mirror of
				https://github.com/MariaDB/server.git
				synced 2025-11-03 14:33:32 +03:00 
			
		
		
		
	MDEV-22691 MSAN use-of-uninitialized-value in test maria.maria-recovery2 This caused all my_vsnprintf() using doubles to fail. Thanks to the workaround, I was able to remove the disabling of MSAN in dtoa().
		
			
				
	
	
		
			2823 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2823 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
 | 
						|
   Copyright (c) 2017, 2020, MariaDB Corporation.
 | 
						|
 | 
						|
   This library is free software; you can redistribute it and/or
 | 
						|
   modify it under the terms of the GNU Library General Public
 | 
						|
   License as published by the Free Software Foundation; version 2
 | 
						|
   of the License.
 | 
						|
 | 
						|
   This program is distributed in the hope that it will be useful,
 | 
						|
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
   GNU General Public License for more details.
 | 
						|
 | 
						|
   You should have received a copy of the GNU General Public License
 | 
						|
   along with this program; if not, write to the Free Software
 | 
						|
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335  USA */
 | 
						|
 | 
						|
/****************************************************************
 | 
						|
 | 
						|
  This file incorporates work covered by the following copyright and
 | 
						|
  permission notice:
 | 
						|
 | 
						|
  The author of this software is David M. Gay.
 | 
						|
 | 
						|
  Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
 | 
						|
 | 
						|
  Permission to use, copy, modify, and distribute this software for any
 | 
						|
  purpose without fee is hereby granted, provided that this entire notice
 | 
						|
  is included in all copies of any software which is or includes a copy
 | 
						|
  or modification of this software and in all copies of the supporting
 | 
						|
  documentation for such software.
 | 
						|
 | 
						|
  THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
 | 
						|
  WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
 | 
						|
  REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
 | 
						|
  OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
 | 
						|
 | 
						|
 ***************************************************************/
 | 
						|
 | 
						|
#include "strings_def.h"
 | 
						|
#include <my_base.h> /* for EOVERFLOW on Windows */
 | 
						|
 | 
						|
/**
 | 
						|
   Appears to suffice to not call malloc() in most cases.
 | 
						|
   @todo
 | 
						|
     see if it is possible to get rid of malloc().
 | 
						|
     this constant is sufficient to avoid malloc() on all inputs I have tried.
 | 
						|
*/
 | 
						|
#define DTOA_BUFF_SIZE (460 * sizeof(void *))
 | 
						|
 | 
						|
/* Magic value returned by dtoa() to indicate overflow */
 | 
						|
#define DTOA_OVERFLOW 9999
 | 
						|
 | 
						|
static double my_strtod_int(const char *, char **, int *, char *, size_t);
 | 
						|
static char *dtoa(double, int, int, int *, int *, char **, char *, size_t);
 | 
						|
static void dtoa_free(char *, char *, size_t);
 | 
						|
 | 
						|
/**
 | 
						|
   @brief
 | 
						|
   Converts a given floating point number to a zero-terminated string
 | 
						|
   representation using the 'f' format.
 | 
						|
 | 
						|
   @details
 | 
						|
   This function is a wrapper around dtoa() to do the same as
 | 
						|
   sprintf(to, "%-.*f", precision, x), though the conversion is usually more
 | 
						|
   precise. The only difference is in handling [-,+]infinity and nan values,
 | 
						|
   in which case we print '0\0' to the output string and indicate an overflow.
 | 
						|
 | 
						|
   @param x           the input floating point number.
 | 
						|
   @param precision   the number of digits after the decimal point.
 | 
						|
                      All properties of sprintf() apply:
 | 
						|
                      - if the number of significant digits after the decimal
 | 
						|
                        point is less than precision, the resulting string is
 | 
						|
                        right-padded with zeros
 | 
						|
                      - if the precision is 0, no decimal point appears
 | 
						|
                      - if a decimal point appears, at least one digit appears
 | 
						|
                        before it
 | 
						|
   @param to          pointer to the output buffer. The longest string which
 | 
						|
                      my_fcvt() can return is FLOATING_POINT_BUFFER bytes
 | 
						|
                      (including the terminating '\0').
 | 
						|
   @param error       if not NULL, points to a location where the status of
 | 
						|
                      conversion is stored upon return.
 | 
						|
                      FALSE  successful conversion
 | 
						|
                      TRUE   the input number is [-,+]infinity or nan.
 | 
						|
                             The output string in this case is always '0'.
 | 
						|
   @return            number of written characters (excluding terminating '\0')
 | 
						|
*/
 | 
						|
 | 
						|
size_t my_fcvt(double x, int precision, char *to, my_bool *error)
 | 
						|
{
 | 
						|
  int decpt, sign, len, i;
 | 
						|
  char *res, *src, *end, *dst= to;
 | 
						|
  char buf[DTOA_BUFF_SIZE];
 | 
						|
  DBUG_ASSERT(precision >= 0 && precision < DECIMAL_NOT_SPECIFIED && to != NULL);
 | 
						|
  
 | 
						|
  res= dtoa(x, 5, precision, &decpt, &sign, &end, buf, sizeof(buf));
 | 
						|
 | 
						|
  if (decpt == DTOA_OVERFLOW)
 | 
						|
  {
 | 
						|
    dtoa_free(res, buf, sizeof(buf));
 | 
						|
    *to++= '0';
 | 
						|
    *to= '\0';
 | 
						|
    if (error != NULL)
 | 
						|
      *error= TRUE;
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  src= res;
 | 
						|
  len= (int)(end - src);
 | 
						|
 | 
						|
  if (sign)
 | 
						|
    *dst++= '-';
 | 
						|
 | 
						|
  if (decpt <= 0)
 | 
						|
  {
 | 
						|
    *dst++= '0';
 | 
						|
    *dst++= '.';
 | 
						|
    for (i= decpt; i < 0; i++)
 | 
						|
      *dst++= '0';
 | 
						|
  }
 | 
						|
 | 
						|
  for (i= 1; i <= len; i++)
 | 
						|
  {
 | 
						|
    *dst++= *src++;
 | 
						|
    if (i == decpt && i < len)
 | 
						|
      *dst++= '.';
 | 
						|
  }
 | 
						|
  while (i++ <= decpt)
 | 
						|
    *dst++= '0';
 | 
						|
 | 
						|
  if (precision > 0)
 | 
						|
  {
 | 
						|
    if (len <= decpt)
 | 
						|
      *dst++= '.';
 | 
						|
    
 | 
						|
    for (i= precision - MY_MAX(0, (len - decpt)); i > 0; i--)
 | 
						|
      *dst++= '0';
 | 
						|
  }
 | 
						|
  
