  todo: 
 | |
|    There are no dangerous charsets in mysql for function 
 | |
|    get_quoted_token yet. But it should be fixed in the 
 | |
|    future to operate multichar strings (like ucs2)
 | |
| */
 | |
| 
 | |
| static LEX_STRING get_quoted_token(Lex_input_stream *lip,
 | |
|                                    uint skip,
 | |
|                                    uint length, char quote)
 | |
| {
 | |
|   LEX_STRING tmp;
 | |
|   const char *from, *end;
 | |
|   char *to;
 | |
|   lip->yyUnget();                       // ptr points now after last token char
 | |
|   tmp.length= length;
 | |
|   tmp.str=(char*) lip->m_thd->alloc(tmp.length+1);
 | |
|   from= lip->get_tok_start() + skip;
 | |
|   to= tmp.str;
 | |
|   end= to+length;
 | |
| 
 | |
|   lip->m_cpp_text_start= lip->get_cpp_tok_start() + skip;
 | |
|   lip->m_cpp_text_end= lip->m_cpp_text_start + length;
 | |
| 
 | |
|   for ( ; to != end; )
 | |
|   {
 | |
|     if ((*to++= *from++) == quote)
 | |
|     {
 | |
|       from++;					// Skip double quotes
 | |
|       lip->m_cpp_text_start++;
 | |
|     }
 | |
|   }
 | |
|   *to= 0;					// End null for safety
 | |
|   return tmp;
 | |
| }
 | |
| 
 | |
| 
 | |
| static size_t
 | |
| my_unescape(CHARSET_INFO *cs, char *to, const char *str, const char *end,
 | |
|             int sep, bool backslash_escapes)
 | |
| {
 | |
|   char *start= to;
 | |
|   for ( ; str != end ; str++)
 | |
|   {
 | |
| #ifdef USE_MB
 | |
|     int l;
 | |
|     if (use_mb(cs) && (l= my_ismbchar(cs, str, end)))
 | |
|     {
 | |
|       while (l--)
 | |
|         *to++ = *str++;
 | |
|       str--;
 | |
|       continue;
 | |
|     }
 | |
| #endif
 | |
|     if (backslash_escapes && *str == '\\' && str + 1 != end)
 | |
|     {
 | |
|       switch(*++str) {
 | |
|       case 'n':
 | |
|         *to++='\n';
 | |
|         break;
 | |
|       case 't':
 | |
|         *to++= '\t';
 | |
|         break;
 | |
|       case 'r':
 | |
|         *to++ = '\r';
 | |
|         break;
 | |
|       case 'b':
 | |
|         *to++ = '\b';
 | |
|         break;
 | |
|       case '0':
 | |
|         *to++= 0;                      // Ascii null
 | |
|         break;
 | |
|       case 'Z':                        // ^Z must be escaped on Win32
 | |
|         *to++='\032';
 | |
|         break;
 | |
|       case '_':
 | |
|       case '%':
 | |
|         *to++= '\\';                   // remember prefix for wildcard
 | |
|         /* Fall through */
 | |
|       default:
 | |
|         *to++= *str;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     else if (*str == sep)
 | |
|       *to++= *str++;                // Two ' or "
 | |
|     else
 | |
|       *to++ = *str;
 | |
|   }
 | |
|   *to= 0;
 | |
|   return to - start;
 | |
| }
 | |
| 
 | |
| 
 | |
| size_t
 | |
| Lex_input_stream::unescape(CHARSET_INFO *cs, char *to,
 | |
|                            const char *str, const char *end,
 | |
|                            int sep)
 | |
| {
 | |
|   return my_unescape(cs, to, str, end, sep, m_thd->backslash_escapes());
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Return an unescaped text literal without quotes
 | |
|   Fix sometimes to do only one scan of the string
 | |
| */
 | |
| 
 | |
| bool Lex_input_stream::get_text(LEX_STRING *dst, int pre_skip, int post_skip)
 | |
| {
 | |
|   reg1 uchar c,sep;
 | |
|   uint found_escape=0;
 | |
|   CHARSET_INFO *cs= m_thd->charset();
 | |
| 
 | |
|   tok_bitmap= 0;
 | |
|   sep= yyGetLast();                        // String should end with this
 | |
|   while (! eof())
 | |
|   {
 | |
|     c= yyGet();
 | |
|     tok_bitmap|= c;
 | |
| #ifdef USE_MB
 | |
|     {
 | |
|       int l;
 | |
|       if (use_mb(cs) &&
 | |
|           (l = my_ismbchar(cs,
 | |
|                            get_ptr() -1,
 | |
|                            get_end_of_query()))) {
 | |
|         skip_binary(l-1);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|     if (c == '\\' &&
 | |
|         !(m_thd->variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES))
 | |
|     {					// Escaped character
 | |
|       found_escape=1;
 | |
|       if (eof())
 | |
| 	return true;
 | |
|       yySkip();
 | |
|     }
 | |
|     else if (c == sep)
 | |
|     {
 | |
|       if (c == yyGet())                 // Check if two separators in a row
 | |
|       {
 | |
|         found_escape=1;                 // duplicate. Remember for delete
 | |
| 	continue;
 | |
|       }
 | |
|       else
 | |
|         yyUnget();
 | |
| 
 | |
|       /* Found end. Unescape and return string */
 | |
|       const char *str, *end;
 | |
| 
 | |
|       str= get_tok_start();
 | |
|       end= get_ptr();
 | |
|       /* Extract the text from the token */
 | |
|       str += pre_skip;
 | |
|       end -= post_skip;
 | |
|       DBUG_ASSERT(end >= str);
 | |
| 
 | |
|       if (!(dst->str= (char*) m_thd->alloc((uint) (end - str) + 1)))
 | |
|       {
 | |
|         dst->str= (char*) "";        // Sql_alloc has set error flag
 | |
|         dst->length= 0;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       m_cpp_text_start= get_cpp_tok_start() + pre_skip;
 | |
|       m_cpp_text_end= get_cpp_ptr() - post_skip;
 | |
| 
 | |
|       if (!found_escape)
 | |
|       {
 | |
|         memcpy(dst->str, str, dst->length= (end - str));
 | |
|         dst->str[dst->length]= 0;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         dst->length= unescape(cs, dst->str, str, end, sep);
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;                         // unexpected end of query
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Calc type of integer; long integer, longlong integer or real.
 | |
| ** Returns smallest type that match the string.
 | |
| ** When using unsigned long long values the result is converted to a real
 | |
| ** because else they will be unexpected sign changes because all calculation
 | |
| ** is done with longlong or double.
 | |
| */
 | |
| 
 | |
| static const char *long_str="2147483647";
 | |
| static const uint long_len=10;
 | |
| static const char *signed_long_str="-2147483648";
 | |
| static const char *longlong_str="9223372036854775807";
 | |
| static const uint longlong_len=19;
 | |
| static const char *signed_longlong_str="-9223372036854775808";
 | |
| static const uint signed_longlong_len=19;
 | |
| static const char *unsigned_longlong_str="18446744073709551615";
 | |
| static const uint unsigned_longlong_len=20;
 | |
| 
 | |
| static inline uint int_token(const char *str,uint length)
 | |
| {
 | |
|   if (length < long_len)			// quick normal case
 | |
|     return NUM;
 | |
|   bool neg=0;
 | |
| 
 | |
|   if (*str == '+')				// Remove sign and pre-zeros
 | |
|   {
 | |
|     str++; length--;
 | |
|   }
 | |
|   else if (*str == '-')
 | |
|   {
 | |
|     str++; length--;
 | |
|     neg=1;
 | |
|   }
 | |
|   while (*str == '0' && length)
 | |
|   {
 | |
|     str++; length --;
 | |
|   }
 | |
|   if (length < long_len)
 | |
|     return NUM;
 | |
| 
 | |
|   uint smaller,bigger;
 | |
|   const char *cmp;
 | |
|   if (neg)
 | |
|   {
 | |
|     if (length == long_len)
 | |
|     {
 | |
|       cmp= signed_long_str+1;
 | |
|       smaller=NUM;				// If <= signed_long_str
 | |
|       bigger=LONG_NUM;				// If >= signed_long_str
 | |
|     }
 | |
|     else if (length < signed_longlong_len)
 | |
|       return LONG_NUM;
 | |
|     else if (length > signed_longlong_len)
 | |
|       return DECIMAL_NUM;
 | |
|     else
 | |
|     {
 | |
|       cmp=signed_longlong_str+1;
 | |
|       smaller=LONG_NUM;				// If <= signed_longlong_str
 | |
|       bigger=DECIMAL_NUM;
 | |
|     }
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     if (length == long_len)
 | |
|     {
 | |
|       cmp= long_str;
 | |
|       smaller=NUM;
 | |
|       bigger=LONG_NUM;
 | |
|     }
 | |
|     else if (length < longlong_len)
 | |
|       return LONG_NUM;
 | |
|     else if (length > longlong_len)
 | |
|     {
 | |
|       if (length > unsigned_longlong_len)
 | |
|         return DECIMAL_NUM;
 | |
|       cmp=unsigned_longlong_str;
 | |
|       smaller=ULONGLONG_NUM;
 | |
|       bigger=DECIMAL_NUM;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       cmp=longlong_str;
 | |
|       smaller=LONG_NUM;
 | |
|       bigger= ULONGLONG_NUM;
 | |
|     }
 | |
|   }
 | |
|   while (*cmp && *cmp++ == *str++) ;
 | |
|   return ((uchar) str[-1] <= (uchar) cmp[-1]) ? smaller : bigger;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   Given a stream that is advanced to the first contained character in 
 | |
|   an open comment, consume the comment.  Optionally, if we are allowed, 
 | |
|   recurse so that we understand comments within this current comment.
 | |
| 
 | |
|   At this level, we do not support version-condition comments.  We might 
 | |
|   have been called with having just passed one in the stream, though.  In 
 | |
|   that case, we probably want to tolerate mundane comments inside.  Thus,
 | |
|   the case for recursion.
 | |
| 
 | |
|   @retval  Whether EOF reached before comment is closed.
 | |
| */
 | |
| bool consume_comment(Lex_input_stream *lip, int remaining_recursions_permitted)
 | |
| {
 | |
|   reg1 uchar c;
 | |
|   while (! lip->eof())
 | |
|   {
 | |
|     c= lip->yyGet();
 | |
| 
 | |
|     if (remaining_recursions_permitted > 0)
 | |
|     {
 | |
|       if ((c == '/') && (lip->yyPeek() == '*'))
 | |
|       {
 | |
|         lip->yySkip(); /* Eat asterisk */
 | |
|         consume_comment(lip, remaining_recursions_permitted-1);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (c == '*')
 | |
|     {
 | |
|       if (lip->yyPeek() == '/')
 | |
|       {
 | |
|         lip->yySkip(); /* Eat slash */
 | |
|         return FALSE;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (c == '\n')
 | |
|       lip->yylineno++;
 | |
|   }
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   MYSQLlex remember the following states from the following MYSQLlex()
 | |
| 
 | |
|   @param yylval         [out]  semantic value of the token being parsed (yylval)
 | |
|   @param thd            THD
 | |
| 
 | |
|   - MY_LEX_EOQ			Found end of query
 | |
|   - MY_LEX_OPERATOR_OR_IDENT	Last state was an ident, text or number
 | |
| 				(which can't be followed by a signed number)
 | |
| */
 | |
| 
 | |
| int MYSQLlex(YYSTYPE *yylval, THD *thd)
 | |
| {
 | |
|   Lex_input_stream *lip= & thd->m_parser_state->m_lip;
 | |
|   int token;
 | |
| 
 | |
|   if (lip->lookahead_token >= 0)
 | |
|   {
 | |
|     /*
 | |
|       The next token was already parsed in advance,
 | |
|       return it.
 | |
|     */
 | |
|     token= lip->lookahead_token;
 | |
|     lip->lookahead_token= -1;
 | |
|     *yylval= *(lip->lookahead_yylval);
 | |
|     lip->lookahead_yylval= NULL;
 | |
|     lip->m_digest_psi= MYSQL_ADD_TOKEN(lip->m_digest_psi, token, yylval);
 | |
|     return token;
 | |
|   }
 | |
| 
 | |
|   token= lex_one_token(yylval, thd);
 | |
| 
 | |
|   switch(token) {
 | |
|   case WITH:
 | |
|     /*
 | |
|       Parsing 'WITH' 'ROLLUP' or 'WITH' 'CUBE' requires 2 look ups,
 | |
|       which makes the grammar LALR(2).
 | |
|       Replace by a single 'WITH_ROLLUP' or 'WITH_CUBE' token,
 | |
|       to transform the grammar into a LALR(1) grammar,
 | |
|       which sql_yacc.yy can process.
 | |
|     */
 | |
|     token= lex_one_token(yylval, thd);
 | |
|     switch(token) {
 | |
|     case CUBE_SYM:
 | |
|       lip->m_digest_psi= MYSQL_ADD_TOKEN(lip->m_digest_psi, WITH_CUBE_SYM,
 | |
|                                          yylval);
 | |
|       return WITH_CUBE_SYM;
 | |
|     case ROLLUP_SYM:
 | |
|       lip->m_digest_psi= MYSQL_ADD_TOKEN(lip->m_digest_psi, WITH_ROLLUP_SYM,
 | |
|                                          yylval);
 | |
|       return WITH_ROLLUP_SYM;
 | |
|     default:
 | |
|       /*
 | |
|         Save the token following 'WITH'
 | |
|       */
 | |
|       lip->lookahead_yylval= lip->yylval;
 | |
|       lip->yylval= NULL;
 | |
|       lip->lookahead_token= token;
 | |
|       lip->m_digest_psi= MYSQL_ADD_TOKEN(lip->m_digest_psi, WITH, yylval);
 | |
|       return WITH;
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   lip->m_digest_psi= MYSQL_ADD_TOKEN(lip->m_digest_psi, token, yylval);
 | |
|   return token;
 | |
| }
 | |
| 
 | |
| static int lex_one_token(YYSTYPE *yylval, THD *thd)
 | |
| {
 | |
|   reg1	uchar UNINIT_VAR(c);
 | |
|   bool comment_closed;
 | |
|   int	tokval, result_state;
 | |
|   uint length;
 | |
|   enum my_lex_states state;
 | |
|   Lex_input_stream *lip= & thd->m_parser_state->m_lip;
 | |
|   LEX *lex= thd->lex;
 | |
|   CHARSET_INFO *const cs= thd->charset();
 | |
|   const uchar *const state_map= cs->state_map;
 | |
|   const uchar *const ident_map= cs->ident_map;
 | |
| 
 | |
|   lip->yylval=yylval;			// The global state
 | |
| 
 | |
|   lip->start_token();
 | |
|   state=lip->next_state;
 | |
|   lip->next_state=MY_LEX_OPERATOR_OR_IDENT;
 | |
|   for (;;)
 | |
|   {
 | |
|     switch (state) {
 | |
|     case MY_LEX_OPERATOR_OR_IDENT:	// Next is operator or keyword
 | |
|     case MY_LEX_START:			// Start of token
 | |
|       // Skip starting whitespace
 | |
|       while(state_map[c= lip->yyPeek()] == MY_LEX_SKIP)
 | |
|       {
 | |
| 	if (c == '\n')
 | |
| 	  lip->yylineno++;
 | |
| 
 | |
|         lip->yySkip();
 | |
|       }
 | |
| 
 | |
|       /* Start of real token */
 | |
|       lip->restart_token();
 | |
|       c= lip->yyGet();
 | |
|       state= (enum my_lex_states) state_map[c];
 | |
|       break;
 | |
|     case MY_LEX_ESCAPE:
 | |
|       if (lip->yyGet() == 'N')
 | |
|       {					// Allow \N as shortcut for NULL
 | |
| 	yylval->lex_str.str=(char*) "\\N";
 | |
| 	yylval->lex_str.length=2;
 | |
| 	return NULL_SYM;
 | |
|       }
 | |
|       /* Fall through */
 | |
|     case MY_LEX_CHAR:			// Unknown or single char token
 | |
|     case MY_LEX_SKIP:			// This should not happen
 | |
|       if (c != ')')
 | |
| 	lip->next_state= MY_LEX_START;	// Allow signed numbers
 | |
|       return((int) c);
 | |
| 
 | |
|     case MY_LEX_MINUS_OR_COMMENT:
 | |
|       if (lip->yyPeek() == '-' &&
 | |
|           (my_isspace(cs,lip->yyPeekn(1)) ||
 | |
|            my_iscntrl(cs,lip->yyPeekn(1))))
 | |
|       {
 | |
|         state=MY_LEX_COMMENT;
 | |
|         break;
 | |
|       }
 | |
|       lip->next_state= MY_LEX_START;	// Allow signed numbers
 | |
|       return((int) c);
 | |
| 
 | |
|     case MY_LEX_PLACEHOLDER:
 | |
|       /*
 | |
|         Check for a placeholder: it should not precede a possible identifier
 | |
|         because of binlogging: when a placeholder is replaced with
 | |
|         its value in a query for the binlog, the query must stay
 | |
|         grammatically correct.
 | |
|       */
 | |
|       lip->next_state= MY_LEX_START;	// Allow signed numbers
 | |
|       if (lip->stmt_prepare_mode && !ident_map[(uchar) lip->yyPeek()])
 | |
|         return(PARAM_MARKER);
 | |
|       return((int) c);
 | |
| 
 | |
|     case MY_LEX_COMMA:
 | |
|       lip->next_state= MY_LEX_START;	// Allow signed numbers
 | |
|       /*
 | |
|         Warning:
 | |
|         This is a work around, to make the "remember_name" rule in
 | |
|         sql/sql_yacc.yy work properly.
 | |
|         The problem is that, when parsing "select expr1, expr2",
 | |
|         the code generated by bison executes the *pre* action
 | |
|         remember_name (see select_item) *before* actually parsing the
 | |
|         first token of expr2.
 | |
|       */
 | |
|       lip->restart_token();
 | |
|       return((int) c);
 | |
| 
 | |
|     case MY_LEX_IDENT_OR_NCHAR:
 | |
|       if (lip->yyPeek() != '\'')
 | |
|       {
 | |
| 	state= MY_LEX_IDENT;
 | |
| 	break;
 | |
|       }
 | |
|       /* Found N'string' */
 | |
|       lip->yySkip();                         // Skip '
 | |
|       if (lip->get_text(&yylval->lex_str, 2, 1))
 | |
|       {
 | |
| 	state= MY_LEX_CHAR;             // Read char by char
 | |
| 	break;
 | |
|       }
 | |
|       lex->text_string_is_7bit= (lip->tok_bitmap & 0x80) ? 0 : 1;
 | |
|       return(NCHAR_STRING);
 | |
| 
 | |
|     case MY_LEX_IDENT_OR_HEX:
 | |
|       if (lip->yyPeek() == '\'')
 | |
|       {					// Found x'hex-number'
 | |
| 	state= MY_LEX_HEX_NUMBER;
 | |
| 	break;
 | |
|       }
 | |
|     case MY_LEX_IDENT_OR_BIN:
 | |
|       if (lip->yyPeek() == '\'')
 | |
|       {                                 // Found b'bin-number'
 | |
|         state= MY_LEX_BIN_NUMBER;
 | |
|         break;
 | |
|       }
 | |
|     case MY_LEX_IDENT:
 | |
|       const char *start;
 | |
| #if defined(USE_MB) && defined(USE_MB_IDENT)
 | |
|       if (use_mb(cs))
 | |
|       {
 | |
| 	result_state= IDENT_QUOTED;
 | |
|         if (my_mbcharlen(cs, lip->yyGetLast()) > 1)
 | |
|         {
 | |
|           int l = my_ismbchar(cs,
 | |
|                               lip->get_ptr() -1,
 | |
|                               lip->get_end_of_query());
 | |
|           if (l == 0) {
 | |
|             state = MY_LEX_CHAR;
 | |
|             continue;
 | |
|           }
 | |
|           lip->skip_binary(l - 1);
 | |
|         }
 | |
|         while (ident_map[c=lip->yyGet()])
 | |
|         {
 | |
|           if (my_mbcharlen(cs, c) > 1)
 | |
|           {
 | |
|             int l;
 | |
|             if ((l = my_ismbchar(cs,
 | |
|                                  lip->get_ptr() -1,
 | |
|                                  lip->get_end_of_query())) == 0)
 | |
|               break;
 | |
|             lip->skip_binary(l-1);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       else
 | |
| #endif
 | |
|       {
 | |
|         for (result_state= c;
 | |
|              ident_map[(uchar) (c= lip->yyGet())];
 | |
|              result_state|= c)
 | |
|           ;
 | |
|         /* If there were non-ASCII characters, mark that we must convert */
 | |
|         result_state= result_state & 0x80 ? IDENT_QUOTED : IDENT;
 | |
|       }
 | |
|       length= lip->yyLength();
 | |
|       start= lip->get_ptr();
 | |
|       if (lip->ignore_space)
 | |
|       {
 | |
|         /*
 | |
|           If we find a space then this can't be an identifier. We notice this
 | |
|           below by checking start != lex->ptr.
 | |
|         */
 | |
|         for (; state_map[(uchar) c] == MY_LEX_SKIP ; c= lip->yyGet())
 | |
|           ;
 | |
|       }
 | |
|       if (start == lip->get_ptr() && c == '.' &&
 | |
|           ident_map[(uchar) lip->yyPeek()])
 | |
| 	lip->next_state=MY_LEX_IDENT_SEP;
 | |
|       else
 | |
|       {					// '(' must follow directly if function
 | |
|         lip->yyUnget();
 | |
| 	if ((tokval = find_keyword(lip, length, c == '(')))
 | |
| 	{
 | |
| 	  lip->next_state= MY_LEX_START;	// Allow signed numbers
 | |
| 	  return(tokval);		// Was keyword
 | |
| 	}
 | |
|         lip->yySkip();                  // next state does a unget
 | |
|       }
 | |
|       yylval->lex_str=get_token(lip, 0, length);
 | |
| 
 | |
|       /*
 | |
|          Note: "SELECT _bla AS 'alias'"
 | |
|          _bla should be considered as a IDENT if charset haven't been found.
 | |
|          So we don't use MYF(MY_WME) with get_charset_by_csname to avoid
 | |
|          producing an error.
 | |
|       */
 | |
| 
 | |
|       if (yylval->lex_str.str[0] == '_')
 | |
|       {
 | |
|         CHARSET_INFO *cs= get_charset_by_csname(yylval->lex_str.str + 1,
 | |
|                                                 MY_CS_PRIMARY, MYF(0));
 | |
|         if (cs)
 | |
|         {
 | |
|           yylval->charset= cs;
 | |
|           lip->m_underscore_cs= cs;
 | |
| 
 | |
|           lip->body_utf8_append(lip->m_cpp_text_start,
 | |
|                                 lip->get_cpp_tok_start() + length);
 | |
|           return(UNDERSCORE_CHARSET);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       lip->body_utf8_append(lip->m_cpp_text_start);
 | |
| 
 | |
|       lip->body_utf8_append_literal(thd, &yylval->lex_str, cs,
 | |
|                                     lip->m_cpp_text_end);
 | |
| 
 | |
|       return(result_state);			// IDENT or IDENT_QUOTED
 | |
| 
 | |
|     case MY_LEX_IDENT_SEP:                  // Found ident and now '.'
 | |
|       yylval->lex_str.str= (char*) lip->get_ptr();
 | |
|       yylval->lex_str.length= 1;
 | |
|       c= lip->yyGet();                          // should be '.'
 | |
|       lip->next_state= MY_LEX_IDENT_START;      // Next is ident (not keyword)
 | |
|       if (!ident_map[(uchar) lip->yyPeek()])    // Probably ` or "
 | |
| 	lip->next_state= MY_LEX_START;
 | |
|       return((int) c);
 | |
| 
 | |
|     case MY_LEX_NUMBER_IDENT:		// number or ident which num-start
 | |
|       if (lip->yyGetLast() == '0')
 | |
|       {
 | |
|         c= lip->yyGet();
 | |
|         if (c == 'x')
 | |
|         {
 | |
|           while (my_isxdigit(cs,(c = lip->yyGet()))) ;
 | |
|           if ((lip->yyLength() >= 3) && !ident_map[c])
 | |
|           {
 | |
|             /* skip '0x' */
 | |
|             yylval->lex_str=get_token(lip, 2, lip->yyLength()-2);
 | |
|             return (HEX_NUM);
 | |
|           }
 | |
|           lip->yyUnget();
 | |
|           state= MY_LEX_IDENT_START;
 | |
|           break;
 | |
|         }
 | |
|         else if (c == 'b')
 | |
|         {
 | |
|           while ((c= lip->yyGet()) == '0' || c == '1')
 | |
|             ;
 | |
|           if ((lip->yyLength() >= 3) && !ident_map[c])
 | |
|           {
 | |
|             /* Skip '0b' */
 | |
|             yylval->lex_str= get_token(lip, 2, lip->yyLength()-2);
 | |
|             return (BIN_NUM);
 | |
|           }
 | |
|           lip->yyUnget();
 | |
|           state= MY_LEX_IDENT_START;
 | |
|           break;
 | |
|         }
 | |
|         lip->yyUnget();
 | |
|       }
 | |
| 
 | |
|       while (my_isdigit(cs, (c = lip->yyGet()))) ;
 | |
|       if (!ident_map[c])
 | |
|       {					// Can't be identifier
 | |
| 	state=MY_LEX_INT_OR_REAL;
 | |
| 	break;
 | |
|       }
 | |
|       if (c == 'e' || c == 'E')
 | |
|       {
 | |
| 	// The following test is written this way to allow numbers of type 1e1
 | |
|         if (my_isdigit(cs,lip->yyPeek()) ||
 | |
|             (c=(lip->yyGet())) == '+' || c == '-')
 | |
| 	{				// Allow 1E+10
 | |
|           if (my_isdigit(cs,lip->yyPeek()))     // Number must have digit after sign
 | |
| 	  {
 | |
|             lip->yySkip();
 | |
|             while (my_isdigit(cs,lip->yyGet())) ;
 | |
|             yylval->lex_str=get_token(lip, 0, lip->yyLength());
 | |
| 	    return(FLOAT_NUM);
 | |
| 	  }
 | |
| 	}
 | |
|         lip->yyUnget();
 | |
|       }
 | |
|       // fall through
 | |
|     case MY_LEX_IDENT_START:			// We come here after '.'
 | |
|       result_state= IDENT;
 | |
| #if defined(USE_MB) && defined(USE_MB_IDENT)
 | |
|       if (use_mb(cs))
 | |
|       {
 | |
| 	result_state= IDENT_QUOTED;
 | |
|         while (ident_map[c=lip->yyGet()])
 | |
|         {
 | |
|           if (my_mbcharlen(cs, c) > 1)
 | |
|           {
 | |
|             int l;
 | |
|             if ((l = my_ismbchar(cs,
 | |
|                                  lip->get_ptr() -1,
 | |
|                                  lip->get_end_of_query())) == 0)
 | |
|               break;
 | |
|             lip->skip_binary(l-1);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       else
 | |
| #endif
 | |
|       {
 | |
|         for (result_state=0; ident_map[c= lip->yyGet()]; result_state|= c)
 | |
|           ;
 | |
|         /* If there were non-ASCII characters, mark that we must convert */
 | |
|         result_state= result_state & 0x80 ? IDENT_QUOTED : IDENT;
 | |
|       }
 | |
|       if (c == '.' && ident_map[(uchar) lip->yyPeek()])
 | |
| 	lip->next_state=MY_LEX_IDENT_SEP;// Next is '.'
 | |
| 
 | |
|       yylval->lex_str= get_token(lip, 0, lip->yyLength());
 | |
| 
 | |
|       lip->body_utf8_append(lip->m_cpp_text_start);
 | |
| 
 | |
|       lip->body_utf8_append_literal(thd, &yylval->lex_str, cs,
 | |
|                                     lip->m_cpp_text_end);
 | |
| 
 | |
|       return(result_state);
 | |
| 
 | |
|     case MY_LEX_USER_VARIABLE_DELIMITER:	// Found quote char
 | |
|     {
 | |
|       uint double_quotes= 0;
 | |
|       char quote_char= c;                       // Used char
 | |
|       while ((c=lip->yyGet()))
 | |
|       {
 | |
| 	int var_length;
 | |
| 	if ((var_length= my_mbcharlen(cs, c)) == 1)
 | |
| 	{
 | |
| 	  if (c == quote_char)
 | |
| 	  {
 | |
|             if (lip->yyPeek() != quote_char)
 | |
| 	      break;
 | |
|             c=lip->yyGet();
 | |
| 	    double_quotes++;
 | |
| 	    continue;
 | |
| 	  }
 | |
| 	}
 | |
| #ifdef USE_MB
 | |
|         else if (use_mb(cs))
 | |
|         {
 | |
|           if ((var_length= my_ismbchar(cs, lip->get_ptr() - 1,
 | |
|                                        lip->get_end_of_query())))
 | |
|             lip->skip_binary(var_length-1);
 | |
|         }
 | |
| #endif
 | |
|       }
 | |
|       if (double_quotes)
 | |
| 	yylval->lex_str=get_quoted_token(lip, 1,
 | |
|                                          lip->yyLength() - double_quotes -1,
 | |
| 					 quote_char);
 | |
|       else
 | |
|         yylval->lex_str=get_token(lip, 1, lip->yyLength() -1);
 | |
|       if (c == quote_char)
 | |
|         lip->yySkip();                  // Skip end `
 | |
|       lip->next_state= MY_LEX_START;
 | |
| 
 | |
|       lip->body_utf8_append(lip->m_cpp_text_start);
 | |
| 
 | |
|       lip->body_utf8_append_literal(thd, &yylval->lex_str, cs,
 | |
|                                     lip->m_cpp_text_end);
 | |
| 
 | |
|       return(IDENT_QUOTED);
 | |
|     }
 | |
|     case MY_LEX_INT_OR_REAL:		// Complete int or incomplete real
 | |
|       if (c != '.')
 | |
|       {					// Found complete integer number.
 | |
|         yylval->lex_str=get_token(lip, 0, lip->yyLength());
 | |
| 	return int_token(yylval->lex_str.str, (uint) yylval->lex_str.length);
 | |
|       }
 | |
|       // fall through
 | |
|     case MY_LEX_REAL:			// Incomplete real number
 | |
|       while (my_isdigit(cs,c = lip->yyGet())) ;
 | |
| 
 | |
|       if (c == 'e' || c == 'E')
 | |
|       {
 | |
|         c = lip->yyGet();
 | |
| 	if (c == '-' || c == '+')
 | |
|           c = lip->yyGet();                     // Skip sign
 | |
| 	if (!my_isdigit(cs,c))
 | |
| 	{				// No digit after sign
 | |
| 	  state= MY_LEX_CHAR;
 | |
| 	  break;
 | |
| 	}
 | |
|         while (my_isdigit(cs,lip->yyGet())) ;
 | |
|         yylval->lex_str=get_token(lip, 0, lip->yyLength());
 | |
| 	return(FLOAT_NUM);
 | |
|       }
 | |
|       yylval->lex_str=get_token(lip, 0, lip->yyLength());
 | |
|       return(DECIMAL_NUM);
 | |
| 
 | |
|     case MY_LEX_HEX_NUMBER:		// Found x'hexstring'
 | |
|       lip->yySkip();                    // Accept opening '
 | |
|       while (my_isxdigit(cs, (c= lip->yyGet()))) ;
 | |
|       if (c != '\'')
 | |
|         return(ABORT_SYM);              // Illegal hex constant
 | |
|       lip->yySkip();                    // Accept closing '
 | |
|       length= lip->yyLength();          // Length of hexnum+3
 | |
|       if ((length % 2) == 0)
 | |
|         return(ABORT_SYM);              // odd number of hex digits
 | |
|       yylval->lex_str=get_token(lip,
 | |
|                                 2,          // skip x'
 | |
|                                 length-3);  // don't count x' and last '
 | |
|       return HEX_STRING;
 | |
| 
 | |
|     case MY_LEX_BIN_NUMBER:           // Found b'bin-string'
 | |
|       lip->yySkip();                  // Accept opening '
 | |
|       while ((c= lip->yyGet()) == '0' || c == '1')
 | |
|         ;
 | |
|       if (c != '\'')
 | |
|         return(ABORT_SYM);            // Illegal hex constant
 | |
|       lip->yySkip();                  // Accept closing '
 | |
|       length= lip->yyLength();        // Length of bin-num + 3
 | |
|       yylval->lex_str= get_token(lip,
 | |
|                                  2,         // skip b'
 | |
|                                  length-3); // don't count b' and last '
 | |
|       return (BIN_NUM);
 | |
| 
 | |
|     case MY_LEX_CMP_OP:			// Incomplete comparison operator
 | |
|       if (state_map[(uchar) lip->yyPeek()] == MY_LEX_CMP_OP ||
 | |
|           state_map[(uchar) lip->yyPeek()] == MY_LEX_LONG_CMP_OP)
 | |
|         lip->yySkip();
 | |
|       if ((tokval = find_keyword(lip, lip->yyLength() + 1, 0)))
 | |
|       {
 | |
| 	lip->next_state= MY_LEX_START;	// Allow signed numbers
 | |
| 	return(tokval);
 | |
|       }
 | |
|       state = MY_LEX_CHAR;		// Something fishy found
 | |
|       break;
 | |
| 
 | |
|     case MY_LEX_LONG_CMP_OP:		// Incomplete comparison operator
 | |
|       if (state_map[(uchar) lip->yyPeek()] == MY_LEX_CMP_OP ||
 | |
|           state_map[(uchar) lip->yyPeek()] == MY_LEX_LONG_CMP_OP)
 | |
|       {
 | |
|         lip->yySkip();
 | |
|         if (state_map[(uchar) lip->yyPeek()] == MY_LEX_CMP_OP)
 | |
|           lip->yySkip();
 | |
|       }
 | |
|       if ((tokval = find_keyword(lip, lip->yyLength() + 1, 0)))
 | |
|       {
 | |
| 	lip->next_state= MY_LEX_START;	// Found long op
 | |
| 	return(tokval);
 | |
|       }
 | |
|       state = MY_LEX_CHAR;		// Something fishy found
 | |
|       break;
 | |
| 
 | |
|     case MY_LEX_BOOL:
 | |
|       if (c != lip->yyPeek())
 | |
|       {
 | |
| 	state=MY_LEX_CHAR;
 | |
| 	break;
 | |
|       }
 | |
|       lip->yySkip();
 | |
|       tokval = find_keyword(lip,2,0);	// Is a bool operator
 | |
|       lip->next_state= MY_LEX_START;	// Allow signed numbers
 | |
|       return(tokval);
 | |
| 
 | |
|     case MY_LEX_STRING_OR_DELIMITER:
 | |
|       if (thd->variables.sql_mode & MODE_ANSI_QUOTES)
 | |
|       {
 | |
| 	state= MY_LEX_USER_VARIABLE_DELIMITER;
 | |
| 	break;
 | |
|       }
 | |
|       /* " used for strings */
 | |
|     case MY_LEX_STRING:			// Incomplete text string
 | |
|       if (lip->get_text(&yylval->lex_str, 1, 1))
 | |
|       {
 | |
| 	state= MY_LEX_CHAR;		// Read char by char
 | |
| 	break;
 | |
|       }
 | |
| 
 | |
|       lip->body_utf8_append(lip->m_cpp_text_start);
 | |
| 
 | |
|       lip->body_utf8_append_literal(thd, &yylval->lex_str,
 | |
|         lip->m_underscore_cs ? lip->m_underscore_cs : cs,
 | |
|         lip->m_cpp_text_end);
 | |
| 
 | |
|       lip->m_underscore_cs= NULL;
 | |
| 
 | |
|       lex->text_string_is_7bit= (lip->tok_bitmap & 0x80) ? 0 : 1;
 | |
|       return(TEXT_STRING);
 | |
| 
 | |
|     case MY_LEX_COMMENT:			//  Comment
 | |
|       lex->select_lex.options|= OPTION_FOUND_COMMENT;
 | |
|       while ((c = lip->yyGet()) != '\n' && c) ;
 | |
|       lip->yyUnget();                   // Safety against eof
 | |
|       state = MY_LEX_START;		// Try again
 | |
|       break;
 | |
|     case MY_LEX_LONG_COMMENT:		/* Long C comment? */
 | |
|       if (lip->yyPeek() != '*')
 | |
|       {
 | |
| 	state=MY_LEX_CHAR;		// Probable division
 | |
| 	break;
 | |
|       }
 | |
|       lex->select_lex.options|= OPTION_FOUND_COMMENT;
 | |
|       /* Reject '/' '*', since we might need to turn off the echo */
 | |
|       lip->yyUnget();
 | |
| 
 | |
|       lip->save_in_comment_state();
 | |
| 
 | |
|       if (lip->yyPeekn(2) == '!' ||
 | |
|           (lip->yyPeekn(2) == 'M' && lip->yyPeekn(3) == '!'))
 | |
|       {
 | |
|         bool maria_comment_syntax= lip->yyPeekn(2) == 'M';
 | |
|         lip->in_comment= DISCARD_COMMENT;
 | |
|         /* Accept '/' '*' '!', but do not keep this marker. */
 | |
|         lip->set_echo(FALSE);
 | |
|         lip->yySkipn(maria_comment_syntax ? 4 : 3);
 | |
| 
 | |
|         /*
 | |
|           The special comment format is very strict:
 | |
|           '/' '*' '!', followed by an optional 'M' and exactly
 | |
|           1-2 digits (major), 2 digits (minor), then 2 digits (dot).
 | |
|           32302  -> 3.23.02
 | |
|           50032  -> 5.0.32
 | |
|           50114  -> 5.1.14
 | |
|           100000 -> 10.0.0
 | |
|         */
 | |
|         if (  my_isdigit(cs, lip->yyPeekn(0))
 | |
|            && my_isdigit(cs, lip->yyPeekn(1))
 | |
|            && my_isdigit(cs, lip->yyPeekn(2))
 | |
|            && my_isdigit(cs, lip->yyPeekn(3))
 | |
|            && my_isdigit(cs, lip->yyPeekn(4))
 | |
|            )
 | |
|         {
 | |
|           ulong version;
 | |
|           uint length= 5;
 | |
|           char *end_ptr= (char*) lip->get_ptr()+length;
 | |
|           int error;
 | |
|           if (my_isdigit(cs, lip->yyPeekn(5)))
 | |
|           {
 | |
|             end_ptr++;                          // 6 digit number
 | |
|             length++;
 | |
|           }
 | |
| 
 | |
|           version= (ulong) my_strtoll10(lip->get_ptr(), &end_ptr, &error);
 | |
| 
 | |
|           /*
 | |
|             MySQL-5.7 has new features and might have new SQL syntax that
 | |
|             MariaDB-10.0 does not understand. Ignore all versioned comments
 | |
|             with MySQL versions in the range 50700-999999, but
 | |
|             do not ignore MariaDB specific comments for the same versions.