 | 
						|
  *dst= '\0';
 | 
						|
  if (error != NULL)
 | 
						|
    *error= FALSE;
 | 
						|
 | 
						|
  dtoa_free(res, buf, sizeof(buf));
 | 
						|
 | 
						|
  return dst - to;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
   @brief
 | 
						|
   Converts a given floating point number to a zero-terminated string
 | 
						|
   representation with a given field width using the 'e' format
 | 
						|
   (aka scientific notation) or the 'f' one.
 | 
						|
 | 
						|
   @details
 | 
						|
   The format is chosen automatically to provide the most number of significant
 | 
						|
   digits (and thus, precision) with a given field width. In many cases, the
 | 
						|
   result is similar to that of sprintf(to, "%g", x) with a few notable
 | 
						|
   differences:
 | 
						|
   - the conversion is usually more precise than C library functions.
 | 
						|
   - there is no 'precision' argument. instead, we specify the number of
 | 
						|
     characters available for conversion (i.e. a field width).
 | 
						|
   - the result never exceeds the specified field width. If the field is too
 | 
						|
     short to contain even a rounded decimal representation, my_gcvt()
 | 
						|
     indicates overflow and truncates the output string to the specified width.
 | 
						|
   - float-type arguments are handled differently than double ones. For a
 | 
						|
     float input number (i.e. when the 'type' argument is MY_GCVT_ARG_FLOAT)
 | 
						|
     we deliberately limit the precision of conversion by FLT_DIG digits to
 | 
						|
     avoid garbage past the significant digits.
 | 
						|
   - unlike sprintf(), in cases where the 'e' format is preferred,  we don't
 | 
						|
     zero-pad the exponent to save space for significant digits. The '+' sign
 | 
						|
     for a positive exponent does not appear for the same reason.
 | 
						|
 | 
						|
   @param x           the input floating point number.
 | 
						|
   @param type        is either MY_GCVT_ARG_FLOAT or MY_GCVT_ARG_DOUBLE.
 | 
						|
                      Specifies the type of the input number (see notes above).
 | 
						|
   @param width       field width in characters. The minimal field width to
 | 
						|
                      hold any number representation (albeit rounded) is 7
 | 
						|
                      characters ("-Ne-NNN").
 | 
						|
   @param to          pointer to the output buffer. The result is always
 | 
						|
                      zero-terminated, and the longest returned string is thus
 | 
						|
                      'width + 1' bytes.
 | 
						|
   @param error       if not NULL, points to a location where the status of
 | 
						|
                      conversion is stored upon return.
 | 
						|
                      FALSE  successful conversion
 | 
						|
                      TRUE   the input number is [-,+]infinity or nan.
 | 
						|
                             The output string in this case is always '0'.
 | 
						|
   @return            number of written characters (excluding terminating '\0')
 | 
						|
 | 
						|
   @todo
 | 
						|
   Check if it is possible and  makes sense to do our own rounding on top of
 | 
						|
   dtoa() instead of calling dtoa() twice in (rare) cases when the resulting
 | 
						|
   string representation does not fit in the specified field width and we want
 | 
						|
   to re-round the input number with fewer significant digits. Examples:
 | 
						|
 | 
						|
     my_gcvt(-9e-3, ..., 4, ...);
 | 
						|
     my_gcvt(-9e-3, ..., 2, ...);
 | 
						|
     my_gcvt(1.87e-3, ..., 4, ...);
 | 
						|
     my_gcvt(55, ..., 1, ...);
 | 
						|
 | 
						|
   We do our best to minimize such cases by:
 | 
						|
   
 | 
						|
   - passing to dtoa() the field width as the number of significant digits
 | 
						|
   
 | 
						|
   - removing the sign of the number early (and decreasing the width before
 | 
						|
     passing it to dtoa())
 | 
						|
   
 | 
						|
   - choosing the proper format to preserve the most number of significant
 | 
						|
     digits.
 | 
						|
*/
 | 
						|
 | 
						|
size_t my_gcvt(double x, my_gcvt_arg_type type, int width, char *to,
 | 
						|
               my_bool *error)
 | 
						|
{
 | 
						|
  int decpt, sign, len, exp_len;
 | 
						|
  char *res, *src, *end, *dst= to, *dend= dst + width;
 | 
						|
  char buf[DTOA_BUFF_SIZE];
 | 
						|
  my_bool have_space, force_e_format;
 | 
						|
  DBUG_ASSERT(width > 0 && to != NULL);
 | 
						|
  
 | 
						|
  /* We want to remove '-' from equations early */
 | 
						|
  if (x < 0.)
 | 
						|
    width--;
 | 
						|
 | 
						|
  res= dtoa(x, 4, type == MY_GCVT_ARG_DOUBLE ? width : MY_MIN(width, FLT_DIG),
 | 
						|
            &decpt, &sign, &end, buf, sizeof(buf));
 | 
						|
  if (decpt == DTOA_OVERFLOW)
 | 
						|
  {
 | 
						|
    dtoa_free(res, buf, sizeof(buf));
 | 
						|
    *to++= '0';
 | 
						|
    *to= '\0';
 | 
						|
    if (error != NULL)
 | 
						|
      *error= TRUE;
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  if (error != NULL)
 | 
						|
    *error= FALSE;
 | 
						|
 | 
						|
  src= res;
 | 
						|
  len= (int)(end - res);
 | 
						|
 | 
						|
  /*
 | 
						|
    Number of digits in the exponent from the 'e' conversion.
 | 
						|
     The sign of the exponent is taken into account separetely, we don't need
 | 
						|
     to count it here.
 | 
						|
   */
 | 
						|
  exp_len= 1 + (decpt >= 101 || decpt <= -99) + (decpt >= 11 || decpt <= -9);
 | 
						|
  
 | 
						|
  /*
 | 
						|
     Do we have enough space for all digits in the 'f' format?
 | 
						|
     Let 'len' be the number of significant digits returned by dtoa,
 | 
						|
     and F be the length of the resulting decimal representation.
 | 
						|
     Consider the following cases:
 | 
						|
     1. decpt <= 0, i.e. we have "0.NNN" => F = len - decpt + 2
 | 
						|
     2. 0 < decpt < len, i.e. we have "NNN.NNN" => F = len + 1
 | 
						|
     3. len <= decpt, i.e. we have "NNN00" => F = decpt
 | 
						|
  */
 | 
						|
  have_space= (decpt <= 0 ? len - decpt + 2 :
 | 
						|
               decpt > 0 && decpt < len ? len + 1 :
 | 
						|
               decpt) <= width;
 | 
						|
  /*
 | 
						|
    The following is true when no significant digits can be placed with the
 | 
						|
    specified field width using the 'f' format, and the 'e' format
 | 
						|
    will not be truncated.
 | 
						|
  */
 | 
						|
  force_e_format= (decpt <= 0 && width <= 2 - decpt && width >= 3 + exp_len);
 | 
						|
  /*
 | 
						|
    Assume that we don't have enough space to place all significant digits in
 | 
						|
    the 'f' format. We have to choose between the 'e' format and the 'f' one
 | 
						|
    to keep as many significant digits as possible.
 | 
						|
    Let E and F be the lengths of decimal representation in the 'e' and 'f'
 | 
						|
    formats, respectively. We want to use the 'f' format if, and only if F <= E.
 | 
						|
    Consider the following cases:
 | 
						|
    1. decpt <= 0.
 | 
						|
       F = len - decpt + 2 (see above)
 | 
						|
       E = len + (len > 1) + 1 + 1 (decpt <= -99) + (decpt <= -9) + 1
 | 
						|
       ("N.NNe-MMM")
 | 
						|
       (F <= E) <=> (len == 1 && decpt >= -1) || (len > 1 && decpt >= -2)
 | 
						|
       We also need to ensure that if the 'f' format is chosen,
 | 
						|
       the field width allows us to place at least one significant digit
 | 
						|
       (i.e. width > 2 - decpt). If not, we prefer the 'e' format.
 | 
						|
    2. 0 < decpt < len
 | 
						|
       F = len + 1 (see above)
 | 
						|
       E = len + 1 + 1 + ... ("N.NNeMMM")
 | 
						|
       F is always less than E.
 | 
						|
    3. len <= decpt <= width
 | 
						|
       In this case we have enough space to represent the number in the 'f'
 | 
						|
       format, so we prefer it with some exceptions.
 | 
						|
    4. width < decpt
 | 
						|
       The number cannot be represented in the 'f' format at all, always use
 | 
						|
       the 'e' 'one.
 | 
						|
  */
 | 
						|
  if ((have_space ||
 | 
						|
      /*
 | 
						|
        Not enough space, let's see if the 'f' format provides the most number
 | 
						|
        of significant digits.
 | 
						|
      */
 | 
						|
       ((decpt <= width && (decpt >= -1 || (decpt == -2 &&
 | 
						|
                                            (len > 1 || !force_e_format)))) &&
 | 
						|
         !force_e_format)) &&
 | 
						|
      