 | |
|           */ 
 | |
|           if (version <= MYSQL_VERSION_ID &&
 | |
|               (version < 50700 || version > 99999 || maria_comment_syntax))
 | |
|           {
 | |
|             /* Accept 'M' 'm' 'm' 'd' 'd' */
 | |
|             lip->yySkipn(length);
 | |
|             /* Expand the content of the special comment as real code */
 | |
|             lip->set_echo(TRUE);
 | |
|             state=MY_LEX_START;
 | |
|             break;  /* Do not treat contents as a comment.  */
 | |
|           }
 | |
|           else
 | |
|           {
 | |
| #ifdef WITH_WSREP
 | |
| 	    if (WSREP(thd) && version == 99997 && thd->wsrep_exec_mode == LOCAL_STATE)
 | |
| 	    {
 | |
| 	      WSREP_DEBUG("consistency check: %s", thd->query());
 | |
| 	      thd->wsrep_consistency_check= CONSISTENCY_CHECK_DECLARED;
 | |
| 	      lip->yySkipn(5);
 | |
| 	      lip->set_echo(TRUE);
 | |
| 	      state=MY_LEX_START;
 | |
| 	      break;  /* Do not treat contents as a comment.  */
 | |
| 	    }
 | |
| #endif /* WITH_WSREP */
 | |
|             /*
 | |
|               Patch and skip the conditional comment to avoid it
 | |
|               being propagated infinitely (eg. to a slave).
 | |
|             */
 | |
|             char *pcom= lip->yyUnput(' ');
 | |
|             comment_closed= ! consume_comment(lip, 1);
 | |
|             if (! comment_closed)
 | |
|             {
 | |
|               *pcom= '!';
 | |
|             }
 | |
|             /* version allowed to have one level of comment inside. */
 | |
|           }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           /* Not a version comment. */
 | |
|           state=MY_LEX_START;
 | |
|           lip->set_echo(TRUE);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         lip->in_comment= PRESERVE_COMMENT;
 | |
|         lip->yySkip();                  // Accept /
 | |
|         lip->yySkip();                  // Accept *
 | |
|         comment_closed= ! consume_comment(lip, 0);
 | |
|         /* regular comments can have zero comments inside. */
 | |
|       }
 | |
|       /*
 | |
|         Discard:
 | |
|         - regular '/' '*' comments,
 | |
|         - special comments '/' '*' '!' for a future version,
 | |
|         by scanning until we find a closing '*' '/' marker.
 | |
| 
 | |
|         Nesting regular comments isn't allowed.  The first 
 | |
|         '*' '/' returns the parser to the previous state.
 | |
| 
 | |
|         /#!VERSI oned containing /# regular #/ is allowed #/
 | |
| 
 | |
| 		Inside one versioned comment, another versioned comment
 | |
| 		is treated as a regular discardable comment.  It gets
 | |
| 		no special parsing.
 | |
|       */
 | |
| 
 | |
|       /* Unbalanced comments with a missing '*' '/' are a syntax error */
 | |
|       if (! comment_closed)
 | |
|         return (ABORT_SYM);
 | |
|       state = MY_LEX_START;             // Try again
 | |
|       lip->restore_in_comment_state();
 | |
|       break;
 | |
|     case MY_LEX_END_LONG_COMMENT:
 | |
|       if ((lip->in_comment != NO_COMMENT) && lip->yyPeek() == '/')
 | |
|       {
 | |
|         /* Reject '*' '/' */
 | |
|         lip->yyUnget();
 | |
|         /* Accept '*' '/', with the proper echo */
 | |
|         lip->set_echo(lip->in_comment == PRESERVE_COMMENT);
 | |
|         lip->yySkipn(2);
 | |
|         /* And start recording the tokens again */
 | |
|         lip->set_echo(TRUE);
 | |
|         lip->in_comment=NO_COMMENT;
 | |
|         state=MY_LEX_START;
 | |
|       }
 | |
|       else
 | |
| 	state=MY_LEX_CHAR;		// Return '*'
 | |
|       break;
 | |
|     case MY_LEX_SET_VAR:		// Check if ':='
 | |
|       if (lip->yyPeek() != '=')
 | |
|       {
 | |
| 	state=MY_LEX_CHAR;		// Return ':'
 | |
| 	break;
 | |
|       }
 | |
|       lip->yySkip();
 | |
|       return (SET_VAR);
 | |
|     case MY_LEX_SEMICOLON:			// optional line terminator
 | |
|       state= MY_LEX_CHAR;               // Return ';'
 | |
|       break;
 | |
|     case MY_LEX_EOL:
 | |
|       if (lip->eof())
 | |
|       {
 | |
|         lip->yyUnget();                 // Reject the last '\0'
 | |
|         lip->set_echo(FALSE);
 | |
|         lip->yySkip();
 | |
|         lip->set_echo(TRUE);
 | |
|         /* Unbalanced comments with a missing '*' '/' are a syntax error */
 | |
|         if (lip->in_comment != NO_COMMENT)
 | |
|           return (ABORT_SYM);
 | |
|         lip->next_state=MY_LEX_END;     // Mark for next loop
 | |
|         return(END_OF_INPUT);
 | |
|       }
 | |
|       state=MY_LEX_CHAR;
 | |
|       break;
 | |
|     case MY_LEX_END:
 | |
|       lip->next_state=MY_LEX_END;
 | |
|       return(0);			// We found end of input last time
 | |
| 
 | |
|       /* Actually real shouldn't start with . but allow them anyhow */
 | |
|     case MY_LEX_REAL_OR_POINT:
 | |
|       if (my_isdigit(cs,lip->yyPeek()))
 | |
| 	state = MY_LEX_REAL;		// Real
 | |
|       else
 | |
|       {
 | |
| 	state= MY_LEX_IDENT_SEP;	// return '.'
 | |
|         lip->yyUnget();                 // Put back '.'
 | |
|       }
 | |
|       break;
 | |
|     case MY_LEX_USER_END:		// end '@' of user@hostname
 | |
|       switch (state_map[(uchar) lip->yyPeek()]) {
 | |
|       case MY_LEX_STRING:
 | |
|       case MY_LEX_USER_VARIABLE_DELIMITER:
 | |
|       case MY_LEX_STRING_OR_DELIMITER:
 | |
| 	break;
 | |
|       case MY_LEX_USER_END:
 | |
| 	lip->next_state=MY_LEX_SYSTEM_VAR;
 | |
| 	break;
 | |
|       default:
 | |
| 	lip->next_state=MY_LEX_HOSTNAME;
 | |
| 	break;
 | |
|       }
 | |
|       yylval->lex_str.str=(char*) lip->get_ptr();
 | |
|       yylval->lex_str.length=1;
 | |
|       return((int) '@');
 | |
|     case MY_LEX_HOSTNAME:		// end '@' of user@hostname
 | |
|       for (c=lip->yyGet() ;
 | |
| 	   my_isalnum(cs,c) || c == '.' || c == '_' ||  c == '$';
 | |
|            c= lip->yyGet()) ;
 | |
|       yylval->lex_str=get_token(lip, 0, lip->yyLength());
 | |
|       return(LEX_HOSTNAME);
 | |
|     case MY_LEX_SYSTEM_VAR:
 | |
|       yylval->lex_str.str=(char*) lip->get_ptr();
 | |
|       yylval->lex_str.length=1;
 | |
|       lip->yySkip();                                    // Skip '@'
 | |
|       lip->next_state= (state_map[(uchar) lip->yyPeek()] ==
 | |
| 			MY_LEX_USER_VARIABLE_DELIMITER ?
 | |
| 			MY_LEX_OPERATOR_OR_IDENT :
 | |
| 			MY_LEX_IDENT_OR_KEYWORD);
 | |
|       return((int) '@');
 | |
|     case MY_LEX_IDENT_OR_KEYWORD:
 | |
|       /*
 | |
| 	We come here when we have found two '@' in a row.
 | |
| 	We should now be able to handle:
 | |
| 	[(global | local | session) .]variable_name
 | |
|       */
 | |
| 
 | |
|       for (result_state= 0; ident_map[c= lip->yyGet()]; result_state|= c)
 | |
|         ;
 | |
|       /* If there were non-ASCII characters, mark that we must convert */
 | |
|       result_state= result_state & 0x80 ? IDENT_QUOTED : IDENT;
 | |
| 
 | |
|       if (c == '.')
 | |
| 	lip->next_state=MY_LEX_IDENT_SEP;
 | |
|       length= lip->yyLength();
 | |
|       if (length == 0)
 | |
|         return(ABORT_SYM);              // Names must be nonempty.
 | |
|       if ((tokval= find_keyword(lip, length,0)))
 | |
|       {
 | |
|         lip->yyUnget();                         // Put back 'c'
 | |
| 	return(tokval);				// Was keyword
 | |
|       }
 | |
|       yylval->lex_str=get_token(lip, 0, length);
 | |
| 
 | |
|       lip->body_utf8_append(lip->m_cpp_text_start);
 | |
| 
 | |
|       lip->body_utf8_append_literal(thd, &yylval->lex_str, cs,
 | |
|                                     lip->m_cpp_text_end);
 | |
| 
 | |
|       return(result_state);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void trim_whitespace(CHARSET_INFO *cs, LEX_STRING *str)
 | |
| {
 | |
|   /*
 | |
|     TODO:
 | |
|     This code assumes that there are no multi-bytes characters
 | |
|     that can be considered white-space.
 | |
|   */
 | |
| 
 | |
|   while ((str->length > 0) && (my_isspace(cs, str->str[0])))
 | |
|   {
 | |
|     str->length --;
 | |
|     str->str ++;
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|     FIXME:
 | |
|     Also, parsing backward is not safe with multi bytes characters
 | |
|   */
 | |
|   while ((str->length > 0) && (my_isspace(cs, str->str[str->length-1])))
 | |
|   {
 | |
|     str->length --;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   st_select_lex structures initialisations
 | |
| */
 | |
| 
 | |
| void st_select_lex_node::init_query()
 | |
| {
 | |
|   options= 0;
 | |
|   sql_cache= SQL_CACHE_UNSPECIFIED;
 | |
|   linkage= UNSPECIFIED_TYPE;
 | |
|   no_table_names_allowed= 0;
 | |
|   uncacheable= 0;
 | |
| }
 | |
| 
 | |
| void st_select_lex_node::init_select()
 | |
| {
 | |
| }
 | |
| 
 | |
| void st_select_lex_unit::init_query()
 | |
| {
 | |
|   st_select_lex_node::init_query();
 | |
|   linkage= GLOBAL_OPTIONS_TYPE;
 | |
|   select_limit_cnt= HA_POS_ERROR;
 | |
|   offset_limit_cnt= 0;
 | |
|   union_distinct= 0;
 | |
|   prepared= optimized= executed= 0;
 | |
|   item= 0;
 | |
|   union_result= 0;
 | |
|   table= 0;
 | |
|   fake_select_lex= 0;
 | |
|   saved_fake_select_lex= 0;
 | |
|   cleaned= 0;
 | |
|   item_list.empty();
 | |
|   describe= 0;
 | |
|   found_rows_for_union= 0;
 | |
|   insert_table_with_stored_vcol= 0;
 | |
|   derived= 0;
 | |
| }
 | |
| 
 | |
| void st_select_lex::init_query()
 | |
| {
 | |
|   st_select_lex_node::init_query();
 | |
|   table_list.empty();
 | |
|   top_join_list.empty();
 | |
|   join_list= &top_join_list;
 | |
|   embedding= 0;
 | |
|   leaf_tables_prep.empty();
 | |
|   leaf_tables.empty();
 | |
|   item_list.empty();
 | |
|   join= 0;
 | |
|   having= prep_having= where= prep_where= 0;
 | |
|   olap= UNSPECIFIED_OLAP_TYPE;
 | |
|   having_fix_field= 0;
 | |
|   context.select_lex= this;
 | |
|   context.init();
 | |
|   /*
 | |
|     Add the name resolution context of the current (sub)query to the
 | |
|     stack of contexts for the whole query.
 | |
|     TODO:
 | |
|     push_context may return an error if there is no memory for a new
 | |
|     element in the stack, however this method has no return value,
 | |
|     thus push_context should be moved to a place where query
 | |
|     initialization is checked for failure.
 | |
|   */
 | |
|   parent_lex->push_context(&context);
 | |
|   cond_count= between_count= with_wild= 0;
 | |
|   max_equal_elems= 0;
 | |
|   ref_pointer_array= 0;
 | |
|   ref_pointer_array_size= 0;
 | |
|   select_n_where_fields= 0;
 | |
|   select_n_reserved= 0;
 | |
|   select_n_having_items= 0;
 | |
|   n_sum_items= 0;
 | |
|   n_child_sum_items= 0;
 | |
|   subquery_in_having= explicit_limit= 0;
 | |
|   is_item_list_lookup= 0;
 | |
|   first_execution= 1;
 | |
|   first_natural_join_processing= 1;
 | |
|   first_cond_optimization= 1;
 | |
|   parsing_place= NO_MATTER;
 | |
|   exclude_from_table_unique_test= no_wrap_view_item= FALSE;
 | |
|   nest_level= 0;
 | |
|   link_next= 0;
 | |
|   is_prep_leaf_list_saved= FALSE;
 | |
|   have_merged_subqueries= FALSE;
 | |
|   bzero((char*) expr_cache_may_be_used, sizeof(expr_cache_may_be_used));
 | |
|   m_non_agg_field_used= false;
 | |
|   m_agg_func_used= false;
 | |
| }
 | |
| 
 | |
| void st_select_lex::init_select()
 | |
| {
 | |
|   st_select_lex_node::init_select();
 | |
|   sj_nests.empty();
 | |
|   sj_subselects.empty();
 | |
|   group_list.empty();
 | |
|   if (group_list_ptrs)
 | |
|     group_list_ptrs->clear();
 | |
|   type= db= 0;
 | |
|   having= 0;
 | |
|   table_join_options= 0;
 | |
|   in_sum_expr= with_wild= 0;
 | |
|   options= 0;
 | |
|   sql_cache= SQL_CACHE_UNSPECIFIED;
 | |
|   interval_list.empty();
 | |
|   ftfunc_list_alloc.empty();
 | |
|   inner_sum_func_list= 0;
 | |
|   ftfunc_list= &ftfunc_list_alloc;
 | |
|   linkage= UNSPECIFIED_TYPE;
 | |
|   order_list.elements= 0;
 | |
|   order_list.first= 0;
 | |
|   order_list.next= &order_list.first;
 | |
|   /* Set limit and offset to default values */
 | |
|   select_limit= 0;      /* denotes the default limit = HA_POS_ERROR */
 | |
|   offset_limit= 0;      /* denotes the default offset = 0 */
 | |
|   with_sum_func= 0;
 | |
|   is_correlated= 0;
 | |
|   cur_pos_in_select_list= UNDEF_POS;
 | |
|   non_agg_fields.empty();
 | |
|   cond_value= having_value= Item::COND_UNDEF;
 | |
|   inner_refs_list.empty();
 | |
|   insert_tables= 0;
 | |
|   merged_into= 0;
 | |
|   m_non_agg_field_used= false;
 | |
|   m_agg_func_used= false;
 | |
|   name_visibility_map= 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   st_select_lex structures linking
 | |
| */
 | |
| 
 | |
| /* include on level down */
 | |
| void st_select_lex_node::include_down(st_select_lex_node *upper)
 | |
| {
 | |
|   if ((next= upper->slave))
 | |
|     next->prev= &next;
 | |
|   prev= &upper->slave;
 | |
|   upper->slave= this;
 | |
|   master= upper;
 | |
|   slave= 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| void st_select_lex_node::add_slave(st_select_lex_node *slave_arg)
 | |
| {
 | |
|   for (; slave; slave= slave->next)
 | |
|     if (slave == slave_arg)
 | |
|       return;
 | |
| 
 | |
|   if (slave)
 | |
|   {
 | |
|     st_select_lex_node *slave_arg_slave= slave_arg->slave;
 | |
|     /* Insert in the front of list of slaves if any. */
 | |
|     slave_arg->include_neighbour(slave);
 | |
|     /* include_neighbour() sets slave_arg->slave=0, restore it. */
 | |
|     slave_arg->slave= slave_arg_slave;
 | |
|     /* Count on include_neighbour() setting the master. */
 | |
|     DBUG_ASSERT(slave_arg->master == this);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     slave= slave_arg;
 | |
|     slave_arg->master= this;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   include on level down (but do not link)
 | |
| 
 | |
|   SYNOPSYS
 | |
|     st_select_lex_node::include_standalone()
 | |
|     upper - reference on node underr which this node should be included
 | |
|     ref - references on reference on this node
 | |
| */
 | |
| void st_select_lex_node::include_standalone(st_select_lex_node *upper,
 | |
| 					    st_select_lex_node **ref)
 | |
| {
 | |
|   next= 0;
 | |
|   prev= ref;
 | |
|   master= upper;
 | |
|   slave= 0;
 | |
| }
 | |
| 
 | |
| /* include neighbour (on same level) */
 | |
| void st_select_lex_node::include_neighbour(st_select_lex_node *before)
 | |
| {
 | |
|   if ((next= before->next))
 | |
|     next->prev= &next;
 | |
|   prev= &before->next;
 | |
|   before->next= this;
 | |
|   master= before->master;
 | |
|   slave= 0;
 | |
| }
 | |
| 
 | |
| /* including in global SELECT_LEX list */
 | |
| void st_select_lex_node::include_global(st_select_lex_node **plink)
 | |
| {
 | |
|   if ((link_next= *plink))
 | |
|     link_next->link_prev= &link_next;
 | |
|   link_prev= plink;
 | |
|   *plink= this;
 | |
| }
 | |
| 
 | |
| //excluding from global list (internal function)
 | |
| void st_select_lex_node::fast_exclude()
 | |
| {
 | |
|   if (link_prev)
 | |
|   {
 | |
|     if ((*link_prev= link_next))
 | |
|       link_next->link_prev= link_prev;
 | |
|   }
 | |
|   // Remove slave structure
 | |
|   for (; slave; slave= slave->next)
 | |
|     slave->fast_exclude();
 | |
|   
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Exclude a node from the tree lex structure, but leave it in the global
 | |
|   list of nodes.
 | |
| */
 | |
| 
 | |
| void st_select_lex_node::exclude_from_tree()
 | |
| {
 | |
|   if ((*prev= next))
 | |
|     next->prev= prev;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Exclude select_lex structure (except first (first select can't be
 | |
|   deleted, because it is most upper select))
 | |
| */
 | |
| void st_select_lex_node::exclude()
 | |
| {
 | |
|   /* exclude from global list */
 | |
|   fast_exclude();
 | |
|   /* exclude from other structures */
 | |
|   exclude_from_tree();
 | |
|   /* 
 | |
|      We do not need following statements, because prev pointer of first 
 | |
|      list element point to master->slave
 | |
|      if (master->slave == this)
 | |
|        master->slave= next;
 | |
|   */
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Exclude level of current unit from tree of SELECTs
 | |
| 
 | |
|   SYNOPSYS
 | |
|     st_select_lex_unit::exclude_level()
 | |
| 
 | |
|   NOTE: units which belong to current will be brought up on level of
 | |
|   currernt unit 
 | |
| */
 | |
| void st_select_lex_unit::exclude_level()
 | |
| {
 | |
|   SELECT_LEX_UNIT *units= 0, **units_last= &units;
 | |
|   for (SELECT_LEX *sl= first_select(); sl; sl= sl->next_select())
 | |
|   {
 | |
|     // unlink current level from global SELECTs list
 | |
|     if (sl->link_prev && (*sl->link_prev= sl->link_next))
 | |
|       sl->link_next->link_prev= sl->link_prev;
 | |
| 
 | |
|     // bring up underlay levels
 | |
|     SELECT_LEX_UNIT **last= 0;
 | |
|     for (SELECT_LEX_UNIT *u= sl->first_inner_unit(); u; u= u->next_unit())
 | |
|     {
 | |
|       u->master= master;
 | |
|       last= (SELECT_LEX_UNIT**)&(u->next);
 | |
|     }
 | |
|     if (last)
 | |
|     {
 | |
|       (*units_last)= sl->first_inner_unit();
 | |
|       units_last= last;
 | |
|     }
 | |
|   }
 | |
|   if (units)
 | |
|   {
 | |
|     // include brought up levels in place of current
 | |
|     (*prev)= units;
 | |
|     (*units_last)= (SELECT_LEX_UNIT*)next;
 | |
|     if (next)
 | |
|       next->prev= (SELECT_LEX_NODE**)units_last;
 | |
|     units->prev= prev;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // exclude currect unit from list of nodes
 | |
|     (*prev)= next;
 | |
|     if (next)
 | |
|       next->prev= prev;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Exclude subtree of current unit from tree of SELECTs
 | |
| 
 | |
|   SYNOPSYS
 | |
|     st_select_lex_unit::exclude_tree()
 | |
| */
 | |
| void st_select_lex_unit::exclude_tree()
 | |
| {
 | |
|   for (SELECT_LEX *sl= first_select(); sl; sl= sl->next_select())
 | |
|   {
 | |
|     // unlink current level from global SELECTs list
 | |
|     if (sl->link_prev && (*sl->link_prev= sl->link_next))
 | |
|       sl->link_next->link_prev= sl->link_prev;
 | |
| 
 | |
|     // unlink underlay levels
 | |
|     for (SELECT_LEX_UNIT *u= sl->first_inner_unit(); u; u= u->next_unit())
 | |
|     {
 | |
|       u->exclude_level();
 | |
|     }
 | |
|   }
 | |
|   // exclude currect unit from list of nodes
 | |
|   (*prev)= next;
 | |
|   if (next)
 | |
|     next->prev= prev;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   st_select_lex_node::mark_as_dependent mark all st_select_lex struct from 
 | |
|   this to 'last' as dependent
 | |
| 
 | |
|   SYNOPSIS
 | |
|     last - pointer to last st_select_lex struct, before which all 
 | |
|            st_select_lex have to be marked as dependent
 | |
| 
 | |
|   NOTE
 | |
|     'last' should be reachable from this st_select_lex_node
 | |
| */
 | |
| 
 | |
| bool st_select_lex::mark_as_dependent(THD *thd, st_select_lex *last,
 | |
|                                       Item *dependency)
 | |
| {
 | |
| 
 | |
|   DBUG_ASSERT(this != last);
 | |
| 
 | |
|   /*
 | |
|     Mark all selects from resolved to 1 before select where was
 | |
|     found table as depended (of select where was found table)
 | |
|   */
 | |
|   SELECT_LEX *s= this;
 | |
|   do
 | |
|   {
 | |
|     if (!(s->uncacheable & UNCACHEABLE_DEPENDENT_GENERATED))
 | |
|     {
 | |
|       // Select is dependent of outer select
 | |
|       s->uncacheable= (s->uncacheable & ~UNCACHEABLE_UNITED) |
 | |
|                        UNCACHEABLE_DEPENDENT_GENERATED;
 | |
|       SELECT_LEX_UNIT *munit= s->master_unit();
 | |
|       munit->uncacheable= (munit->uncacheable & ~UNCACHEABLE_UNITED) |
 | |
|                        UNCACHEABLE_DEPENDENT_GENERATED;
 | |
|       for (SELECT_LEX *sl= munit->first_select(); sl ; sl= sl->next_select())
 | |
|       {
 | |
|         if (sl != s &&
 | |
|             !(sl->uncacheable & (UNCACHEABLE_DEPENDENT_GENERATED |
 | |
|                                  UNCACHEABLE_UNITED)))
 | |
|           sl->uncacheable|= UNCACHEABLE_UNITED;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Item_subselect *subquery_expr= s->master_unit()->item;
 | |
|     if (subquery_expr && subquery_expr->mark_as_dependent(thd, last, 
 | |
|                                                           dependency))
 | |
|       return TRUE;
 | |
|   } while ((s= s->outer_select()) != last && s != 0);
 | |
|   is_correlated= TRUE;
 | |
|   this->master_unit()->item->is_correlated= TRUE;
 | |
|   return FALSE;
 | |
| }
 | |
| 
 | |
| bool st_select_lex_node::set_braces(bool value)      { return 1; }
 | |
| bool st_select_lex_node::inc_in_sum_expr()           { return 1; }
 | |
| uint st_select_lex_node::get_in_sum_expr()           { return 0; }
 | |
| TABLE_LIST* st_select_lex_node::get_table_list()     { return 0; }
 | |
| List<Item>* st_select_lex_node::get_item_list()      { return 0; }
 | |
| TABLE_LIST *st_select_lex_node::add_table_to_list(THD *thd, Table_ident *table,
 | |
| 						  LEX_STRING *alias,
 | |
| 						  ulong table_join_options,
 | |
| 						  thr_lock_type flags,
 | |
|                                                   enum_mdl_type mdl_type,
 | |
| 						  List<Index_hint> *hints,
 | |
|                                                   List<String> *partition_names,
 | |
|                                                   LEX_STRING *option)
 | |
| {
 | |
|   return 0;
 | |
| }
 | |
| ulong st_select_lex_node::get_table_join_options()
 | |
| {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   prohibit using LIMIT clause
 | |
| */
 | |
| bool st_select_lex::test_limit()
 | |
| {
 | |
|   if (select_limit != 0)
 | |
|   {
 | |
|     my_error(ER_NOT_SUPPORTED_YET, MYF(0),
 | |
|              "LIMIT & IN/ALL/ANY/SOME subquery");
 | |
|     return(1);
 | |
|   }
 | |
|   return(0);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| st_select_lex_unit* st_select_lex_unit::master_unit()
 | |
| {
 | |
|     return this;
 | |
| }
 | |
| 
 | |
| 
 | |
| st_select_lex* st_select_lex_unit::outer_select()
 | |
| {
 | |
|   return (st_select_lex*) master;
 | |
| }
 | |
| 
 | |
| 
 | |
| ha_rows st_select_lex::get_offset()
 | |
| {
 | |
|   ulonglong val= 0;
 | |
| 
 | |
|   if (offset_limit)
 | |
|   {
 | |
|     // see comment for st_select_lex::get_limit()
 | |
|     bool fix_fields_successful= true;
 | |
|     if (!offset_limit->fixed)
 | |
|     {
 | |
|       fix_fields_successful= !offset_limit->fix_fields(master_unit()->thd,
 | |
|                                                        NULL);
 | |
| 
 | |
|       DBUG_ASSERT(fix_fields_successful);
 | |
|     }
 | |
|     val= fix_fields_successful ? offset_limit->val_uint() : HA_POS_ERROR;
 | |
|   }
 | |
| 
 | |
|   return (ha_rows)val;
 | |
| }
 | |
| 
 | |
| 
 | |
| ha_rows st_select_lex::get_limit()
 | |
| {
 | |
|   ulonglong val= HA_POS_ERROR;
 | |
| 
 | |
|   if (select_limit)
 | |
|   {
 | |
|     /*
 | |
|       fix_fields() has not been called for select_limit. That's due to the
 | |
|       historical reasons -- this item could be only of type Item_int, and
 | |
|       Item_int does not require fix_fields(). Thus, fix_fields() was never
 | |
|       called for select_limit.
 | |
| 
 | |
|       Some time ago, Item_splocal was also allowed for LIMIT / OFFSET clauses.
 | |
|       However, the fix_fields() behavior was not updated, which led to a crash
 | |
|       in some cases.
 | |
| 
 | |
|       There is no single place where to call fix_fields() for LIMIT / OFFSET
 | |
|       items during the fix-fields-phase. Thus, for the sake of readability,
 | |
|       it was decided to do it here, on the evaluation phase (which is a
 | |
|       violation of design, but we chose the lesser of two evils).
 | |
| 
 | |
|       We can call fix_fields() here, because select_limit can be of two
 | |
|       types only: Item_int and Item_splocal. Item_int::fix_fields() is trivial,
 | |
|       and Item_splocal::fix_fields() (or rather Item_sp_variable::fix_fields())
 | |
|       has the following properties:
 | |
|         1) it does not affect other items;
 | |
|         2) it does not fail.
 | |
| 
 | |
|       Nevertheless DBUG_ASSERT was added to catch future changes in
 | |
|       fix_fields() implementation. Also added runtime check against a result
 | |
|       of fix_fields() in order to handle error condition in non-debug build.
 | |
|     */
 | |
|     bool fix_fields_successful= true;
 | |
|     if (!select_limit->fixed)
 | |
|     {
 | |
|       fix_fields_successful= !select_limit->fix_fields(master_unit()->thd,
 | |
|                                                        NULL);
 | |
| 
 | |
|       DBUG_ASSERT(fix_fields_successful);
 | |
|     }
 | |
|     val= fix_fields_successful ? select_limit->val_uint() : HA_POS_ERROR;
 | |
|   }
 | |
| 
 | |
|   return (ha_rows)val;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool st_select_lex::add_order_to_list(THD *thd, Item *item, bool asc)
 | |
| {
 | |
|   return add_to_list(thd, order_list, item, asc);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool st_select_lex::add_gorder_to_list(THD *thd, Item *item, bool asc)
 | |
| {
 | |
|   return add_to_list(thd, gorder_list, item, asc);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool st_select_lex::add_item_to_list(THD *thd, Item *item)
 | |
| {
 | |
|   DBUG_ENTER("st_select_lex::add_item_to_list");
 | |
|   DBUG_PRINT("info", ("Item: 0x%lx", (long) item));
 | |
|   DBUG_RETURN(item_list.push_back(item));
 | |
| }
 | |
| 
 | |
| 
 | |
| bool st_select_lex::add_group_to_list(THD *thd, Item *item, bool asc)
 | |
| {
 | |
|   return add_to_list(thd, group_list, item, asc);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool st_select_lex::add_ftfunc_to_list(Item_func_match *func)
 | |
| {
 | |
|   return !func || ftfunc_list->push_back(func); // end of memory?
 | |
| }
 | |
| 
 | |
| 
 | |
| st_select_lex_unit* st_select_lex::master_unit()
 | |
| {
 | |
|   return (st_select_lex_unit*) master;
 | |
| }
 | |
| 
 | |
| 
 | |
| st_select_lex* st_select_lex::outer_select()
 | |
| {
 | |
|   return (st_select_lex*) master->get_master();
 | |
| }
 | |
| 
 | |
| 
 | |
| bool st_select_lex::set_braces(bool value)
 | |
| {
 | |
|   braces= value;
 | |
|   return 0; 
 | |
| }
 | |
| 
 | |
| 
 | |
| bool st_select_lex::inc_in_sum_expr()
 | |
| {
 | |
|   in_sum_expr++;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| uint st_select_lex::get_in_sum_expr()
 | |
| {
 | |
|   return in_sum_expr;
 | |
| }
 | |
| 
 | |
| 
 | |
| TABLE_LIST* st_select_lex::get_table_list()
 | |
| {
 | |
|   return table_list.first;
 | |
| }
 | |
| 
 | |
| List<Item>* st_select_lex::get_item_list()
 | |
| {
 | |
|   return &item_list;
 | |
| }
 | |
| 
 | |
| ulong st_select_lex::get_table_join_options()
 | |
| {
 | |
|   return table_join_options;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool st_select_lex::setup_ref_array(THD *thd, uint order_group_num)
 | |
| {
 | |
|   // find_order_in_list() may need some extra space, so multiply by two.
 | |
|   order_group_num*= 2;
 | |
| 
 | |
|   /*
 | |
|     We have to create array in prepared statement memory if it is a
 | |
|     prepared statement
 | |
|   */
 | |
|   Query_arena *arena= thd->stmt_arena;
 | |
|   const uint n_elems= (n_sum_items +
 | |
|                        n_child_sum_items +
 | |
|                        item_list.elements +
 | |
|                        select_n_reserved +
 | |
|                        select_n_having_items +
 | |
|                        select_n_where_fields +
 | |
|                        order_group_num) * 5;
 | |
|   if (ref_pointer_array != NULL)
 | |
|   {
 | |
|     /*
 | |
|       We need to take 'n_sum_items' into account when allocating the array,
 | |
|       and this may actually increase during the optimization phase due to
 | |
|       MIN/MAX rewrite in Item_in_subselect::single_value_transformer.
 | |
|       In the usual case we can reuse the array from the prepare phase.
 | |
|       If we need a bigger array, we must allocate a new one.
 | |
|     */
 | |
|     if (ref_pointer_array_size >= n_elems)
 | |
|     {
 | |
|       DBUG_PRINT("info", ("reusing old ref_array"));
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   ref_pointer_array= static_cast<Item**>(arena->alloc(sizeof(Item*) * n_elems));
 | |
|   if (ref_pointer_array != NULL)
 | |
|     ref_pointer_array_size= n_elems;
 | |
| 
 | |
|   return ref_pointer_array == NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| void st_select_lex_unit::print(String *str, enum_query_type query_type)
 | |
| {
 | |
|   bool union_all= !union_distinct;
 | |
|   for (SELECT_LEX *sl= first_select(); sl; sl= sl->next_select())
 | |
|   {
 | |
|     if (sl != first_select())
 | |
|     {
 | |
|       str->append(STRING_WITH_LEN(" union "));
 | |
|       if (union_all)
 | |
| 	str->append(STRING_WITH_LEN("all "));
 | |
|       else if (union_distinct == sl)
 | |
|         union_all= TRUE;
 | |
|     }
 | |
|     if (sl->braces)
 | |
|       str->append('(');
 | |
|     sl->print(thd, str, query_type);
 | |
|     if (sl->braces)
 | |
|       str->append(')');
 | |
|   }
 | |
|   if (fake_select_lex)
 | |
|   {
 | |
|     if (fake_select_lex->order_list.elements)
 | |
|     {
 | |
|       str->append(STRING_WITH_LEN(" order by "));
 | |
|       fake_select_lex->print_order(str,
 | |
|         fake_select_lex->order_list.first,
 | |
|         query_type);
 | |
|     }
 | |
|     fake_select_lex->print_limit(thd, str, query_type);
 | |
|   }
 | |
|   else if (saved_fake_select_lex)
 | |
|     saved_fake_select_lex->print_limit(thd, str, query_type);
 | |
| }
 | |
| 
 | |
| 
 | |
| void st_select_lex::print_order(String *str,
 | |
|                                 ORDER *order,
 | |
|                                 enum_query_type query_type)
 | |
| {
 | |
|   for (; order; order= order->next)
 | |
|   {
 | |
|     if (order->counter_used)
 | |
|     {
 | |
|       if (query_type != QT_VIEW_INTERNAL)
 | |
|       {
 | |
|         char buffer[20];
 | |
|         size_t length= my_snprintf(buffer, 20, "%d", order->counter);
 | |
|         str->append(buffer, (uint) length);
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         /* replace numeric reference with expression */
 | |
|         if (order->item[0]->type() == Item::INT_ITEM &&
 | |
|             order->item[0]->basic_const_item())
 | |
|         {
 | |
|           char buffer[20];
 | |
|           size_t length= my_snprintf(buffer, 20, "%d", order->counter);
 | |
|           str->append(buffer, (uint) length);
 | |
|           /* make it expression instead of integer constant */
 | |
|           str->append(STRING_WITH_LEN("+0"));
 | |
|         }
 | |
|         else
 | |
|           (*order->item)->print(str, query_type);
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|       (*order->item)->print(str, query_type);
 | |
|     if (!order->asc)
 | |
|       str->append(STRING_WITH_LEN(" desc"));
 | |
|     if (order->next)
 | |
|       str->append(',');
 | |
|   }
 | |
| }
 | |
|  
 | |
| 
 | |
| void st_select_lex::print_limit(THD *thd,
 | |
|                                 String *str,
 | |
|                                 enum_query_type query_type)
 | |
| {
 | |
|   SELECT_LEX_UNIT *unit= master_unit();
 | |
|   Item_subselect *item= unit->item;
 | |
| 
 | |
|   if (item && unit->global_parameters() == this)
 | |
|   {
 | |
|     Item_subselect::subs_type subs_type= item->substype();
 | |
|     if (subs_type == Item_subselect::EXISTS_SUBS ||
 | |
|         subs_type == Item_subselect::IN_SUBS ||
 | |
|         subs_type == Item_subselect::ALL_SUBS)
 | |
|     {
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   if (explicit_limit)
 | |
|   {
 | |
|     str->append(STRING_WITH_LEN(" limit "));
 | |
|     if (offset_limit)
 | |
|     {
 | |
|       offset_limit->print(str, query_type);
 | |
|       str->append(',');
 | |
|     }
 | |
|     select_limit->print(str, query_type);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   @brief Restore the LEX and THD in case of a parse error.
 | |
| 
 | |
|   This is a clean up call that is invoked by the Bison generated
 | |
|   parser before returning an error from MYSQLparse. If your
 | |
|   semantic actions manipulate with the global thread state (which
 | |
|   is a very bad practice and should not normally be employed) and
 | |
|   need a clean-up in case of error, and you can not use %destructor
 | |
|   rule in the grammar file itself, this function should be used
 | |
|   to implement the clean up.
 | |
| */
 | |
| 
 | |
| void LEX::cleanup_lex_after_parse_error(THD *thd)
 | |
| {
 | |
|   /*
 | |
|     Delete sphead for the side effect of restoring of the original
 | |
|     LEX state, thd->lex, thd->mem_root and thd->free_list if they
 | |
|     were replaced when parsing stored procedure statements.  We
 | |
|     will never use sphead object after a parse error, so it's okay
 | |
|     to delete it only for the sake of the side effect.
 | |
|     TODO: make this functionality explicit in sp_head class.
 | |
|     Sic: we must nullify the member of the main lex, not the
 | |
|     current one that will be thrown away
 | |
|   */
 | |
|   if (thd->lex->sphead)
 | |
|   {
 | |
|     thd->lex->sphead->restore_thd_mem_root(thd);
 | |
|     delete thd->lex->sphead;
 | |
|     thd->lex->sphead= NULL;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Initialize (or reset) Query_tables_list object.
 | |
| 
 | |
|   SYNOPSIS
 | |
|     reset_query_tables_list()
 | |
|       init  TRUE  - we should perform full initialization of object with
 | |
|                     allocating needed memory
 | |
|             FALSE - object is already initialized so we should only reset
 | |
|                     its state so it can be used for parsing/processing
 | |
|                     of new statement
 | |
| 
 | |
|   DESCRIPTION
 | |
|     This method initializes Query_tables_list so it can be used as part
 | |
|     of LEX object for parsing/processing of statement. One can also use
 | |
|     this method to reset state of already initialized Query_tables_list
 | |
|     so it can be used for processing of new statement.