 | 
						|
       /*
 | 
						|
         Use the 'e' format in some cases even if we have enough space for the
 | 
						|
         'f' one. See comment for MAX_DECPT_FOR_F_FORMAT.
 | 
						|
       */
 | 
						|
      (!have_space || (decpt >= -MAX_DECPT_FOR_F_FORMAT + 1 &&
 | 
						|
                       (decpt <= MAX_DECPT_FOR_F_FORMAT || len > decpt))))
 | 
						|
  {
 | 
						|
    /* 'f' format */
 | 
						|
    int i;
 | 
						|
 | 
						|
    width-= (decpt < len) + (decpt <= 0 ? 1 - decpt : 0);
 | 
						|
 | 
						|
    /* Do we have to truncate any digits? */
 | 
						|
    if (width < len)
 | 
						|
    {
 | 
						|
      if (width < decpt)
 | 
						|
      {
 | 
						|
        if (error != NULL)
 | 
						|
          *error= TRUE;
 | 
						|
        width= decpt;
 | 
						|
      }
 | 
						|
      
 | 
						|
      /*
 | 
						|
        We want to truncate (len - width) least significant digits after the
 | 
						|
        decimal point. For this we are calling dtoa with mode=5, passing the
 | 
						|
        number of significant digits = (len-decpt) - (len-width) = width-decpt
 | 
						|
      */
 | 
						|
      dtoa_free(res, buf, sizeof(buf));
 | 
						|
      res= dtoa(x, 5, width - decpt, &decpt, &sign, &end, buf, sizeof(buf));
 | 
						|
      src= res;
 | 
						|
      len= (int)(end - res);
 | 
						|
    }
 | 
						|
 | 
						|
    if (len == 0)
 | 
						|
    {
 | 
						|
      /* Underflow. Just print '0' and exit */
 | 
						|
      *dst++= '0';
 | 
						|
      goto end;
 | 
						|
    }
 | 
						|
    
 | 
						|
    /*
 | 
						|
      At this point we are sure we have enough space to put all digits
 | 
						|
      returned by dtoa
 | 
						|
    */
 | 
						|
    if (sign && dst < dend)
 | 
						|
      *dst++= '-';
 | 
						|
    if (decpt <= 0)
 | 
						|
    {
 | 
						|
      if (dst < dend)
 | 
						|
        *dst++= '0';
 | 
						|
      if (len > 0 && dst < dend)
 | 
						|
        *dst++= '.';
 | 
						|
      for (; decpt < 0 && dst < dend; decpt++)
 | 
						|
        *dst++= '0';
 | 
						|
    }
 | 
						|
 | 
						|
    for (i= 1; i <= len && dst < dend; i++)
 | 
						|
    {
 | 
						|
      *dst++= *src++;
 | 
						|
      if (i == decpt && i < len && dst < dend)
 | 
						|
        *dst++= '.';
 | 
						|
    }
 | 
						|
    while (i++ <= decpt && dst < dend)
 | 
						|
      *dst++= '0';
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    /* 'e' format */
 | 
						|
    int decpt_sign= 0;
 | 
						|
 | 
						|
    if (--decpt < 0)
 | 
						|
    {
 | 
						|
      decpt= -decpt;
 | 
						|
      width--;
 | 
						|
      decpt_sign= 1;
 | 
						|
    }
 | 
						|
    width-= 1 + exp_len; /* eNNN */
 | 
						|
 | 
						|
    if (len > 1)
 | 
						|
      width--;
 | 
						|
 | 
						|
    if (width <= 0)
 | 
						|
    {
 | 
						|
      /* Overflow */
 | 
						|
      if (error != NULL)
 | 
						|
        *error= TRUE;
 | 
						|
      width= 0;
 | 
						|
    }
 | 
						|
      
 | 
						|
    /* Do we have to truncate any digits? */
 | 
						|
    if (width < len)
 | 
						|
    {
 | 
						|
      /* Yes, re-convert with a smaller width */
 | 
						|
      dtoa_free(res, buf, sizeof(buf));
 | 
						|
      res= dtoa(x, 4, width, &decpt, &sign, &end, buf, sizeof(buf));
 | 
						|
      src= res;
 | 
						|
      len= (int)(end - res);
 | 
						|
      if (--decpt < 0)
 | 
						|
        decpt= -decpt;
 | 
						|
    }
 | 
						|
    /*
 | 
						|
      At this point we are sure we have enough space to put all digits
 | 
						|
      returned by dtoa
 | 
						|
    */
 | 
						|
    if (sign && dst < dend)
 | 
						|
      *dst++= '-';
 | 
						|
    if (dst < dend)
 | 
						|
      *dst++= *src++;
 | 
						|
    if (len > 1 && dst < dend)
 | 
						|
    {
 | 
						|
      *dst++= '.';
 | 
						|
      while (src < end && dst < dend)
 | 
						|
        *dst++= *src++;
 | 
						|
    }
 | 
						|
    if (dst < dend)
 | 
						|
      *dst++= 'e';
 | 
						|
    if (decpt_sign && dst < dend)
 | 
						|
      *dst++= '-';
 | 
						|
 | 
						|
    if (decpt >= 100 && dst < dend)
 | 
						|
    {
 | 
						|
      *dst++= decpt / 100 + '0';
 | 
						|
      decpt%= 100;
 | 
						|
      if (dst < dend)
 | 
						|
        *dst++= decpt / 10 + '0';
 | 
						|
    }
 | 
						|
    else if (decpt >= 10 && dst < dend)
 | 
						|
      *dst++= decpt / 10 + '0';
 | 
						|
    if (dst < dend)
 | 
						|
      *dst++= decpt % 10 + '0';
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
end:
 | 
						|
  dtoa_free(res, buf, sizeof(buf));
 | 
						|
  *dst= '\0';
 | 
						|
 | 
						|
  return dst - to;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
   @brief
 | 
						|
   Converts string to double (string does not have to be zero-terminated)
 | 
						|
 | 
						|
   @details
 | 
						|
   This is a wrapper around dtoa's version of strtod().
 | 
						|
 | 
						|
   @param str     input string
 | 
						|
   @param end     address of a pointer to the first character after the input
 | 
						|
                  string. Upon return the pointer is set to point to the first
 | 
						|
                  rejected character.
 | 
						|
   @param error   Upon return is set to EOVERFLOW in case of underflow or
 | 
						|
                  overflow.
 | 
						|
   