 | |
| */
 | |
| 
 | |
| void Query_tables_list::reset_query_tables_list(bool init)
 | |
| {
 | |
|   sql_command= SQLCOM_END;
 | |
|   if (!init && query_tables)
 | |
|   {
 | |
|     TABLE_LIST *table= query_tables;
 | |
|     for (;;)
 | |
|     {
 | |
|       delete table->view;
 | |
|       if (query_tables_last == &table->next_global ||
 | |
|           !(table= table->next_global))
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
|   query_tables= 0;
 | |
|   query_tables_last= &query_tables;
 | |
|   query_tables_own_last= 0;
 | |
|   if (init)
 | |
|   {
 | |
|     /*
 | |
|       We delay real initialization of hash (and therefore related
 | |
|       memory allocation) until first insertion into this hash.
 | |
|     */
 | |
|     my_hash_clear(&sroutines);
 | |
|   }
 | |
|   else if (sroutines.records)
 | |
|   {
 | |
|     /* Non-zero sroutines.records means that hash was initialized. */
 | |
|     my_hash_reset(&sroutines);
 | |
|   }
 | |
|   sroutines_list.empty();
 | |
|   sroutines_list_own_last= sroutines_list.next;
 | |
|   sroutines_list_own_elements= 0;
 | |
|   binlog_stmt_flags= 0;
 | |
|   stmt_accessed_table_flag= 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Destroy Query_tables_list object with freeing all resources used by it.
 | |
| 
 | |
|   SYNOPSIS
 | |
|     destroy_query_tables_list()
 | |
| */
 | |
| 
 | |
| void Query_tables_list::destroy_query_tables_list()
 | |
| {
 | |
|   my_hash_free(&sroutines);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Initialize LEX object.
 | |
| 
 | |
|   SYNOPSIS
 | |
|     LEX::LEX()
 | |
| 
 | |
|   NOTE
 | |
|     LEX object initialized with this constructor can be used as part of
 | |
|     THD object for which one can safely call open_tables(), lock_tables()
 | |
|     and close_thread_tables() functions. But it is not yet ready for
 | |
|     statement parsing. On should use lex_start() function to prepare LEX
 | |
|     for this.
 | |
| */
 | |
| 
 | |
| LEX::LEX()
 | |
|   : explain(NULL),
 | |
|     result(0), arena_for_set_stmt(0), mem_root_for_set_stmt(0),
 | |
|     option_type(OPT_DEFAULT), sphead(0),
 | |
|     is_lex_started(0), limit_rows_examined_cnt(ULONGLONG_MAX)
 | |
| {
 | |
| 
 | |
|   init_dynamic_array2(&plugins, sizeof(plugin_ref), plugins_static_buffer,
 | |
|                       INITIAL_LEX_PLUGIN_LIST_SIZE,
 | |
|                       INITIAL_LEX_PLUGIN_LIST_SIZE, 0);
 | |
|   reset_query_tables_list(TRUE);
 | |
|   mi.init();
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Check whether the merging algorithm can be used on this VIEW
 | |
| 
 | |
|   SYNOPSIS
 | |
|     LEX::can_be_merged()
 | |
| 
 | |
|   DESCRIPTION
 | |
|     We can apply merge algorithm if it is single SELECT view  with
 | |
|     subqueries only in WHERE clause (we do not count SELECTs of underlying
 | |
|     views, and second level subqueries) and we have not grpouping, ordering,
 | |
|     HAVING clause, aggregate functions, DISTINCT clause, LIMIT clause and
 | |
|     several underlying tables.
 | |
| 
 | |
|   RETURN
 | |
|     FALSE - only temporary table algorithm can be used
 | |
|     TRUE  - merge algorithm can be used
 | |
| */
 | |
| 
 | |
| bool LEX::can_be_merged()
 | |
| {
 | |
|   // TODO: do not forget implement case when select_lex.table_list.elements==0
 | |
| 
 | |
|   /* find non VIEW subqueries/unions */
 | |
|   bool selects_allow_merge= (select_lex.next_select() == 0 &&
 | |
|                              !(select_lex.uncacheable &
 | |
|                                UNCACHEABLE_RAND));
 | |
|   if (selects_allow_merge)
 | |
|   {
 | |
|     for (SELECT_LEX_UNIT *tmp_unit= select_lex.first_inner_unit();
 | |
|          tmp_unit;
 | |
|          tmp_unit= tmp_unit->next_unit())
 | |
|     {
 | |
|       if (tmp_unit->first_select()->parent_lex == this &&
 | |
|           (tmp_unit->item == 0 ||
 | |
|            (tmp_unit->item->place() != IN_WHERE &&
 | |
|             tmp_unit->item->place() != IN_ON &&
 | |
|             tmp_unit->item->place() != SELECT_LIST)))
 | |
|       {
 | |
|         selects_allow_merge= 0;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return (selects_allow_merge &&
 | |
| 	  select_lex.group_list.elements == 0 &&
 | |
| 	  select_lex.having == 0 &&
 | |
|           select_lex.with_sum_func == 0 &&
 | |
| 	  select_lex.table_list.elements >= 1 &&
 | |
| 	  !(select_lex.options & SELECT_DISTINCT) &&
 | |
|           select_lex.select_limit == 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   check if command can use VIEW with MERGE algorithm (for top VIEWs)
 | |
| 
 | |
|   SYNOPSIS
 | |
|     LEX::can_use_merged()
 | |
| 
 | |
|   DESCRIPTION
 | |
|     Only listed here commands can use merge algorithm in top level
 | |
|     SELECT_LEX (for subqueries will be used merge algorithm if
 | |
|     LEX::can_not_use_merged() is not TRUE).
 | |
| 
 | |
|   RETURN
 | |
|     FALSE - command can't use merged VIEWs
 | |
|     TRUE  - VIEWs with MERGE algorithms can be used
 | |
| */
 | |
| 
 | |
| bool LEX::can_use_merged()
 | |
| {
 | |
|   switch (sql_command)
 | |
|   {
 | |
|   case SQLCOM_SELECT:
 | |
|   case SQLCOM_CREATE_TABLE:
 | |
|   case SQLCOM_UPDATE:
 | |
|   case SQLCOM_UPDATE_MULTI:
 | |
|   case SQLCOM_DELETE:
 | |
|   case SQLCOM_DELETE_MULTI:
 | |
|   case SQLCOM_INSERT:
 | |
|   case SQLCOM_INSERT_SELECT:
 | |
|   case SQLCOM_REPLACE:
 | |
|   case SQLCOM_REPLACE_SELECT:
 | |
|   case SQLCOM_LOAD:
 | |
|     return TRUE;
 | |
|   default:
 | |
|     return FALSE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Check if command can't use merged views in any part of command
 | |
| 
 | |
|   SYNOPSIS
 | |
|     LEX::can_not_use_merged()
 | |
| 
 | |
|   DESCRIPTION
 | |
|     Temporary table algorithm will be used on all SELECT levels for queries
 | |
|     listed here (see also LEX::can_use_merged()).
 | |
| 
 | |
|   RETURN
 | |
|     FALSE - command can't use merged VIEWs
 | |
|     TRUE  - VIEWs with MERGE algorithms can be used
 | |
| */
 | |
| 
 | |
| bool LEX::can_not_use_merged()
 | |
| {
 | |
|   switch (sql_command)
 | |
|   {
 | |
|   case SQLCOM_CREATE_VIEW:
 | |
|   case SQLCOM_SHOW_CREATE:
 | |
|   /*
 | |
|     SQLCOM_SHOW_FIELDS is necessary to make 
 | |
|     information schema tables working correctly with views.
 | |
|     see get_schema_tables_result function
 | |
|   */
 | |
|   case SQLCOM_SHOW_FIELDS:
 | |
|     return TRUE;
 | |
|   default:
 | |
|     return FALSE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Detect that we need only table structure of derived table/view
 | |
| 
 | |
|   SYNOPSIS
 | |
|     only_view_structure()
 | |
| 
 | |
|   RETURN
 | |
|     TRUE yes, we need only structure
 | |
|     FALSE no, we need data
 | |
| */
 | |
| 
 | |
| bool LEX::only_view_structure()
 | |
| {
 | |
|   switch (sql_command) {
 | |
|   case SQLCOM_SHOW_CREATE:
 | |
|   case SQLCOM_SHOW_TABLES:
 | |
|   case SQLCOM_SHOW_FIELDS:
 | |
|   case SQLCOM_REVOKE_ALL:
 | |
|   case SQLCOM_REVOKE:
 | |
|   case SQLCOM_GRANT:
 | |
|   case SQLCOM_CREATE_VIEW:
 | |
|     return TRUE;
 | |
|   default:
 | |
|     return FALSE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Should Items_ident be printed correctly
 | |
| 
 | |
|   SYNOPSIS
 | |
|     need_correct_ident()
 | |
| 
 | |
|   RETURN
 | |
|     TRUE yes, we need only structure
 | |
|     FALSE no, we need data
 | |
| */
 | |
| 
 | |
| 
 | |
| bool LEX::need_correct_ident()
 | |
| {
 | |
|   switch(sql_command)
 | |
|   {
 | |
|   case SQLCOM_SHOW_CREATE:
 | |
|   case SQLCOM_SHOW_TABLES:
 | |
|   case SQLCOM_CREATE_VIEW:
 | |
|     return TRUE;
 | |
|   default:
 | |
|     return FALSE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Get effective type of CHECK OPTION for given view
 | |
| 
 | |
|   SYNOPSIS
 | |
|     get_effective_with_check()
 | |
|     view    given view
 | |
| 
 | |
|   NOTE
 | |
|     It have not sense to set CHECK OPTION for SELECT satement or subqueries,
 | |
|     so we do not.
 | |
| 
 | |
|   RETURN
 | |
|     VIEW_CHECK_NONE      no need CHECK OPTION
 | |
|     VIEW_CHECK_LOCAL     CHECK OPTION LOCAL
 | |
|     VIEW_CHECK_CASCADED  CHECK OPTION CASCADED
 | |
| */
 | |
| 
 | |
| uint8 LEX::get_effective_with_check(TABLE_LIST *view)
 | |
| {
 | |
|   if (view->select_lex->master_unit() == &unit &&
 | |
|       which_check_option_applicable())
 | |
|     return (uint8)view->with_check;
 | |
|   return VIEW_CHECK_NONE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   This method should be called only during parsing.
 | |
|   It is aware of compound statements (stored routine bodies)
 | |
|   and will initialize the destination with the default
 | |
|   database of the stored routine, rather than the default
 | |
|   database of the connection it is parsed in.
 | |
|   E.g. if one has no current database selected, or current database 
 | |
|   set to 'bar' and then issues:
 | |
| 
 | |
|   CREATE PROCEDURE foo.p1() BEGIN SELECT * FROM t1 END//
 | |
| 
 | |
|   t1 is meant to refer to foo.t1, not to bar.t1.
 | |
| 
 | |
|   This method is needed to support this rule.
 | |
| 
 | |
|   @return TRUE in case of error (parsing should be aborted, FALSE in
 | |
|   case of success
 | |
| */
 | |
| 
 | |
| bool
 | |
| LEX::copy_db_to(char **p_db, size_t *p_db_length) const
 | |
| {
 | |
|   if (sphead && sphead->m_name.str)
 | |
|   {
 | |
|     DBUG_ASSERT(sphead->m_db.str && sphead->m_db.length);
 | |
|     /*
 | |
|       It is safe to assign the string by-pointer, both sphead and
 | |
|       its statements reside in the same memory root.
 | |
|     */
 | |
|     *p_db= sphead->m_db.str;
 | |
|     if (p_db_length)
 | |
|       *p_db_length= sphead->m_db.length;
 | |
|     return FALSE;
 | |
|   }
 | |
|   return thd->copy_db_to(p_db, p_db_length);
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Initialize offset and limit counters.
 | |
| 
 | |
|   @param sl SELECT_LEX to get offset and limit from.
 | |
| */
 | |
| 
 | |
| void st_select_lex_unit::set_limit(st_select_lex *sl)
 | |
| {
 | |
|   DBUG_ASSERT(!thd->stmt_arena->is_stmt_prepare());
 | |
| 
 | |
|   offset_limit_cnt= sl->get_offset();
 | |
|   select_limit_cnt= sl->get_limit();
 | |
|   if (select_limit_cnt + offset_limit_cnt >= select_limit_cnt)
 | |
|     select_limit_cnt+= offset_limit_cnt;
 | |
|   else
 | |
|     select_limit_cnt= HA_POS_ERROR;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   Decide if a temporary table is needed for the UNION.
 | |
| 
 | |
|   @retval true  A temporary table is needed.
 | |
|   @retval false A temporary table is not needed.
 | |
|  */
 | |
| 
 | |
| bool st_select_lex_unit::union_needs_tmp_table()
 | |
| {
 | |
|   return union_distinct != NULL ||
 | |
|     global_parameters()->order_list.elements != 0 ||
 | |
|     thd->lex->sql_command == SQLCOM_INSERT_SELECT ||
 | |
|     thd->lex->sql_command == SQLCOM_REPLACE_SELECT;
 | |
| }  
 | |
| 
 | |
| /**
 | |
|   @brief Set the initial purpose of this TABLE_LIST object in the list of used
 | |
|     tables.
 | |
| 
 | |
|   We need to track this information on table-by-table basis, since when this
 | |
|   table becomes an element of the pre-locked list, it's impossible to identify
 | |
|   which SQL sub-statement it has been originally used in.
 | |
| 
 | |
|   E.g.:
 | |
| 
 | |
|   User request:                 SELECT * FROM t1 WHERE f1();
 | |
|   FUNCTION f1():                DELETE FROM t2; RETURN 1;
 | |
|   BEFORE DELETE trigger on t2:  INSERT INTO t3 VALUES (old.a);
 | |
| 
 | |
|   For this user request, the pre-locked list will contain t1, t2, t3
 | |
|   table elements, each needed for different DML.
 | |
| 
 | |
|   The trigger event map is updated to reflect INSERT, UPDATE, DELETE,
 | |
|   REPLACE, LOAD DATA, CREATE TABLE .. SELECT, CREATE TABLE ..
 | |
|   REPLACE SELECT statements, and additionally ON DUPLICATE KEY UPDATE
 | |
|   clause.
 | |
| */
 | |
| 
 | |
| void LEX::set_trg_event_type_for_tables()
 | |
| {
 | |
|   uint8 new_trg_event_map= 0;
 | |
|   DBUG_ENTER("LEX::set_trg_event_type_for_tables");
 | |
| 
 | |
|   /*
 | |
|     Some auxiliary operations
 | |
|     (e.g. GRANT processing) create TABLE_LIST instances outside
 | |
|     the parser. Additionally, some commands (e.g. OPTIMIZE) change
 | |
|     the lock type for a table only after parsing is done. Luckily,
 | |
|     these do not fire triggers and do not need to pre-load them.
 | |
|     For these TABLE_LISTs set_trg_event_type is never called, and
 | |
|     trg_event_map is always empty. That means that the pre-locking
 | |
|     algorithm will ignore triggers defined on these tables, if
 | |
|     any, and the execution will either fail with an assert in
 | |
|     sql_trigger.cc or with an error that a used table was not
 | |
|     pre-locked, in case of a production build.
 | |
| 
 | |
|     TODO: this usage pattern creates unnecessary module dependencies
 | |
|     and should be rewritten to go through the parser.
 | |
|     Table list instances created outside the parser in most cases
 | |
|     refer to mysql.* system tables. It is not allowed to have
 | |
|     a trigger on a system table, but keeping track of
 | |
|     initialization provides extra safety in case this limitation
 | |
|     is circumvented.
 | |
|   */
 | |
| 
 | |
|   switch (sql_command) {
 | |
|   case SQLCOM_LOCK_TABLES:
 | |
|   /*
 | |
|     On a LOCK TABLE, all triggers must be pre-loaded for this TABLE_LIST
 | |
|     when opening an associated TABLE.
 | |
|   */
 | |
|     new_trg_event_map= static_cast<uint8>
 | |
|                         (1 << static_cast<int>(TRG_EVENT_INSERT)) |
 | |
|                       static_cast<uint8>
 | |
|                         (1 << static_cast<int>(TRG_EVENT_UPDATE)) |
 | |
|                       static_cast<uint8>
 | |
|                         (1 << static_cast<int>(TRG_EVENT_DELETE));
 | |
|     break;
 | |
|   /*
 | |
|     Basic INSERT. If there is an additional ON DUPLIATE KEY UPDATE
 | |
|     clause, it will be handled later in this method.
 | |
|   */
 | |
|   case SQLCOM_INSERT:                           /* fall through */
 | |
|   case SQLCOM_INSERT_SELECT:
 | |
|   /*
 | |
|     LOAD DATA ... INFILE is expected to fire BEFORE/AFTER INSERT
 | |
|     triggers.
 | |
|     If the statement also has REPLACE clause, it will be
 | |
|     handled later in this method.
 | |
|   */
 | |
|   case SQLCOM_LOAD:                             /* fall through */
 | |
|   /*
 | |
|     REPLACE is semantically equivalent to INSERT. In case
 | |
|     of a primary or unique key conflict, it deletes the old
 | |
|     record and inserts a new one. So we also may need to
 | |
|     fire ON DELETE triggers. This functionality is handled
 | |
|     later in this method.
 | |
|   */
 | |
|   case SQLCOM_REPLACE:                          /* fall through */
 | |
|   case SQLCOM_REPLACE_SELECT:
 | |
|   /*
 | |
|     CREATE TABLE ... SELECT defaults to INSERT if the table or
 | |
|     view already exists. REPLACE option of CREATE TABLE ...
 | |
|     REPLACE SELECT is handled later in this method.
 | |
|   */
 | |
|   case SQLCOM_CREATE_TABLE:
 | |
|     new_trg_event_map|= static_cast<uint8>
 | |
|                           (1 << static_cast<int>(TRG_EVENT_INSERT));
 | |
|     break;
 | |
|   /* Basic update and multi-update */
 | |
|   case SQLCOM_UPDATE:                           /* fall through */
 | |
|   case SQLCOM_UPDATE_MULTI:
 | |
|     new_trg_event_map|= static_cast<uint8>
 | |
|                           (1 << static_cast<int>(TRG_EVENT_UPDATE));
 | |
|     break;
 | |
|   /* Basic delete and multi-delete */
 | |
|   case SQLCOM_DELETE:                           /* fall through */
 | |
|   case SQLCOM_DELETE_MULTI:
 | |
|     new_trg_event_map|= static_cast<uint8>
 | |
|                           (1 << static_cast<int>(TRG_EVENT_DELETE));
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   switch (duplicates) {
 | |
|   case DUP_UPDATE:
 | |
|     new_trg_event_map|= static_cast<uint8>
 | |
|                           (1 << static_cast<int>(TRG_EVENT_UPDATE));
 | |
|     break;
 | |
|   case DUP_REPLACE:
 | |
|     new_trg_event_map|= static_cast<uint8>
 | |
|                           (1 << static_cast<int>(TRG_EVENT_DELETE));
 | |
|     break;
 | |
|   case DUP_ERROR:
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /*
 | |
|     Do not iterate over sub-selects, only the tables in the outermost
 | |
|     SELECT_LEX can be modified, if any.
 | |
|   */
 | |
|   TABLE_LIST *tables= select_lex.get_table_list();
 | |
| 
 | |
|   while (tables)
 | |
|   {
 | |
|     /*
 | |
|       This is a fast check to filter out statements that do
 | |
|       not change data, or tables  on the right side, in case of
 | |
|       INSERT .. SELECT, CREATE TABLE .. SELECT and so on.
 | |
|       Here we also filter out OPTIMIZE statement and non-updateable
 | |
|       views, for which lock_type is TL_UNLOCK or TL_READ after
 | |
|       parsing.
 | |
|     */
 | |
|     if (static_cast<int>(tables->lock_type) >=
 | |
|         static_cast<int>(TL_WRITE_ALLOW_WRITE))
 | |
|       tables->trg_event_map= new_trg_event_map;
 | |
|     tables= tables->next_local;
 | |
|   }
 | |
|   DBUG_VOID_RETURN;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Unlink the first table from the global table list and the first table from
 | |
|   outer select (lex->select_lex) local list
 | |
| 
 | |
|   SYNOPSIS
 | |
|     unlink_first_table()
 | |
|     link_to_local	Set to 1 if caller should link this table to local list
 | |
| 
 | |
|   NOTES
 | |
|     We assume that first tables in both lists is the same table or the local
 | |
|     list is empty.
 | |
| 
 | |
|   RETURN
 | |
|     0	If 'query_tables' == 0
 | |
|     unlinked table
 | |
|       In this case link_to_local is set.
 | |
| 
 | |
| */
 | |
| TABLE_LIST *LEX::unlink_first_table(bool *link_to_local)
 | |
| {
 | |
|   TABLE_LIST *first;
 | |
|   if ((first= query_tables))
 | |
|   {
 | |
|     /*
 | |
|       Exclude from global table list
 | |
|     */
 | |
|     if ((query_tables= query_tables->next_global))
 | |
|       query_tables->prev_global= &query_tables;
 | |
|     else
 | |
|       query_tables_last= &query_tables;
 | |
|     first->next_global= 0;
 | |
| 
 | |
|     /*
 | |
|       and from local list if it is not empty
 | |
|     */
 | |
|     if ((*link_to_local= MY_TEST(select_lex.table_list.first)))
 | |
|     {
 | |
|       select_lex.context.table_list= 
 | |
|         select_lex.context.first_name_resolution_table= first->next_local;
 | |
|       select_lex.table_list.first= first->next_local;
 | |
|       select_lex.table_list.elements--;	//safety
 | |
|       first->next_local= 0;
 | |
|       /*
 | |
|         Ensure that the global list has the same first table as the local
 | |
|         list.
 | |
|       */
 | |
|       first_lists_tables_same();
 | |
|     }
 | |
|   }
 | |
|   return first;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Bring first local table of first most outer select to first place in global
 | |
|   table list
 | |
| 
 | |
|   SYNOPSYS
 | |
|      LEX::first_lists_tables_same()
 | |
| 
 | |
|   NOTES
 | |
|     In many cases (for example, usual INSERT/DELETE/...) the first table of
 | |
|     main SELECT_LEX have special meaning => check that it is the first table
 | |
|     in global list and re-link to be first in the global list if it is
 | |
|     necessary.  We need such re-linking only for queries with sub-queries in
 | |
|     the select list, as only in this case tables of sub-queries will go to
 | |
|     the global list first.
 | |
| */
 | |
| 
 | |
| void LEX::first_lists_tables_same()
 | |
| {
 | |
|   TABLE_LIST *first_table= select_lex.table_list.first;
 | |
|   if (query_tables != first_table && first_table != 0)
 | |
|   {
 | |
|     TABLE_LIST *next;
 | |
|     if (query_tables_last == &first_table->next_global)
 | |
|       query_tables_last= first_table->prev_global;
 | |
| 
 | |
|     if ((next= *first_table->prev_global= first_table->next_global))
 | |
|       next->prev_global= first_table->prev_global;
 | |
|     /* include in new place */
 | |
|     first_table->next_global= query_tables;
 | |
|     /*
 | |
|        We are sure that query_tables is not 0, because first_table was not
 | |
|        first table in the global list => we can use
 | |
|        query_tables->prev_global without check of query_tables
 | |
|     */
 | |
|     query_tables->prev_global= &first_table->next_global;
 | |
|     first_table->prev_global= &query_tables;
 | |
|     query_tables= first_table;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Link table back that was unlinked with unlink_first_table()
 | |
| 
 | |
|   SYNOPSIS
 | |
|     link_first_table_back()
 | |
|     link_to_local	do we need link this table to local
 | |
| 
 | |
|   RETURN
 | |
|     global list
 | |
| */
 | |
| 
 | |
| void LEX::link_first_table_back(TABLE_LIST *first,
 | |
| 				   bool link_to_local)
 | |
| {
 | |
|   if (first)
 | |
|   {
 | |
|     if ((first->next_global= query_tables))
 | |
|       query_tables->prev_global= &first->next_global;
 | |
|     else
 | |
|       query_tables_last= &first->next_global;
 | |
|     query_tables= first;
 | |
| 
 | |
|     if (link_to_local)
 | |
|     {
 | |
|       first->next_local= select_lex.table_list.first;
 | |
|       select_lex.context.table_list= first;
 | |
|       select_lex.table_list.first= first;
 | |
|       select_lex.table_list.elements++;	//safety
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|   cleanup lex for case when we open table by table for processing
 | |
| 
 | |
|   SYNOPSIS
 | |
|     LEX::cleanup_after_one_table_open()
 | |
| 
 | |
|   NOTE
 | |
|     This method is mostly responsible for cleaning up of selects lists and
 | |
|     derived tables state. To rollback changes in Query_tables_list one has
 | |
|     to call Query_tables_list::reset_query_tables_list(FALSE).
 | |
| */
 | |
| 
 | |
| void LEX::cleanup_after_one_table_open()
 | |
| {
 | |
|   /*
 | |
|     thd->lex->derived_tables & additional units may be set if we open
 | |
|     a view. It is necessary to clear thd->lex->derived_tables flag
 | |
|     to prevent processing of derived tables during next open_and_lock_tables
 | |
|     if next table is a real table and cleanup & remove underlying units
 | |
|     NOTE: all units will be connected to thd->lex->select_lex, because we
 | |
|     have not UNION on most upper level.
 | |
|     */
 | |
|   if (all_selects_list != &select_lex)
 | |
|   {
 | |
|     derived_tables= 0;
 | |
|     select_lex.exclude_from_table_unique_test= false;
 | |
|     /* cleunup underlying units (units of VIEW) */
 | |
|     for (SELECT_LEX_UNIT *un= select_lex.first_inner_unit();
 | |
|          un;
 | |
|          un= un->next_unit())
 | |
|       un->cleanup();
 | |
|     /* reduce all selects list to default state */
 | |
|     all_selects_list= &select_lex;
 | |
|     /* remove underlying units (units of VIEW) subtree */
 | |
|     select_lex.cut_subtree();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Save current state of Query_tables_list for this LEX, and prepare it
 | |
|   for processing of new statemnt.
 | |
| 
 | |
|   SYNOPSIS
 | |
|     reset_n_backup_query_tables_list()
 | |
|       backup  Pointer to Query_tables_list instance to be used for backup
 | |
| */
 | |
| 
 | |
| void LEX::reset_n_backup_query_tables_list(Query_tables_list *backup)
 | |
| {
 | |
|   backup->set_query_tables_list(this);
 | |
|   /*
 | |
|     We have to perform full initialization here since otherwise we
 | |
|     will damage backed up state.
 | |
|   */
 | |
|   this->reset_query_tables_list(TRUE);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Restore state of Query_tables_list for this LEX from backup.
 | |
| 
 | |
|   SYNOPSIS
 | |
|     restore_backup_query_tables_list()
 | |
|       backup  Pointer to Query_tables_list instance used for backup
 | |
| */
 | |
| 
 | |
| void LEX::restore_backup_query_tables_list(Query_tables_list *backup)
 | |
| {
 | |
|   this->destroy_query_tables_list();
 | |
|   this->set_query_tables_list(backup);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Checks for usage of routines and/or tables in a parsed statement
 | |
| 
 | |
|   SYNOPSIS
 | |
|     LEX:table_or_sp_used()
 | |
| 
 | |
|   RETURN
 | |
|     FALSE  No routines and tables used
 | |
|     TRUE   Either or both routines and tables are used.
 | |
| */
 | |
| 
 | |
| bool LEX::table_or_sp_used()
 | |
| {
 | |
|   DBUG_ENTER("table_or_sp_used");
 | |
| 
 | |
|   if (sroutines.records || query_tables)
 | |
|     DBUG_RETURN(TRUE);
 | |
| 
 | |
|   DBUG_RETURN(FALSE);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Do end-of-prepare fixup for list of tables and their merge-VIEWed tables
 | |
| 
 | |
|   SYNOPSIS
 | |
|     fix_prepare_info_in_table_list()
 | |
|       thd  Thread handle
 | |
|       tbl  List of tables to process
 | |
| 
 | |
|   DESCRIPTION
 | |
|     Perform end-end-of prepare fixup for list of tables, if any of the tables
 | |
|     is a merge-algorithm VIEW, recursively fix up its underlying tables as
 | |
|     well.
 | |
| 
 | |
| */
 | |
| 
 | |
| static void fix_prepare_info_in_table_list(THD *thd, TABLE_LIST *tbl)
 | |
| {
 | |
|   for (; tbl; tbl= tbl->next_local)
 | |
|   {
 | |
|     if (tbl->on_expr && !tbl->prep_on_expr)
 | |
|     {
 | |
|       thd->check_and_register_item_tree(&tbl->prep_on_expr, &tbl->on_expr);
 | |
|       tbl->on_expr= tbl->on_expr->copy_andor_structure(thd);
 | |
|     }
 | |
|     if (tbl->is_view_or_derived() && tbl->is_merged_derived())
 | |
|     {
 | |
|       SELECT_LEX *sel= tbl->get_single_select();
 | |
|       fix_prepare_info_in_table_list(thd, sel->get_table_list());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Save WHERE/HAVING/ON clauses and replace them with disposable copies
 | |
| 
 | |
|   SYNOPSIS
 | |
|     st_select_lex::fix_prepare_information
 | |
|       thd          thread handler
 | |
|       conds        in/out pointer to WHERE condition to be met at execution
 | |
|       having_conds in/out pointer to HAVING condition to be met at execution
 | |
|   
 | |
|   DESCRIPTION
 | |
|     The passed WHERE and HAVING are to be saved for the future executions.
 | |
|     This function saves it, and returns a copy which can be thrashed during
 | |
|     this execution of the statement. By saving/thrashing here we mean only
 | |
|     We also save the chain of ORDER::next in group_list, in case
 | |
|     the list is modified by remove_const().
 | |
|     AND/OR trees.
 | |
|     The function also calls fix_prepare_info_in_table_list that saves all
 | |
|     ON expressions.    
 | |
| */
 | |
| 
 | |
| void st_select_lex::fix_prepare_information(THD *thd, Item **conds, 
 | |
|                                             Item **having_conds)
 | |
| {
 | |
|   DBUG_ENTER("st_select_lex::fix_prepare_information");
 | |
|   if (!thd->stmt_arena->is_conventional() && first_execution)
 | |
|   {
 | |
|     first_execution= 0;
 | |
|     if (group_list.first)
 | |
|     {
 | |
|       if (!group_list_ptrs)
 | |
|       {
 | |
|         void *mem= thd->stmt_arena->alloc(sizeof(Group_list_ptrs));
 | |
|         group_list_ptrs= new (mem) Group_list_ptrs(thd->stmt_arena->mem_root);
 | |
|       }
 | |
|       group_list_ptrs->reserve(group_list.elements);
 | |
|       for (ORDER *order= group_list.first; order; order= order->next)
 | |
|       {
 | |
|         group_list_ptrs->push_back(order);
 | |
|       }
 | |
|     }
 | |
|     if (*conds)
 | |
|     {
 | |
|       thd->check_and_register_item_tree(&prep_where, conds);
 | |
|       *conds= where= prep_where->copy_andor_structure(thd);
 | |
|     }
 | |
|     if (*having_conds)
 | |
|     {
 | |
|       thd->check_and_register_item_tree(&prep_having, having_conds);
 | |
|       *having_conds= having= prep_having->copy_andor_structure(thd);
 | |
|     }
 | |
|     fix_prepare_info_in_table_list(thd, table_list.first);
 | |
|   }
 | |
|   DBUG_VOID_RETURN;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   There are st_select_lex::add_table_to_list &
 | |
|   st_select_lex::set_lock_for_tables are in sql_parse.cc
 | |
| 
 | |
|   st_select_lex::print is in sql_select.cc
 | |
| 
 | |
|   st_select_lex_unit::prepare, st_select_lex_unit::exec,
 | |
|   st_select_lex_unit::cleanup, st_select_lex_unit::reinit_exec_mechanism,
 | |
|   st_select_lex_unit::change_result
 | |
|   are in sql_union.cc
 | |
| */
 | |
| 
 | |
| /*
 | |
|   Sets the kind of hints to be added by the calls to add_index_hint().
 | |
| 
 | |
|   SYNOPSIS
 | |
|     set_index_hint_type()
 | |
|       type_arg     The kind of hints to be added from now on.
 | |
|       clause       The clause to use for hints to be added from now on.
 | |
| 
 | |
|   DESCRIPTION
 | |
|     Used in filling up the tagged hints list.
 | |
|     This list is filled by first setting the kind of the hint as a 
 | |
|     context variable and then adding hints of the current kind.
 | |
|     Then the context variable index_hint_type can be reset to the
 | |
|     next hint type.
 | |
| */
 | |
| void st_select_lex::set_index_hint_type(enum index_hint_type type_arg,
 | |
|                                         index_clause_map clause)
 | |
| { 
 | |
|   current_index_hint_type= type_arg;
 | |
|   current_index_hint_clause= clause;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Makes an array to store index usage hints (ADD/FORCE/IGNORE INDEX).
 | |
| 
 | |
|   SYNOPSIS
 | |
|     alloc_index_hints()
 | |
|       thd         current thread.
 | |
| */
 | |
| 
 | |
| void st_select_lex::alloc_index_hints (THD *thd)
 | |
| { 
 | |
|   index_hints= new (thd->mem_root) List<Index_hint>(); 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|   adds an element to the array storing index usage hints 
 | |
|   (ADD/FORCE/IGNORE INDEX).
 | |
| 
 | |
|   SYNOPSIS
 | |
|     add_index_hint()
 | |
|       thd         current thread.
 | |
|       str         name of the index.
 | |
|       length      number of characters in str.
 | |
| 
 | |
|   RETURN VALUE
 | |
|     0 on success, non-zero otherwise
 | |
| */
 | |
| bool st_select_lex::add_index_hint (THD *thd, char *str, uint length)
 | |
| {
 | |
|   return index_hints->push_front (new (thd->mem_root) 
 | |
|                                  Index_hint(current_index_hint_type,
 | |
|                                             current_index_hint_clause,
 | |
|                                             str, length));
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   Optimize all subqueries that have not been flattened into semi-joins.
 | |
| 
 | |
|   @details
 | |
|   This functionality is a method of SELECT_LEX instead of JOIN because
 | |
|   SQL statements as DELETE/UPDATE do not have a corresponding JOIN object.
 | |
| 
 | |
|   @see JOIN::optimize_unflattened_subqueries
 | |
| 
 | |
|   @param const_only  Restrict subquery optimization to constant subqueries
 | |
| 
 | |
|   @return Operation status
 | |
|   @retval FALSE     success.
 | |
|   @retval TRUE      error occurred.
 | |
| */
 | |
| 
 | |
| bool st_select_lex::optimize_unflattened_subqueries(bool const_only)
 | |
| {
 | |
|   for (SELECT_LEX_UNIT *un= first_inner_unit(); un; un= un->next_unit())
 | |
|   {
 | |
|     Item_subselect *subquery_predicate= un->item;
 | |
|     
 | |
|     if (subquery_predicate)
 | |
|     {
 | |
|       if (subquery_predicate->substype() == Item_subselect::IN_SUBS)
 | |
|       {
 | |
|         Item_in_subselect *in_subs= (Item_in_subselect*) subquery_predicate;
 | |
|         if (in_subs->is_jtbm_merged)
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       if (const_only && !subquery_predicate->const_item())
 | |
|       {
 | |
|         /* Skip non-constant subqueries if the caller asked so. */
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       bool empty_union_result= true;
 | |
|       bool is_correlated_unit= false;
 | |
|       /*
 | |
|         If the subquery is a UNION, optimize all the subqueries in the UNION. If
 | |
|         there is no UNION, then the loop will execute once for the subquery.
 | |
|       */
 | |
|       for (SELECT_LEX *sl= un->first_select(); sl; sl= sl->next_select())
 | |
|       {
 | |
|         JOIN *inner_join= sl->join;
 | |
|         if (!inner_join)
 | |
|           continue;
 | |
|         SELECT_LEX *save_select= un->thd->lex->current_select;
 | |
|         ulonglong save_options;
 | |
|         int res;
 | |
|         /* We need only 1 row to determine existence */
 | |
|         un->set_limit(un->global_parameters());
 | |
|         un->thd->lex->current_select= sl;
 | |
|         save_options= inner_join->select_options;
 | |
|         if (options & SELECT_DESCRIBE)
 | |
|         {
 | |
|           /* Optimize the subquery in the context of EXPLAIN. */
 | |
|           sl->set_explain_type(FALSE);
 | |
|           sl->options|= SELECT_DESCRIBE;
 | |
|           inner_join->select_options|= SELECT_DESCRIBE;
 | |
|         }
 | |
|         res= inner_join->optimize();
 | |
|         sl->update_correlated_cache();
 | |
|         is_correlated_unit|= sl->is_correlated;
 | |
|         inner_join->select_options= save_options;
 | |
|         un->thd->lex->current_select= save_select;
 | |
| 
 | |
|         Explain_query *eq;
 | |
|         if ((eq= inner_join->thd->lex->explain))
 | |
|         {
 | |
|           Explain_select *expl_sel;
 | |
|           if ((expl_sel= eq->get_select(inner_join->select_lex->select_number)))
 | |
|           {
 | |
|             sl->set_explain_type(TRUE);
 | |
|             expl_sel->select_type= sl->type;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (empty_union_result)
 | |
|         {
 | |
|           /*
 | |
|             If at least one subquery in a union is non-empty, the UNION result
 | |
|             is non-empty. If there is no UNION, the only subquery is non-empy.
 | |
|           */
 | |
|           empty_union_result= inner_join->empty_result();
 | |
|         }
 | |
|         if (res)
 | |
|           return TRUE;
 | |
|       }
 | |
|       if (empty_union_result)
 | |
|         subquery_predicate->no_rows_in_result();
 | |
|       if (!is_correlated_unit)
 | |
|         un->uncacheable&= ~UNCACHEABLE_DEPENDENT;
 | |
|       subquery_predicate->is_correlated= is_correlated_unit;
 | |
|     }
 | |
|   }
 | |
|   return FALSE;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /**
 | |
|   @brief Process all derived tables/views of the SELECT.
 | |
| 
 | |
|   @param lex    LEX of this thread
 | |
|   @param phase  phases to run derived tables/views through
 | |
| 
 | |
|   @details
 | |
|   This function runs specified 'phases' on all tables from the
 | |
|   table_list of this select.
 | |
| 
 | |
|   @return FALSE ok.
 | |
|   @return TRUE an error occur.