 | 
						|
   @return        The resulting double value. In case of underflow, 0.0 is
 | 
						|
                  returned. In case overflow, signed DBL_MAX is returned.
 | 
						|
*/
 | 
						|
 | 
						|
double my_strtod(const char *str, char **end, int *error)
 | 
						|
{
 | 
						|
  char buf[DTOA_BUFF_SIZE];
 | 
						|
  double res;
 | 
						|
  DBUG_ASSERT(end != NULL && ((str != NULL && *end != NULL) ||
 | 
						|
                              (str == NULL && *end == NULL)) &&
 | 
						|
              error != NULL);
 | 
						|
 | 
						|
  res= my_strtod_int(str, end, error, buf, sizeof(buf));
 | 
						|
  return (*error == 0) ? res : (res < 0 ? -DBL_MAX : DBL_MAX);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
double my_atof(const char *nptr)
 | 
						|
{
 | 
						|
  int error;
 | 
						|
  const char *end= nptr+65535;                  /* Should be enough */
 | 
						|
  return (my_strtod(nptr, (char**) &end, &error));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/****************************************************************
 | 
						|
 *
 | 
						|
 * The author of this software is David M. Gay.
 | 
						|
 *
 | 
						|
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
 | 
						|
 *
 | 
						|
 * Permission to use, copy, modify, and distribute this software for any
 | 
						|
 * purpose without fee is hereby granted, provided that this entire notice
 | 
						|
 * is included in all copies of any software which is or includes a copy
 | 
						|
 * or modification of this software and in all copies of the supporting
 | 
						|
 * documentation for such software.
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
 | 
						|
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
 | 
						|
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
 | 
						|
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
 | 
						|
 *
 | 
						|
 ***************************************************************/
 | 
						|
/* Please send bug reports to David M. Gay (dmg at acm dot org,
 | 
						|
 * with " at " changed at "@" and " dot " changed to ".").      */
 | 
						|
 | 
						|
/*
 | 
						|
  Original copy of the software is located at http://www.netlib.org/fp/dtoa.c
 | 
						|
  It was adjusted to serve MySQL server needs:
 | 
						|
  * strtod() was modified to not expect a zero-terminated string.
 | 
						|
    It now honors 'se' (end of string) argument as the input parameter,
 | 
						|
    not just as the output one.
 | 
						|
  * in dtoa(), in case of overflow/underflow/NaN result string now contains "0";
 | 
						|
    decpt is set to DTOA_OVERFLOW to indicate overflow.
 | 
						|
  * support for VAX, IBM mainframe and 16-bit hardware removed
 | 
						|
  * we always assume that 64-bit integer type is available
 | 
						|
  * support for Kernigan-Ritchie style headers (pre-ANSI compilers)
 | 
						|
    removed
 | 
						|
  * all gcc warnings ironed out
 | 
						|
  * we always assume multithreaded environment, so we had to change
 | 
						|
    memory allocation procedures to use stack in most cases;
 | 
						|
    malloc is used as the last resort.
 | 
						|
  * pow5mult rewritten to use pre-calculated pow5 list instead of
 | 
						|
    the one generated on the fly.
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  On a machine with IEEE extended-precision registers, it is
 | 
						|
  necessary to specify double-precision (53-bit) rounding precision
 | 
						|
  before invoking strtod or dtoa.  If the machine uses (the equivalent
 | 
						|
  of) Intel 80x87 arithmetic, the call
 | 
						|
       _control87(PC_53, MCW_PC);
 | 
						|
  does this with many compilers.  Whether this or another call is
 | 
						|
  appropriate depends on the compiler; for this to work, it may be
 | 
						|
  necessary to #include "float.h" or another system-dependent header
 | 
						|
  file.
 | 
						|
*/
 | 
						|
 | 
						|
/*
 | 
						|
  #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
 | 
						|
       and dtoa should round accordingly.
 | 
						|
  #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
 | 
						|
       and Honor_FLT_ROUNDS is not #defined.
 | 
						|
 | 
						|
  TODO: check if we can get rid of the above two
 | 
						|
*/
 | 
						|
 | 
						|
typedef int32 Long;
 | 
						|
typedef uint32 ULong;
 | 
						|
typedef int64 LLong;
 | 
						|
typedef uint64 ULLong;
 | 
						|
 | 
						|
typedef union { double d; ULong L[2]; } U;
 | 
						|
 | 
						|
#if defined(WORDS_BIGENDIAN) || (defined(__FLOAT_WORD_ORDER) &&        \
 | 
						|
                                 (__FLOAT_WORD_ORDER == __BIG_ENDIAN))
 | 
						|
#define word0(x) (x)->L[0]
 | 
						|
#define word1(x) (x)->L[1]
 | 
						|
#else
 | 
						|
#define word0(x) (x)->L[1]
 | 
						|
#define word1(x) (x)->L[0]
 | 
						|
#endif
 | 
						|
 | 
						|
#define dval(x) (x)->d
 | 
						|
 | 
						|
/* #define P DBL_MANT_DIG */
 | 
						|
/* Ten_pmax= floor(P*log(2)/log(5)) */
 | 
						|
/* Bletch= (highest power of 2 < DBL_MAX_10_EXP) / 16 */
 | 
						|
/* Quick_max= floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
 | 
						|
/* Int_max= floor(P*log(FLT_RADIX)/log(10) - 1) */
 | 
						|
 | 
						|
#define Exp_shift  20
 | 
						|
#define Exp_shift1 20
 | 
						|
#define Exp_msk1    0x100000
 | 
						|
#define Exp_mask  0x7ff00000
 | 
						|
#define P 53
 | 
						|
#define Bias 1023
 | 
						|
#define Emin (-1022)
 | 
						|
#define Exp_1  0x3ff00000
 | 
						|
#define Exp_11 0x3ff00000
 | 
						|
#define Ebits 11
 | 
						|
#define Frac_mask  0xfffff
 | 
						|
#define Frac_mask1 0xfffff
 | 
						|
#define Ten_pmax 22
 | 
						|
#define Bletch 0x10
 | 
						|
#define Bndry_mask  0xfffff
 | 
						|
#define Bndry_mask1 0xfffff
 | 
						|
#define LSB 1
 | 
						|
#define Sign_bit 0x80000000
 | 
						|
#define Log2P 1
 | 
						|
#define Tiny1 1
 | 
						|
#define Quick_max 14
 | 
						|
#define Int_max 14
 | 
						|
 | 
						|
#ifndef Flt_Rounds
 | 
						|
#ifdef FLT_ROUNDS
 | 
						|
#define Flt_Rounds FLT_ROUNDS
 | 
						|
#else
 | 
						|
#define Flt_Rounds 1
 | 
						|
#endif
 | 
						|