 | |
| */
 | |
| 
 | |
| bool st_select_lex::handle_derived(LEX *lex, uint phases)
 | |
| {
 | |
|   for (TABLE_LIST *cursor= (TABLE_LIST*) table_list.first;
 | |
|        cursor;
 | |
|        cursor= cursor->next_local)
 | |
|   {
 | |
|     if (cursor->is_view_or_derived() && cursor->handle_derived(lex, phases))
 | |
|       return TRUE;
 | |
|   }
 | |
|   return FALSE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   @brief
 | |
|   Returns first unoccupied table map and table number
 | |
| 
 | |
|   @param map     [out] return found map
 | |
|   @param tablenr [out] return found tablenr
 | |
| 
 | |
|   @details
 | |
|   Returns first unoccupied table map and table number in this select.
 | |
|   Map and table are returned in *'map' and *'tablenr' accordingly.
 | |
| 
 | |
|   @retrun TRUE  no free table map/table number
 | |
|   @return FALSE found free table map/table number
 | |
| */
 | |
| 
 | |
| bool st_select_lex::get_free_table_map(table_map *map, uint *tablenr)
 | |
| {
 | |
|   *map= 0;
 | |
|   *tablenr= 0;
 | |
|   TABLE_LIST *tl;
 | |
|   List_iterator<TABLE_LIST> ti(leaf_tables);
 | |
|   while ((tl= ti++))
 | |
|   {
 | |
|     if (tl->table->map > *map)
 | |
|       *map= tl->table->map;
 | |
|     if (tl->table->tablenr > *tablenr)
 | |
|       *tablenr= tl->table->tablenr;
 | |
|   }
 | |
|   (*map)<<= 1;
 | |
|   (*tablenr)++;
 | |
|   if (*tablenr >= MAX_TABLES)
 | |
|     return TRUE;
 | |
|   return FALSE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   @brief
 | |
|   Append given table to the leaf_tables list.
 | |
| 
 | |
|   @param link  Offset to which list in table structure to use
 | |
|   @param table Table to append
 | |
| 
 | |
|   @details
 | |
|   Append given 'table' to the leaf_tables list using the 'link' offset.
 | |
|   If the 'table' is linked with other tables through next_leaf/next_local
 | |
|   chains then whole list will be appended.
 | |
| */
 | |
| 
 | |
| void st_select_lex::append_table_to_list(TABLE_LIST *TABLE_LIST::*link,
 | |
|                                          TABLE_LIST *table)
 | |
| {
 | |
|   TABLE_LIST *tl;
 | |
|   for (tl= leaf_tables.head(); tl->*link; tl= tl->*link) ;
 | |
|   tl->*link= table;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   @brief
 | |
|   Replace given table from the leaf_tables list for a list of tables 
 | |
| 
 | |
|   @param table Table to replace
 | |
|   @param list  List to substititute the table for
 | |
| 
 | |
|   @details
 | |
|   Replace 'table' from the leaf_tables list for a list of tables 'tbl_list'.
 | |
| */
 | |
| 
 | |
| void st_select_lex::replace_leaf_table(TABLE_LIST *table, List<TABLE_LIST> &tbl_list)
 | |
| {
 | |
|   TABLE_LIST *tl;
 | |
|   List_iterator<TABLE_LIST> ti(leaf_tables);
 | |
|   while ((tl= ti++))
 | |
|   {
 | |
|     if (tl == table)
 | |
|     {
 | |
|       ti.replace(tbl_list);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   @brief
 | |
|   Assigns new table maps to tables in the leaf_tables list
 | |
| 
 | |
|   @param derived    Derived table to take initial table map from
 | |
|   @param map        table map to begin with
 | |
|   @param tablenr    table number to begin with
 | |
|   @param parent_lex new parent select_lex
 | |
| 
 | |
|   @details
 | |
|   Assign new table maps/table numbers to all tables in the leaf_tables list.
 | |
|   'map'/'tablenr' are used for the first table and shifted to left/
 | |
|   increased for each consequent table in the leaf_tables list.
 | |
|   If the 'derived' table is given then it's table map/number is used for the
 | |
|   first table in the list and 'map'/'tablenr' are used for the second and
 | |
|   all consequent tables.
 | |
|   The 'parent_lex' is set as the new parent select_lex for all tables in the
 | |
|   list.
 | |
| */
 | |
| 
 | |
| void st_select_lex::remap_tables(TABLE_LIST *derived, table_map map,
 | |
|                                  uint tablenr, SELECT_LEX *parent_lex)
 | |
| {
 | |
|   bool first_table= TRUE;
 | |
|   TABLE_LIST *tl;
 | |
|   table_map first_map;
 | |
|   uint first_tablenr;
 | |
| 
 | |
|   if (derived && derived->table)
 | |
|   {
 | |
|     first_map= derived->table->map;
 | |
|     first_tablenr= derived->table->tablenr;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     first_map= map;
 | |
|     map<<= 1;
 | |
|     first_tablenr= tablenr++;
 | |
|   }
 | |
|   /*
 | |
|     Assign table bit/table number.
 | |
|     To the first table of the subselect the table bit/tablenr of the
 | |
|     derived table is assigned. The rest of tables are getting bits
 | |
|     sequentially, starting from the provided table map/tablenr.
 | |
|   */
 | |
|   List_iterator<TABLE_LIST> ti(leaf_tables);
 | |
|   while ((tl= ti++))
 | |
|   {
 | |
|     if (first_table)
 | |
|     {
 | |
|       first_table= FALSE;
 | |
|       tl->table->set_table_map(first_map, first_tablenr);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       tl->table->set_table_map(map, tablenr);
 | |
|       tablenr++;
 | |
|       map<<= 1;
 | |
|     }
 | |
|     SELECT_LEX *old_sl= tl->select_lex;
 | |
|     tl->select_lex= parent_lex;
 | |
|     for(TABLE_LIST *emb= tl->embedding;
 | |
|         emb && emb->select_lex == old_sl;
 | |
|         emb= emb->embedding)
 | |
|       emb->select_lex= parent_lex;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   @brief
 | |
|   Merge a subquery into this select.
 | |
| 
 | |
|   @param derived     derived table of the subquery to be merged
 | |
|   @param subq_select select_lex of the subquery
 | |
|   @param map         table map for assigning to merged tables from subquery
 | |
|   @param table_no    table number for assigning to merged tables from subquery
 | |
| 
 | |
|   @details
 | |
|   This function merges a subquery into its parent select. In short the
 | |
|   merge operation appends the subquery FROM table list to the parent's
 | |
|   FROM table list. In more details:
 | |
|     .) the top_join_list of the subquery is wrapped into a join_nest
 | |
|        and attached to 'derived'
 | |
|     .) subquery's leaf_tables list  is merged with the leaf_tables
 | |
|        list of this select_lex
 | |
|     .) the table maps and table numbers of the tables merged from
 | |
|        the subquery are adjusted to reflect their new binding to
 | |
|        this select
 | |
| 
 | |
|   @return TRUE  an error occur
 | |
|   @return FALSE ok
 | |
| */
 | |
| 
 | |
| bool SELECT_LEX::merge_subquery(THD *thd, TABLE_LIST *derived,
 | |
|                                 SELECT_LEX *subq_select,
 | |
|                                 uint table_no, table_map map)
 | |
| {
 | |
|   derived->wrap_into_nested_join(subq_select->top_join_list);
 | |
| 
 | |
|   ftfunc_list->append(subq_select->ftfunc_list);
 | |
|   if (join ||
 | |
|       thd->lex->sql_command == SQLCOM_UPDATE_MULTI ||
 | |
|       thd->lex->sql_command == SQLCOM_DELETE_MULTI)
 | |
|   {
 | |
|     List_iterator_fast<Item_in_subselect> li(subq_select->sj_subselects);
 | |
|     Item_in_subselect *in_subq;
 | |
|     while ((in_subq= li++))
 | |
|     {
 | |
|       sj_subselects.push_back(in_subq);
 | |
|       if (in_subq->emb_on_expr_nest == NO_JOIN_NEST)
 | |
|          in_subq->emb_on_expr_nest= derived;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Walk through child's tables and adjust table map, tablenr,
 | |
|    * parent_lex */
 | |
|   subq_select->remap_tables(derived, map, table_no, this);
 | |
|   subq_select->merged_into= this;
 | |
| 
 | |
|   replace_leaf_table(derived, subq_select->leaf_tables);
 | |
| 
 | |
|   return FALSE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   @brief
 | |
|   Mark tables from the leaf_tables list as belong to a derived table.
 | |
| 
 | |
|   @param derived   tables will be marked as belonging to this derived
 | |
| 
 | |
|   @details
 | |
|   Run through the leaf_list and mark all tables as belonging to the 'derived'.
 | |
| */
 | |
| 
 | |
| void SELECT_LEX::mark_as_belong_to_derived(TABLE_LIST *derived)
 | |
| {
 | |
|   /* Mark tables as belonging to this DT */
 | |
|   TABLE_LIST *tl;
 | |
|   List_iterator<TABLE_LIST> ti(leaf_tables);
 | |
|   while ((tl= ti++))
 | |
|     tl->belong_to_derived= derived;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   @brief
 | |
|   Update used_tables cache for this select
 | |
| 
 | |
|   @details
 | |
|   This function updates used_tables cache of ON expressions of all tables
 | |
|   in the leaf_tables list and of the conds expression (if any).
 | |
| */
 | |
| 
 | |
| void SELECT_LEX::update_used_tables()
 | |
| {
 | |
|   TABLE_LIST *tl;
 | |
|   List_iterator<TABLE_LIST> ti(leaf_tables);
 | |
| 
 | |
|   while ((tl= ti++))
 | |
|   {
 | |
|     if (tl->table && !tl->is_view_or_derived())
 | |
|     {
 | |
|       TABLE_LIST *embedding= tl->embedding;
 | |
|       for (embedding= tl->embedding; embedding; embedding=embedding->embedding)
 | |
|       {
 | |
|         if (embedding->is_view_or_derived())
 | |
| 	{
 | |
|           DBUG_ASSERT(embedding->is_merged_derived());
 | |
|           TABLE *tab= tl->table;
 | |
|           tab->covering_keys= tab->s->keys_for_keyread;
 | |
|           tab->covering_keys.intersect(tab->keys_in_use_for_query);
 | |
|           tab->merge_keys.clear_all();
 | |
|           bitmap_clear_all(tab->read_set);
 | |
|           bitmap_clear_all(tab->vcol_set);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ti.rewind();
 | |
|   while ((tl= ti++))
 | |
|   {
 | |
|     TABLE_LIST *embedding= tl;
 | |
|     do
 | |
|     {
 | |
|       bool maybe_null;
 | |
|       if ((maybe_null= MY_TEST(embedding->outer_join)))
 | |
|       {
 | |
| 	tl->table->maybe_null= maybe_null;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     while ((embedding= embedding->embedding));
 | |
|     if (tl->on_expr)
 | |
|     {
 | |
|       tl->on_expr->update_used_tables();
 | |
|       tl->on_expr->walk(&Item::eval_not_null_tables, 0, NULL);
 | |
|     }
 | |
|     embedding= tl->embedding;
 | |
|     while (embedding)
 | |
|     {
 | |
|       if (embedding->on_expr && 
 | |
|           embedding->nested_join->join_list.head() == tl)
 | |
|       {
 | |
|         embedding->on_expr->update_used_tables();
 | |
|         embedding->on_expr->walk(&Item::eval_not_null_tables, 0, NULL);
 | |
|       }
 | |
|       tl= embedding;
 | |
|       embedding= tl->embedding;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (join->conds)
 | |
|   {
 | |
|     join->conds->update_used_tables();
 | |
|     join->conds->walk(&Item::eval_not_null_tables, 0, NULL);
 | |
|   }
 | |
|   if (join->having)
 | |
|   {
 | |
|     join->having->update_used_tables();
 | |
|   }
 | |
| 
 | |
|   Item *item;
 | |
|   List_iterator_fast<Item> it(join->fields_list);
 | |
|   while ((item= it++))
 | |
|   {
 | |
|     item->update_used_tables();
 | |
|   }
 | |
|   Item_outer_ref *ref;
 | |
|   List_iterator_fast<Item_outer_ref> ref_it(inner_refs_list);
 | |
|   while ((ref= ref_it++))
 | |
|   {
 | |
|     item= ref->outer_ref;
 | |
|     item->update_used_tables();
 | |
|   }
 | |
|   for (ORDER *order= group_list.first; order; order= order->next)
 | |
|     (*order->item)->update_used_tables();
 | |
|   if (!master_unit()->is_union() || master_unit()->global_parameters() != this)
 | |
|   {
 | |
|     for (ORDER *order= order_list.first; order; order= order->next)
 | |
|       (*order->item)->update_used_tables();
 | |
|   }
 | |
|   join->result->update_used_tables();
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   @brief
 | |
|   Update is_correlated cache for this select
 | |
| 
 | |
|   @details
 | |
| */
 | |
| 
 | |
| void st_select_lex::update_correlated_cache()
 | |
| {
 | |
|   TABLE_LIST *tl;
 | |
|   List_iterator<TABLE_LIST> ti(leaf_tables);
 | |
| 
 | |
|   is_correlated= false;
 | |
| 
 | |
|   while ((tl= ti++))
 | |
|   {
 | |
|     if (tl->on_expr)
 | |
|       is_correlated|= MY_TEST(tl->on_expr->used_tables() & OUTER_REF_TABLE_BIT);
 | |
|     for (TABLE_LIST *embedding= tl->embedding ; embedding ;
 | |
|          embedding= embedding->embedding)
 | |
|     {
 | |
|       if (embedding->on_expr)
 | |
|         is_correlated|= MY_TEST(embedding->on_expr->used_tables() &
 | |
|                                 OUTER_REF_TABLE_BIT);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (join->conds)
 | |
|     is_correlated|= MY_TEST(join->conds->used_tables() & OUTER_REF_TABLE_BIT);
 | |
| 
 | |
|   if (join->having)
 | |
|     is_correlated|= MY_TEST(join->having->used_tables() & OUTER_REF_TABLE_BIT);
 | |
| 
 | |
|   if (join->tmp_having)
 | |
|     is_correlated|= MY_TEST(join->tmp_having->used_tables() &
 | |
|                             OUTER_REF_TABLE_BIT);
 | |
| 
 | |
|   Item *item;
 | |
|   List_iterator_fast<Item> it(join->fields_list);
 | |
|   while ((item= it++))
 | |
|     is_correlated|= MY_TEST(item->used_tables() & OUTER_REF_TABLE_BIT);
 | |
| 
 | |
|   for (ORDER *order= group_list.first; order; order= order->next)
 | |
|     is_correlated|= MY_TEST((*order->item)->used_tables() &
 | |
|                             OUTER_REF_TABLE_BIT);
 | |
| 
 | |
|   if (!master_unit()->is_union())
 | |
|   {
 | |
|     for (ORDER *order= order_list.first; order; order= order->next)
 | |
|       is_correlated|= MY_TEST((*order->item)->used_tables() &
 | |
|                               OUTER_REF_TABLE_BIT);
 | |
|   }
 | |
| 
 | |
|   if (!is_correlated)
 | |
|     uncacheable&= ~UNCACHEABLE_DEPENDENT;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   Set the EXPLAIN type for this subquery.
 | |
|   
 | |
|   @param on_the_fly  TRUE<=> We're running a SHOW EXPLAIN command, so we must 
 | |
|                      not change any variables
 | |
| */
 | |
| 
 | |
| void st_select_lex::set_explain_type(bool on_the_fly)
 | |
| {
 | |
|   bool is_primary= FALSE;
 | |
|   if (next_select())
 | |
|     is_primary= TRUE;
 | |
| 
 | |
|   if (!is_primary && first_inner_unit())
 | |
|   {
 | |
|     /*
 | |
|       If there is at least one materialized derived|view then it's a PRIMARY select.
 | |
|       Otherwise, all derived tables/views were merged and this select is a SIMPLE one.
 | |
|     */
 | |
|     for (SELECT_LEX_UNIT *un= first_inner_unit(); un; un= un->next_unit())
 | |
|     {
 | |
|       if ((!un->derived || un->derived->is_materialized_derived()))
 | |
|       {
 | |
|         is_primary= TRUE;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (on_the_fly && !is_primary && have_merged_subqueries)
 | |
|     is_primary= TRUE;
 | |
| 
 | |
|   SELECT_LEX *first= master_unit()->first_select();
 | |
|   /* drop UNCACHEABLE_EXPLAIN, because it is for internal usage only */
 | |
|   uint8 is_uncacheable= (uncacheable & ~UNCACHEABLE_EXPLAIN);
 | |
|   
 | |
|   bool using_materialization= FALSE;
 | |
|   Item_subselect *parent_item;
 | |
|   if ((parent_item= master_unit()->item) &&
 | |
|       parent_item->substype() == Item_subselect::IN_SUBS)
 | |
|   {
 | |
|     Item_in_subselect *in_subs= (Item_in_subselect*)parent_item;
 | |
|     /*
 | |
|       Surprisingly, in_subs->is_set_strategy() can return FALSE here,
 | |
|       even for the last invocation of this function for the select.
 | |
|     */
 | |
|     if (in_subs->test_strategy(SUBS_MATERIALIZATION))
 | |
|       using_materialization= TRUE;
 | |
|   }
 | |
| 
 | |
|   if (&master_unit()->thd->lex->select_lex == this)
 | |
|   {
 | |
|      type= is_primary ? "PRIMARY" : "SIMPLE";
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     if (this == first)
 | |
|     {
 | |
|       /* If we're a direct child of a UNION, we're the first sibling there */
 | |
|       if (linkage == DERIVED_TABLE_TYPE)
 | |
|         type= "DERIVED";
 | |
|       else if (using_materialization)
 | |
|         type= "MATERIALIZED";
 | |
|       else
 | |
|       {
 | |
|          if (is_uncacheable & UNCACHEABLE_DEPENDENT)
 | |
|            type= "DEPENDENT SUBQUERY";
 | |
|          else
 | |
|          {
 | |
|            type= is_uncacheable? "UNCACHEABLE SUBQUERY" :
 | |
|                                  "SUBQUERY";
 | |
|          }
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       /* This a non-first sibling in UNION */
 | |
|       if (is_uncacheable & UNCACHEABLE_DEPENDENT)
 | |
|         type= "DEPENDENT UNION";
 | |
|       else if (using_materialization)
 | |
|         type= "MATERIALIZED UNION";
 | |
|       else
 | |
|       {
 | |
|         type= is_uncacheable ? "UNCACHEABLE UNION": "UNION";
 | |
|         if (this == master_unit()->fake_select_lex)
 | |
|           type= "UNION RESULT";
 | |
| 
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!on_the_fly)
 | |
|     options|= SELECT_DESCRIBE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   @brief
 | |
|   Increase estimated number of records for a derived table/view
 | |
| 
 | |
|   @param records  number of records to increase estimate by
 | |
| 
 | |
|   @details
 | |
|   This function increases estimated number of records by the 'records'
 | |
|   for the derived table to which this select belongs to.
 | |
| */
 | |
| 
 | |
| void SELECT_LEX::increase_derived_records(ha_rows records)
 | |
| {
 | |
|   SELECT_LEX_UNIT *unit= master_unit();
 | |
|   DBUG_ASSERT(unit->derived);
 | |
| 
 | |
|   select_union *result= (select_union*)unit->result;
 | |
|   result->records+= records;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   @brief
 | |
|   Mark select's derived table as a const one.