#endif /*Flt_Rounds*/
 | 
						|
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
#define Rounding rounding
 | 
						|
#undef Check_FLT_ROUNDS
 | 
						|
#define Check_FLT_ROUNDS
 | 
						|
#else
 | 
						|
#define Rounding Flt_Rounds
 | 
						|
#endif
 | 
						|
 | 
						|
#define rounded_product(a,b) a*= b
 | 
						|
#define rounded_quotient(a,b) a/= b
 | 
						|
 | 
						|
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
 | 
						|
#define Big1 0xffffffff
 | 
						|
#define FFFFFFFF 0xffffffffUL
 | 
						|
 | 
						|
/* This is tested to be enough for dtoa */
 | 
						|
 | 
						|
#define Kmax 15
 | 
						|
 | 
						|
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \
 | 
						|
                          2*sizeof(int) + y->wds*sizeof(ULong))
 | 
						|
 | 
						|
/* Arbitrary-length integer */
 | 
						|
 | 
						|
typedef struct Bigint
 | 
						|
{
 | 
						|
  union {
 | 
						|
    ULong *x;              /* points right after this Bigint object */
 | 
						|
    struct Bigint *next;   /* to maintain free lists */
 | 
						|
  } p;
 | 
						|
  int k;                   /* 2^k = maxwds */
 | 
						|
  int maxwds;              /* maximum length in 32-bit words */
 | 
						|
  int sign;                /* not zero if number is negative */
 | 
						|
  int wds;                 /* current length in 32-bit words */
 | 
						|
} Bigint;
 | 
						|
 | 
						|
 | 
						|
/* A simple stack-memory based allocator for Bigints */
 | 
						|
 | 
						|
typedef struct Stack_alloc
 | 
						|
{
 | 
						|
  char *begin;
 | 
						|
  char *free;
 | 
						|
  char *end;
 | 
						|
  /*
 | 
						|
    Having list of free blocks lets us reduce maximum required amount
 | 
						|
    of memory from ~4000 bytes to < 1680 (tested on x86).
 | 
						|
  */
 | 
						|
  Bigint *freelist[Kmax+1];
 | 
						|
} Stack_alloc;
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Try to allocate object on stack, and resort to malloc if all
 | 
						|
  stack memory is used. Ensure allocated objects to be aligned by the pointer
 | 
						|
  size in order to not break the alignment rules when storing a pointer to a
 | 
						|
  Bigint.
 | 
						|
*/
 | 
						|
 | 
						|
static Bigint *Balloc(int k, Stack_alloc *alloc)
 | 
						|
{
 | 
						|
  Bigint *rv;
 | 
						|
  DBUG_ASSERT(k <= Kmax);
 | 
						|
  if (k <= Kmax &&  alloc->freelist[k])
 | 
						|
  {
 | 
						|
    rv= alloc->freelist[k];
 | 
						|
    alloc->freelist[k]= rv->p.next;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    int x, len;
 | 
						|
 | 
						|
    x= 1 << k;
 | 
						|
    len= MY_ALIGN(sizeof(Bigint) + x * sizeof(ULong), SIZEOF_CHARP);
 | 
						|
 | 
						|
    if (alloc->free + len <= alloc->end)
 | 
						|
    {
 | 
						|
      rv= (Bigint*) alloc->free;
 | 
						|
      alloc->free+= len;
 | 
						|
    }
 | 
						|
    else
 | 
						|
      rv= (Bigint*) malloc(len);
 | 
						|
 | 
						|
    rv->k= k;
 | 
						|
    rv->maxwds= x;
 | 
						|
  }
 | 
						|
  rv->sign= rv->wds= 0;
 | 
						|
  rv->p.x= (ULong*) (rv + 1);
 | 
						|
  return rv;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  If object was allocated on stack, try putting it to the free
 | 
						|
  list. Otherwise call free().
 | 
						|
*/
 | 
						|
 | 
						|
static void Bfree(Bigint *v, Stack_alloc *alloc)
 | 
						|
{
 | 
						|
  char *gptr= (char*) v;                       /* generic pointer */
 | 
						|
  if (gptr < alloc->begin || gptr >= alloc->end)
 | 
						|
    free(gptr);
 | 
						|
  else if (v->k <= Kmax)
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      Maintain free lists only for stack objects: this way we don't
 | 
						|
      have to bother with freeing lists in the end of dtoa;
 | 
						|
      heap should not be used normally anyway.
 | 
						|
    */
 | 
						|
    v->p.next= alloc->freelist[v->k];
 | 
						|
    alloc->freelist[v->k]= v;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  This is to place return value of dtoa in: tries to use stack
 | 
						|
  as well, but passes by free lists management and just aligns len by
 | 
						|
  the pointer size in order to not break the alignment rules when storing a
 | 
						|
  pointer to a Bigint.
 | 
						|
*/
 | 
						|
 | 
						|
static char *dtoa_alloc(int i, Stack_alloc *alloc)
 | 
						|
{
 | 
						|
  char *rv;
 | 
						|
  int aligned_size= MY_ALIGN(i, SIZEOF_CHARP);
 | 
						|
  if (alloc->free + aligned_size <= alloc->end)
 | 
						|
  {
 | 
						|
    rv= alloc->free;
 | 
						|
    alloc->free+= aligned_size;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    rv= malloc(i);
 | 
						|
  return rv;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  dtoa_free() must be used to free values s returned by dtoa()
 | 
						|
  This is the counterpart of dtoa_alloc()
 | 
						|
*/
 | 
						|
 | 
						|
static void dtoa_free(char *gptr, char *buf, size_t buf_size)
 | 
						|
{
 | 
						|
  if (gptr < buf || gptr >= buf + buf_size)
 | 
						|
    free(gptr);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Bigint arithmetic functions */
 | 
						|
 | 
						|
/* Multiply by m and add a */
 | 
						|
 | 
						|
static Bigint *multadd(Bigint *b, int m, int a, Stack_alloc *alloc)
 | 
						|
{
 | 
						|
  int i, wds;
 | 
						|
  ULong *x;
 | 
						|
  ULLong carry, y;
 | 
						|
  Bigint *b1;
 | 
						|
 | 
						|
  wds= b->wds;
 | 
						|
  x= b->p.x;
 | 
						|
  i= 0;
 | 
						|
  carry= a;
 | 
						|
  do
 | 
						|
  {
 | 
						|
    y= *x * (ULLong)m + carry;
 | 
						|
    carry= y >> 32;
 | 
						|
    *x++= (ULong)(y & FFFFFFFF);
 | 
						|
  }
 | 
						|
  while (++i < wds);
 | 
						|
  if (carry)
 | 
						|
  {
 | 
						|
    if (wds >= b->maxwds)
 | 
						|
    {
 | 
						|
      b1= Balloc(b->k+1, alloc);
 | 
						|
      Bcopy(b1, b);
 | 
						|
      Bfree(b, alloc);
 | 
						|
      b= b1;
 | 
						|
    }
 | 
						|
    b->p.x[wds++]= (ULong) carry;
 | 
						|
    b->wds= wds;
 | 
						|
  }
 | 
						|
  return b;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
  Converts a string to Bigint.
 | 
						|
  