 | |
| 
 | |
|   @param empty Whether select has an empty result set
 | |
| 
 | |
|   @details
 | |
|   Mark derived table/view of this select as a constant one (to
 | |
|   materialize it at the optimization phase) unless this select belongs to a
 | |
|   union. Estimated number of rows is incremented if this select has non empty
 | |
|   result set.
 | |
| */
 | |
| 
 | |
| void SELECT_LEX::mark_const_derived(bool empty)
 | |
| {
 | |
|   TABLE_LIST *derived= master_unit()->derived;
 | |
|   /* join == NULL in  DELETE ... RETURNING */
 | |
|   if (!(join && join->thd->lex->describe) && derived)
 | |
|   {
 | |
|     if (!empty)
 | |
|       increase_derived_records(1);
 | |
|     if (!master_unit()->is_union() && !derived->is_merged_derived())
 | |
|       derived->fill_me= TRUE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| bool st_select_lex::save_leaf_tables(THD *thd)
 | |
| {
 | |
|   Query_arena *arena, backup;
 | |
|   arena= thd->activate_stmt_arena_if_needed(&backup);
 | |
| 
 | |
|   List_iterator_fast<TABLE_LIST> li(leaf_tables);
 | |
|   TABLE_LIST *table;
 | |
|   while ((table= li++))
 | |
|   {
 | |
|     if (leaf_tables_exec.push_back(table))
 | |
|       return 1;
 | |
|     table->tablenr_exec= table->get_tablenr();
 | |
|     table->map_exec= table->get_map();
 | |
|     if (join && (join->select_options & SELECT_DESCRIBE))
 | |
|       table->maybe_null_exec= 0;
 | |
|     else
 | |
|       table->maybe_null_exec= table->table?  table->table->maybe_null: 0;
 | |
|   }
 | |
|   if (arena)
 | |
|     thd->restore_active_arena(arena, &backup);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool st_select_lex::save_prep_leaf_tables(THD *thd)
 | |
| {
 | |
|   if (!thd->save_prep_leaf_list)
 | |
|     return 0;
 | |
| 
 | |
|   Query_arena *arena= thd->stmt_arena, backup;
 | |
|   arena= thd->activate_stmt_arena_if_needed(&backup);
 | |
| 
 | |
|   List_iterator_fast<TABLE_LIST> li(leaf_tables);
 | |
|   TABLE_LIST *table;
 | |
|   while ((table= li++))
 | |
|   {
 | |
|     if (leaf_tables_prep.push_back(table))
 | |
|       return 1;
 | |
|   }
 | |
|   thd->lex->select_lex.is_prep_leaf_list_saved= TRUE; 
 | |
|   thd->save_prep_leaf_list= FALSE;
 | |
|   if (arena)
 | |
|     thd->restore_active_arena(arena, &backup);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Return true if this select_lex has been converted into a semi-join nest
 | |
|   within 'ancestor'.
 | |
| 
 | |
|   We need a loop to check this because there could be several nested
 | |
|   subselects, like
 | |
| 
 | |
|     SELECT ... FROM grand_parent 
 | |
|       WHERE expr1 IN (SELECT ... FROM parent 
 | |
|                         WHERE expr2 IN ( SELECT ... FROM child)
 | |
| 
 | |
|   which were converted into:
 | |
|   
 | |
|     SELECT ... 
 | |
|     FROM grand_parent SEMI_JOIN (parent JOIN child) 
 | |
|     WHERE 
 | |
|       expr1 AND expr2
 | |
| 
 | |
|   In this case, both parent and child selects were merged into the parent.
 | |
| */
 | |
| 
 | |
| bool st_select_lex::is_merged_child_of(st_select_lex *ancestor)
 | |
| {
 | |
|   bool all_merged= TRUE;
 | |
|   for (SELECT_LEX *sl= this; sl && sl!=ancestor;
 | |
|        sl=sl->outer_select())
 | |
|   {
 | |
|     Item *subs= sl->master_unit()->item;
 | |
|     if (subs && subs->type() == Item::SUBSELECT_ITEM && 
 | |
|         ((Item_subselect*)subs)->substype() == Item_subselect::IN_SUBS &&
 | |
|         ((Item_in_subselect*)subs)->test_strategy(SUBS_SEMI_JOIN))
 | |
|     {
 | |
|       continue;
 | |
|     }
 | |
|     all_merged= FALSE;
 | |
|     break;
 | |
|   }
 | |
|   return all_merged;
 | |
| }
 | |
| 
 | |
| /* 
 | |
|   This is used by SHOW EXPLAIN. It assuses query plan has been already 
 | |
|   collected into QPF structures and we only need to print it out.
 | |
| */
 | |
| 
 | |
| int LEX::print_explain(select_result_sink *output, uint8 explain_flags,
 | |
|                        bool is_analyze, bool *printed_anything)
 | |
| {
 | |
|   int res;
 | |
|   if (explain && explain->have_query_plan())
 | |
|   {
 | |
|     res= explain->print_explain(output, explain_flags, is_analyze);
 | |
|     *printed_anything= true;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     res= 0;
 | |
|     *printed_anything= false;
 | |
|   }
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   Allocates and set arena for SET STATEMENT old values.
 | |
| 
 | |
|   @param backup          where to save backup of arena.
 | |
| 
 | |
|   @retval 1 Error
 | |
|   @retval 0 OK
 | |
| */
 | |
| 
 | |
| bool LEX::set_arena_for_set_stmt(Query_arena *backup)
 | |
| {
 | |
|   DBUG_ENTER("LEX::set_arena_for_set_stmt");
 | |
|   DBUG_ASSERT(arena_for_set_stmt== 0);
 | |
|   if (!mem_root_for_set_stmt)
 | |
|   {
 | |
|     mem_root_for_set_stmt= new MEM_ROOT();
 | |
|     if (!(mem_root_for_set_stmt))
 | |
|       DBUG_RETURN(1);
 | |
|     init_sql_alloc(mem_root_for_set_stmt, ALLOC_ROOT_SET, ALLOC_ROOT_SET,
 | |
|                    MYF(MY_THREAD_SPECIFIC));
 | |
|   }
 | |
|   if (!(arena_for_set_stmt= new(mem_root_for_set_stmt)
 | |
|         Query_arena_memroot(mem_root_for_set_stmt,
 | |
|                             Query_arena::STMT_INITIALIZED)))
 | |
|     DBUG_RETURN(1);
 | |
|   DBUG_PRINT("info", ("mem_root: 0x%lx  arena: 0x%lx",
 | |
|                       (ulong) mem_root_for_set_stmt,
 | |
|                       (ulong) arena_for_set_stmt));
 | |
|   thd->set_n_backup_active_arena(arena_for_set_stmt, backup);
 | |
|   DBUG_RETURN(0);
 | |
| }
 | |
| 
 | |
| 
 | |
| void LEX::reset_arena_for_set_stmt(Query_arena *backup)
 | |
| {
 | |
|   DBUG_ENTER("LEX::reset_arena_for_set_stmt");
 | |
|   DBUG_ASSERT(arena_for_set_stmt);
 | |
|   thd->restore_active_arena(arena_for_set_stmt, backup);
 | |
|   DBUG_PRINT("info", ("mem_root: 0x%lx  arena: 0x%lx",
 | |
|                       (ulong) arena_for_set_stmt->mem_root,
 | |
|                       (ulong) arena_for_set_stmt));
 | |
|   DBUG_VOID_RETURN;
 | |
| }
 | |
| 
 | |
| 
 | |
| void LEX::free_arena_for_set_stmt()
 | |
| {
 | |
|   DBUG_ENTER("LEX::free_arena_for_set_stmt");
 | |
|   if (!arena_for_set_stmt)
 | |
|     return;
 | |
|   DBUG_PRINT("info", ("mem_root: 0x%lx  arena: 0x%lx",
 | |
|                       (ulong) arena_for_set_stmt->mem_root,
 | |
|                       (ulong) arena_for_set_stmt));
 | |
|   arena_for_set_stmt->free_items();
 | |
|   delete(arena_for_set_stmt);
 | |
|   free_root(mem_root_for_set_stmt, MYF(MY_KEEP_PREALLOC));
 | |
|   arena_for_set_stmt= 0;
 | |
|   DBUG_VOID_RETURN;
 | |
| }
 | |
| 
 | |
| void LEX::restore_set_statement_var()
 | |
| {
 | |
|   DBUG_ENTER("LEX::restore_set_statement_var");
 | |
|   if (!old_var_list.is_empty())
 | |
|   {
 | |
|     DBUG_PRINT("info", ("vars: %d", old_var_list.elements));
 | |
|     sql_set_variables(thd, &old_var_list, false);
 | |
|     old_var_list.empty();
 | |
|     free_arena_for_set_stmt();
 | |
|   }
 | |
|   DBUG_ASSERT(!is_arena_for_set_stmt());
 | |
|   DBUG_VOID_RETURN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Save explain structures of a UNION. The only variable member is whether the 
 | |
|   union has "Using filesort".
 | |
| 
 | |
|   There is also save_union_explain_part2() function, which is called before we read
 | |
|   UNION's output.
 | |
| 
 | |
|   The reason for it is examples like this:
 | |
| 
 | |
|      SELECT col1 FROM t1 UNION SELECT col2 FROM t2 ORDER BY (select ... from t3 ...)
 | |
| 
 | |
|   Here, the (select ... from t3 ...) subquery must be a child of UNION's
 | |
|   st_select_lex. However, it is not connected as child until a very late 
 | |
|   stage in execution.
 | |
| */
 | |
| 
 | |
| int st_select_lex_unit::save_union_explain(Explain_query *output)
 | |
| {
 | |
|   SELECT_LEX *first= first_select();
 | |
|   Explain_union *eu= 
 | |
|     new (output->mem_root) Explain_union(output->mem_root, 
 | |
|                                          thd->lex->analyze_stmt);
 | |
| 
 | |
|   if (derived)
 | |
|     eu->connection_type= Explain_node::EXPLAIN_NODE_DERIVED;
 | |
|   /* 
 | |
|     Note: Non-merged semi-joins cannot be made out of UNIONs currently, so we
 | |
|     dont ever set EXPLAIN_NODE_NON_MERGED_SJ.
 | |
|   */
 | |
| 
 | |
|   for (SELECT_LEX *sl= first; sl; sl= sl->next_select())
 | |
|     eu->add_select(sl->select_number);
 | |
| 
 | |
|   eu->fake_select_type= "UNION RESULT";
 | |
|   eu->using_filesort= MY_TEST(global_parameters()->order_list.first);
 | |
|   eu->using_tmp= union_needs_tmp_table();
 | |
| 
 | |
|   // Save the UNION node
 | |
|   output->add_node(eu);
 | |
| 
 | |
|   if (eu->get_select_id() == 1)
 | |
|     output->query_plan_ready();
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   @see  st_select_lex_unit::save_union_explain
 | |
| */
 | |
| 
 | |
| int st_select_lex_unit::save_union_explain_part2(Explain_query *output)
 | |
| {
 | |
|   Explain_union *eu= output->get_union(first_select()->select_number);
 | |
|   if (fake_select_lex)
 | |
|   {
 | |
|     for (SELECT_LEX_UNIT *unit= fake_select_lex->first_inner_unit(); 
 | |
|          unit; unit= unit->next_unit())
 | |
|     {
 | |
|       if (!(unit->item && unit->item->eliminated))
 | |
|       {
 | |
|         eu->add_child(unit->first_select()->select_number);
 | |
|       }
 | |
|     }
 | |
|     fake_select_lex->join->explain= &eu->fake_select_lex_explain;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   A routine used by the parser to decide whether we are specifying a full
 | |
|   partitioning or if only partitions to add or to split.
 | |
| 
 | |
|   @note  This needs to be outside of WITH_PARTITION_STORAGE_ENGINE since it
 | |
|   is used from the sql parser that doesn't have any ifdef's
 | |
| 
 | |
|   @retval  TRUE    Yes, it is part of a management partition command
 | |
|   @retval  FALSE          No, not a management partition command
 | |
| */
 | |
| 
 | |
| bool LEX::is_partition_management() const
 | |
| {
 | |
|   return (sql_command == SQLCOM_ALTER_TABLE &&
 | |
|           (alter_info.flags ==  Alter_info::ALTER_ADD_PARTITION ||
 | |
|            alter_info.flags ==  Alter_info::ALTER_REORGANIZE_PARTITION));
 | |
| }
 | |
| 
 | |
| #ifdef MYSQL_SERVER
 | |
| uint binlog_unsafe_map[256];
 | |
| 
 | |
| #define UNSAFE(a, b, c) \
 | |
|   { \
 | |
|   DBUG_PRINT("unsafe_mixed_statement", ("SETTING BASE VALUES: %s, %s, %02X\n", \
 | |
|     LEX::stmt_accessed_table_string(a), \
 | |
|     LEX::stmt_accessed_table_string(b), \
 | |
|     c)); \
 | |
|   unsafe_mixed_statement(a, b, c); \
 | |
|   }
 | |
| 
 | |
| /*
 | |
|   Sets the combination given by "a" and "b" and automatically combinations
 | |
|   given by other types of access, i.e. 2^(8 - 2), as unsafe.
 | |
| 
 | |
|   It may happen a colision when automatically defining a combination as unsafe.
 | |
|   For that reason, a combination has its unsafe condition redefined only when
 | |
|   the new_condition is greater then the old. For instance,
 | |
|   
 | |
|      . (BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY) is never overwritten by 
 | |
|      . (BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF).
 | |
| */
 | |
| void unsafe_mixed_statement(LEX::enum_stmt_accessed_table a,
 | |
|                             LEX::enum_stmt_accessed_table b, uint condition)
 | |
| {
 | |
|   int type= 0;
 | |
|   int index= (1U << a) | (1U << b);
 | |
|   
 | |
|   
 | |
|   for (type= 0; type < 256; type++)
 | |
|   {
 | |
|     if ((type & index) == index)
 | |
|     {
 | |
|       binlog_unsafe_map[type] |= condition;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| /*
 | |
|   The BINLOG_* AND TRX_CACHE_* values can be combined by using '&' or '|',
 | |
|   which means that both conditions need to be satisfied or any of them is
 | |
|   enough. For example, 
 | |
|     
 | |
|     . BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY means that the statment is
 | |
|     unsafe when the option is on and trx-cache is not empty;
 | |
| 
 | |
|     . BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF means the statement is unsafe
 | |
|     in all cases.
 | |
| 
 | |
|     . TRX_CACHE_EMPTY | TRX_CACHE_NOT_EMPTY means the statement is unsafe
 | |
|     in all cases. Similar as above.
 | |
| */
 | |
| void binlog_unsafe_map_init()
 | |
| {
 | |
|   memset((void*) binlog_unsafe_map, 0, sizeof(uint) * 256);
 | |
| 
 | |
|   /*
 | |
|     Classify a statement as unsafe when there is a mixed statement and an
 | |
|     on-going transaction at any point of the execution if:
 | |
| 
 | |
|       1. The mixed statement is about to update a transactional table and
 | |
|       a non-transactional table.
 | |
| 
 | |
|       2. The mixed statement is about to update a transactional table and
 | |
|       read from a non-transactional table.
 | |
| 
 | |
|       3. The mixed statement is about to update a non-transactional table
 | |
|       and temporary transactional table.
 | |
| 
 | |
|       4. The mixed statement is about to update a temporary transactional
 | |
|       table and read from a non-transactional table.
 | |
| 
 | |
|       5. The mixed statement is about to update a transactional table and
 | |
|       a temporary non-transactional table.
 | |
|      
 | |
|       6. The mixed statement is about to update a transactional table and
 | |
|       read from a temporary non-transactional table.
 | |
| 
 | |
|       7. The mixed statement is about to update a temporary transactional
 | |
|       table and temporary non-transactional table.
 | |
| 
 | |
|       8. The mixed statement is about to update a temporary transactional
 | |
|       table and read from a temporary non-transactional table.
 | |
| 
 | |
|     After updating a transactional table if:
 | |
| 
 | |
|       9. The mixed statement is about to update a non-transactional table
 | |
|       and read from a transactional table.
 | |
| 
 | |
|       10. The mixed statement is about to update a non-transactional table
 | |
|       and read from a temporary transactional table.
 | |
| 
 | |
|       11. The mixed statement is about to update a temporary non-transactional
 | |
|       table and read from a transactional table.
 | |
|       
 | |
|       12. The mixed statement is about to update a temporary non-transactional
 | |
|       table and read from a temporary transactional table.
 | |
| 
 | |
|       13. The mixed statement is about to update a temporary non-transactional
 | |
|       table and read from a non-transactional table.
 | |
| 
 | |
|     The reason for this is that locks acquired may not protected a concurrent
 | |
|     transaction of interfering in the current execution and by consequence in
 | |
|     the result.
 | |
|   */
 | |
|   /* Case 1. */
 | |
|   UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_WRITES_NON_TRANS_TABLE,
 | |
|     BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF);
 | |
|   /* Case 2. */
 | |
|   UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_READS_NON_TRANS_TABLE,
 | |
|     BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF);
 | |
|   /* Case 3. */
 | |
|   UNSAFE(LEX::STMT_WRITES_NON_TRANS_TABLE, LEX::STMT_WRITES_TEMP_TRANS_TABLE,
 | |
|     BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF);
 | |
|   /* Case 4. */
 | |
|   UNSAFE(LEX::STMT_WRITES_TEMP_TRANS_TABLE, LEX::STMT_READS_NON_TRANS_TABLE,
 | |
|     BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF);
 | |
|   /* Case 5. */
 | |
|   UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE,
 | |
|     BINLOG_DIRECT_ON);
 | |
|   /* Case 6. */
 | |
|   UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_READS_TEMP_NON_TRANS_TABLE,
 | |
|     BINLOG_DIRECT_ON);
 | |
|   /* Case 7. */
 | |
|   UNSAFE(LEX::STMT_WRITES_TEMP_TRANS_TABLE, LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE,
 | |
|     BINLOG_DIRECT_ON);
 | |
|   /* Case 8. */
 | |
|   UNSAFE(LEX::STMT_WRITES_TEMP_TRANS_TABLE, LEX::STMT_READS_TEMP_NON_TRANS_TABLE,
 | |
|     BINLOG_DIRECT_ON);
 | |
|   /* Case 9. */
 | |
|   UNSAFE(LEX::STMT_WRITES_NON_TRANS_TABLE, LEX::STMT_READS_TRANS_TABLE,
 | |
|     (BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF) & TRX_CACHE_NOT_EMPTY);
 | |
|   /* Case 10 */
 | |
|   UNSAFE(LEX::STMT_WRITES_NON_TRANS_TABLE, LEX::STMT_READS_TEMP_TRANS_TABLE,
 | |
|     (BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF) & TRX_CACHE_NOT_EMPTY);
 | |
|   /* Case 11. */
 | |
|   UNSAFE(LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, LEX::STMT_READS_TRANS_TABLE,
 | |
|     BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY);
 | |
|   /* Case 12. */
 | |
|   UNSAFE(LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, LEX::STMT_READS_TEMP_TRANS_TABLE,
 | |
|     BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY);
 | |
|   /* Case 13. */
 | |
|   UNSAFE(LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, LEX::STMT_READS_NON_TRANS_TABLE,
 | |
|      BINLOG_DIRECT_OFF & TRX_CACHE_NOT_EMPTY);
 | |
| }
 | |
| #endif
 | |
| 
 |