 | 
						|
  Now we have nd0 digits, starting at s, followed by a
 | 
						|
  decimal point, followed by nd-nd0 digits.  
 | 
						|
  Unless nd0 == nd, in which case we have a number of the form:
 | 
						|
     ".xxxxxx"    or    "xxxxxx."
 | 
						|
 | 
						|
  @param s     Input string, already partially parsed by my_strtod_int().
 | 
						|
  @param nd0   Number of digits before decimal point.
 | 
						|
  @param nd    Total number of digits.
 | 
						|
  @param y9    Pre-computed value of the first nine digits.
 | 
						|
  @param alloc Stack allocator for Bigints.
 | 
						|
 */
 | 
						|
static Bigint *s2b(const char *s, int nd0, int nd, ULong y9, Stack_alloc *alloc)
 | 
						|
{
 | 
						|
  Bigint *b;
 | 
						|
  int i, k;
 | 
						|
  Long x, y;
 | 
						|
 | 
						|
  x= (nd + 8) / 9;
 | 
						|
  for (k= 0, y= 1; x > y; y <<= 1, k++) ;
 | 
						|
  b= Balloc(k, alloc);
 | 
						|
  b->p.x[0]= y9;
 | 
						|
  b->wds= 1;
 | 
						|
  
 | 
						|
  i= 9;
 | 
						|
  if (9 < nd0)
 | 
						|
  {
 | 
						|
    s+= 9;
 | 
						|
    do
 | 
						|
      b= multadd(b, 10, *s++ - '0', alloc);
 | 
						|
    while (++i < nd0);
 | 
						|
    s++;                                        /* skip '.' */
 | 
						|
  }
 | 
						|
  else
 | 
						|
    s+= 10;
 | 
						|
  /* now do the fractional part */
 | 
						|
  for(; i < nd; i++)
 | 
						|
    b= multadd(b, 10, *s++ - '0', alloc);
 | 
						|
  return b;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int hi0bits(register ULong x)
 | 
						|
{
 | 
						|
  register int k= 0;
 | 
						|
 | 
						|
  if (!(x & 0xffff0000))
 | 
						|
  {
 | 
						|
    k= 16;
 | 
						|
    x<<= 16;
 | 
						|
  }
 | 
						|
  if (!(x & 0xff000000))
 | 
						|
  {
 | 
						|
    k+= 8;
 | 
						|
    x<<= 8;
 | 
						|
  }
 | 
						|
  if (!(x & 0xf0000000))
 | 
						|
  {
 | 
						|
    k+= 4;
 | 
						|
    x<<= 4;
 | 
						|
  }
 | 
						|
  if (!(x & 0xc0000000))
 | 
						|
  {
 | 
						|
    k+= 2;
 | 
						|
    x<<= 2;
 | 
						|
  }
 | 
						|
  if (!(x & 0x80000000))
 | 
						|
  {
 | 
						|
    k++;
 | 
						|
    if (!(x & 0x40000000))
 | 
						|
      return 32;
 | 
						|
  }
 | 
						|
  return k;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int lo0bits(ULong *y)
 | 
						|
{
 | 
						|
  register int k;
 | 
						|
  register ULong x= *y;
 | 
						|
 | 
						|
  if (x & 7)
 | 
						|
  {
 | 
						|
    if (x & 1)
 | 
						|
      return 0;
 | 
						|
    if (x & 2)
 | 
						|
    {
 | 
						|
      *y= x >> 1;
 | 
						|
      return 1;
 | 
						|
    }
 | 
						|
    *y= x >> 2;
 | 
						|
    return 2;
 | 
						|
  }
 | 
						|
  k= 0;
 | 
						|
  if (!(x & 0xffff))
 | 
						|
  {
 | 
						|
    k= 16;
 | 
						|
    x>>= 16;
 | 
						|
  }
 | 
						|
  if (!(x & 0xff))
 | 
						|
  {
 | 
						|
    k+= 8;
 | 
						|
    x>>= 8;
 | 
						|
  }
 | 
						|
  if (!(x & 0xf))
 | 
						|
  {
 | 
						|
    k+= 4;
 | 
						|
    x>>= 4;
 | 
						|
  }
 | 
						|
  if (!(x & 0x3))
 | 
						|
  {
 | 
						|
    k+= 2;
 | 
						|
    x>>= 2;
 | 
						|
  }
 | 
						|
  if (!(x & 1))
 | 
						|
  {
 | 
						|
    k++;
 | 
						|
    x>>= 1;
 | 
						|
    if (!x)
 | 
						|
      return 32;
 | 
						|
  }
 | 
						|
  *y= x;
 | 
						|
  return k;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Convert integer to Bigint number */
 | 
						|
 | 
						|
static Bigint *i2b(int i, Stack_alloc *alloc)
 | 
						|
{
 | 
						|
  Bigint *b;
 | 
						|
 | 
						|
  b= Balloc(1, alloc);
 | 
						|
  b->p.x[0]= i;
 | 
						|
  b->wds= 1;
 | 
						|
  return b;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Multiply two Bigint numbers */
 | 
						|
 | 
						|
static Bigint *mult(Bigint *a, Bigint *b, Stack_alloc *alloc)
 | 
						|
{
 | 
						|
  Bigint *c;
 | 
						|
  int k, wa, wb, wc;
 | 
						|
  ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
 | 
						|
  ULong y;
 | 
						|
  ULLong carry, z;
 | 
						|
 | 
						|
  if (a->wds < b->wds)
 | 
						|
  {
 | 
						|
    c= a;
 | 
						|
    a= b;
 | 
						|
    b= c;
 | 
						|
  }
 | 
						|
  k= a->k;
 | 
						|
  wa= a->wds;
 | 
						|
  wb= b->wds;
 | 
						|
  wc= wa + wb;
 | 
						|
  if (wc > a->maxwds)
 | 
						|
    k++;
 | 
						|
  c= Balloc(k, alloc);
 | 
						|
  for (x= c->p.x, xa= x + wc; x < xa; x++)
 | 
						|
    *x= 0;
 | 
						|
  xa= a->p.x;
 | 
						|
  xae= xa + wa;
 | 
						|
  xb= b->p.x;
 | 
						|
  xbe= xb + wb;
 | 
						|
  xc0= c->p.x;
 | 
						|
  for (; xb < xbe; xc0++)
 | 
						|
  {
 | 
						|
    if ((y= *xb++))
 | 
						|
    {
 | 
						|
      x= xa;
 | 
						|
      xc= xc0;
 | 
						|
      carry= 0;
 | 
						|
      do
 | 
						|
      {
 | 
						|
        z= *x++ * (ULLong)y + *xc + carry;
 | 
						|
        carry= z >> 32;
 | 
						|
        *xc++= (ULong) (z & FFFFFFFF);
 | 
						|
      }
 | 
						|
      while (x < xae);
 | 
						|
      *xc= (ULong) carry;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (xc0= c->p.x, xc= xc0 + wc; wc > 0 && !*--xc; --wc) ;
 | 
						|
  c->wds= wc;
 | 
						|
  return c;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Precalculated array of powers of 5: tested to be enough for
 | 
						|
  vasting majority of dtoa_r cases.
 | 
						|
*/
 | 
						|
 | 
						|
static ULong powers5[]=
 | 
						|
{
 | 
						|
  625UL,
 | 
						|
 | 
						|
  390625UL,
 | 
						|
 | 
						|
  2264035265UL, 35UL,
 | 
						|
 | 
						|
  2242703233UL, 762134875UL,  1262UL,
 | 
						|
 | 
						|
  3211403009UL, 1849224548UL, 3668416493UL, 3913284084UL, 1593091UL,
 | 
						|
 | 
						|
  781532673UL,  64985353UL,   253049085UL,  594863151UL,  3553621484UL,
 | 
						|
  3288652808UL, 3167596762UL, 2788392729UL, 3911132675UL, 590UL,
 | 
						|
 | 
						|
  2553183233UL, 3201533787UL, 3638140786UL, 303378311UL, 1809731782UL,
 | 
						|
  3477761648UL, 3583367183UL, 649228654UL, 2915460784UL, 487929380UL,
 | 
						|
  1011012442UL, 1677677582UL, 3428152256UL, 1710878487UL, 1438394610UL,
 | 
						|
  2161952759UL, 4100910556UL, 1608314830UL, 349175UL
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
static Bigint p5_a[]=
 | 
						|
{
 | 
						|
  /*  { x } - k - maxwds - sign - wds */
 | 
						|
  { { powers5 }, 1, 1, 0, 1 },
 | 
						|
  { { powers5 + 1 }, 1, 1, 0, 1 },
 | 
						|
  { { powers5 + 2 }, 1, 2, 0, 2 },
 | 
						|
  { { powers5 + 4 }, 2, 3, 0, 3 },
 | 
						|
  { { powers5 + 7 }, 3, 5, 0, 5 },
 | 
						|
  { { powers5 + 12 }, 4, 10, 0, 10 },
 | 
						|
  { { powers5 + 22 }, 5, 19, 0, 19 }
 | 
						|
};
 | 
						|
 | 
						|
#define P5A_MAX (sizeof(p5_a)/sizeof(*p5_a) - 1)
 | 
						|
 | 
						|
static Bigint *pow5mult(Bigint *b, int k, Stack_alloc *alloc)
 | 
						|
{
 | 
						|
  Bigint *b1, *p5, *p51=NULL;
 | 
						|
  int i;
 | 
						|
  static int p05[3]= { 5, 25, 125 };
 | 
						|
  my_bool overflow= FALSE;
 | 
						|
 | 
						|
  if ((i= k & 3))
 | 
						|
    b= multadd(b, p05[i-1], 0, alloc);
 | 
						|
 | 
						|
  if (!(k>>= 2))
 | 
						|
    return b;
 | 
						|
  p5= p5_a;
 | 
						|
  for (;;)
 | 
						|
  {
 | 
						|
    if (k & 1)
 | 
						|
    {
 | 
						|
      b1= mult(b, p5, alloc);
 | 
						|
      Bfree(b, alloc);
 | 
						|
      b= b1;
 | 
						|
    }
 | 
						|
    if (!(k>>= 1))
 | 
						|
      break;
 | 
						|
    /* Calculate next power of 5 */
 | 
						|
    if (overflow)
 | 
						|
    {
 | 
						|
      p51= mult(p5, p5, alloc);
 | 
						|
      Bfree(p5, alloc);
 | 
						|
      p5= p51;
 | 
						|
    }
 | 
						|
    else if (p5 < p5_a + P5A_MAX)
 | 
						|
      ++p5;
 | 
						|
    else if (p5 == p5_a + P5A_MAX)
 | 
						|
    {
 | 
						|
      p5= mult(p5, p5, alloc);
 | 
						|
      overflow= TRUE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (p51)
 | 
						|
    Bfree(p51, alloc);
 | 
						|
  return b;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static Bigint *lshift(Bigint *b, int k, Stack_alloc *alloc)
 | 
						|
{
 | 
						|
  int i, k1, n, n1;
 | 
						|
  Bigint *b1;
 | 
						|
  ULong *x, *x1, *xe, z;
 | 
						|
 | 
						|
  n= k >> 5;
 | 
						|
  k1= b->k;
 | 
						|
  n1= n + b->wds + 1;
 | 
						|
  for (i= b->maxwds; n1 > i; i<<= 1)
 | 
						|
    k1++;
 | 
						|
  b1= Balloc(k1, alloc);
 | 
						|
  x1= b1->p.x;
 | 
						|
  for (i= 0; i < n; i++)
 | 
						|
    *x1++= 0;
 | 
						|
  x= b->p.x;
 | 
						|
  xe= x + b->wds;
 | 
						|
  if (k&= 0x1f)
 | 
						|
  {
 | 
						|
    k1= 32 - k;
 | 
						|
    z= 0;
 | 
						|
    do
 | 
						|
    {
 | 
						|
      *x1++= *x << k | z;
 | 
						|
      z= *x++ >> k1;
 | 
						|
    }
 | 
						|
    while (x < xe);
 | 
						|
    if ((*x1= z))
 | 
						|
      ++n1;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    do
 | 
						|
      *x1++= *x++;
 | 
						|
    while (x < xe);
 | 
						|
  b1->wds= n1 - 1;
 | 
						|
  Bfree(b, alloc);
 | 
						|
  return b1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int cmp(Bigint *a, Bigint *b)
 | 
						|
{
 | 
						|
  ULong *xa, *xa0, *xb, *xb0;
 | 
						|
  int i, j;
 | 
						|
 | 
						|
  i= a->wds;
 | 
						|
  j= b->wds;
 | 
						|
  if (i-= j)
 | 
						|
    return i;
 | 
						|
  xa0= a->p.x;
 | 
						|
  xa= xa0 + j;
 | 
						|
  xb0= b->p.x;
 | 
						|
  xb= xb0 + j;
 | 
						|
  for (;;)
 | 
						|
  {
 | 
						|
    if (*--xa != *--xb)
 | 
						|
      return *xa < *xb ? -1 : 1;
 | 
						|
    if (xa <= xa0)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static Bigint *diff(Bigint *a, Bigint *b, Stack_alloc *alloc)
 | 
						|
{
 | 
						|
  Bigint *c;
 | 
						|
  int i, wa, wb;
 | 
						|
  ULong *xa, *xae, *xb, *xbe, *xc;
 | 
						|
  ULLong borrow, y;
 | 
						|
 | 
						|
  i= cmp(a,b);
 | 
						|
  if (!i)
 | 
						|
  {
 | 
						|
    c= Balloc(0, alloc);
 | 
						|
    c->wds= 1;
 | 
						|
    c->p.x[0]= 0;
 | 
						|
    return c;
 | 
						|
  }
 | 
						|
  if (i < 0)
 | 
						|
  {
 | 
						|
    c= a;
 | 
						|
    a= b;
 | 
						|
    b= c;
 | 
						|
    i= 1;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    i= 0;
 | 
						|
  c= Balloc(a->k, alloc);
 | 
						|
  c->sign= i;
 | 
						|
  wa= a->wds;
 | 
						|
  xa= a->p.x;
 | 
						|
  xae= xa + wa;
 | 
						|
  wb= b->wds;
 | 
						|
  xb= b->p.x;
 | 
						|
  xbe= xb + wb;
 | 
						|
  xc= c->p.x;
 | 
						|
  borrow= 0;
 | 
						|
  do
 | 
						|
  {
 | 
						|
    y= (ULLong)*xa++ - *xb++ - borrow;
 | 
						|
    borrow= y >> 32 & (ULong)1;
 | 
						|
    *xc++= (ULong) (y & FFFFFFFF);
 | 
						|
  }
 | 
						|
  while (xb < xbe);
 | 
						|
  while (xa < xae)
 | 
						|
  {
 | 
						|
    y= *xa++ - borrow;
 | 
						|
    borrow= y >> 32 & (ULong)1;
 | 
						|
    *xc++= (ULong) (y & FFFFFFFF);
 | 
						|
  }
 | 
						|
  while (!*--xc)
 | 
						|
    wa--;
 | 
						|
  c->wds= wa;
 | 
						|
  return c;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static double ulp(U *x)
 | 
						|
{
 | 
						|
  register Long L;
 | 
						|
  U u;
 | 
						|
 | 
						|
  L= (word0(x) & Exp_mask) - (P - 1)*Exp_msk1;
 | 
						|
  word0(&u) = L;
 | 
						|
  word1(&u) = 0;
 | 
						|
  return dval(&u);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static double b2d(Bigint *a, int *e)
 | 
						|
{
 | 
						|
  ULong *xa, *xa0, w, y, z;
 | 
						|
  int k;
 | 
						|
  U d;
 | 
						|
#define d0 word0(&d)
 | 
						|
#define d1 word1(&d)
 | 
						|
 | 
						|
  xa0= a->p.x;
 | 
						|
  xa= xa0 + a->wds;
 | 
						|
  y= *--xa;
 | 
						|
  k= hi0bits(y);
 | 
						|
  *e= 32 - k;
 | 
						|
  if (k < Ebits)
 | 
						|
  {
 | 
						|
    d0= Exp_1 | y >> (Ebits - k);
 | 
						|
    w= xa > xa0 ? *--xa : 0;
 | 
						|
    d1= y << ((32-Ebits) + k) | w >> (Ebits - k);
 | 
						|
    goto ret_d;
 | 
						|
  }
 | 
						|
  z= xa > xa0 ? *--xa : 0;
 | 
						|
  if (k-= Ebits)
 | 
						|
  {
 | 
						|
    d0= Exp_1 | y << k | z >> (32 - k);
 | 
						|
    y= xa > xa0 ? *--xa : 0;
 | 
						|
    d1= z << k | y >> (32 - k);
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    d0= Exp_1 | y;
 | 
						|
    d1= z;
 | 
						|
  }
 | 
						|
 ret_d:
 | 
						|
#undef d0
 | 
						|
#undef d1
 | 
						|
  return dval(&d);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static Bigint *d2b(U *d, int *e, int *bits, Stack_alloc *alloc)
 | 
						|
{
 | 
						|
  Bigint *b;
 | 
						|
  int de, k;
 | 
						|
  ULong *x, y, z;
 | 
						|
  int i;
 | 
						|
#define d0 word0(d)
 | 
						|
#define d1 word1(d)
 | 
						|
 | 
						|
  b= Balloc(1, alloc);
 | 
						|
  x= b->p.x;
 | 
						|
 | 
						|
  z= d0 & Frac_mask;
 | 
						|
  d0 &= 0x7fffffff;       /* clear sign bit, which we ignore */
 | 
						|
  if ((de= (int)(d0 >> Exp_shift)))
 | 
						|
    z|= Exp_msk1;
 | 
						|
  if ((y= d1))
 | 
						|
  {
 | 
						|
    if ((k= lo0bits(&y)))
 | 
						|
    {
 | 
						|
      x[0]= y | z << (32 - k);
 | 
						|
      z>>= k;
 | 
						|
    }
 | 
						|
    else
 | 
						|
      x[0]= y;
 | 
						|
    i= b->wds= (x[1]= z) ? 2 : 1;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    k= lo0bits(&z);
 | 
						|
    x[0]= z;
 | 
						|
    i= b->wds= 1;
 | 
						|
    k+= 32;
 | 
						|
  }
 | 
						|
  if (de)
 | 
						|
  {
 | 
						|
    *e= de - Bias - (P-1) + k;
 | 
						|
    *bits= P - k;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    *e= de - Bias - (P-1) + 1 + k;
 | 
						|
    *bits= 32*i - hi0bits(x[i-1]);
 | 
						|
  }
 | 
						|
  return b;
 | 
						|
#undef d0
 | 
						|
#undef d1
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static double ratio(Bigint *a, Bigint *b)
 | 
						|
{
 | 
						|
  U da, db;
 | 
						|
  int k, ka, kb;
 | 
						|
 | 
						|
  dval(&da)= b2d(a, &ka);
 | 
						|
  dval(&db)= b2d(b, &kb);
 | 
						|
  k= ka - kb + 32*(a->wds - b->wds);
 | 
						|
  if (k > 0)
 | 
						|
    word0(&da)+= (ULong)(k*Exp_msk1 * 1.0);
 | 
						|
  else
 | 
						|
  {
 | 
						|
    k= -k;
 | 
						|
    word0(&db)+= k*Exp_msk1;
 | 
						|
  }
 | 
						|
  return dval(&da) / dval(&db);
 | 
						|
}
 | 
						|
 | 
						|
static const double tens[] =
 | 
						|
{
 | 
						|
  1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
 | 
						|
  1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
 | 
						|
  1e20, 1e21, 1e22
 | 
						|
};
 | 
						|
 | 
						|
static const double bigtens[]= { 1e16, 1e32, 1e64, 1e128, 1e256 };
 | 
						|
static const double tinytens[]=
 | 
						|
{ 1e-16, 1e-32, 1e-64, 1e-128,
 | 
						|
  9007199254740992.*9007199254740992.e-256 /* = 2^106 * 1e-53 */
 | 
						|
};
 | 
						|
/*
 | 
						|
  The factor of 2^53 in tinytens[4] helps us avoid setting the underflow 
 | 
						|
  flag unnecessarily.  It leads to a song and dance at the end of strtod.
 | 
						|
*/
 | 
						|
#define Scale_Bit 0x10
 | 
						|
#define n_bigtens 5
 | 
						|
 | 
						|
/*
 | 
						|
  strtod for IEEE--arithmetic machines.
 | 
						|
 
 | 
						|
  This strtod returns a nearest machine number to the input decimal
 | 
						|
  string (or sets errno to EOVERFLOW). Ties are broken by the IEEE round-even
 | 
						|
  rule.
 | 
						|
 
 | 
						|
  Inspired loosely by William D. Clinger's paper "How to Read Floating
 | 
						|
  Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
 | 
						|
 
 | 
						|
  Modifications:
 | 
						|
 
 | 
						|
   1. We only require IEEE (not IEEE double-extended).
 | 
						|
   2. We get by with floating-point arithmetic in a case that
 | 
						|
     Clinger missed -- when we're computing d * 10^n
 | 
						|
     for a small integer d and the integer n is not too
 | 
						|
     much larger than 22 (the maximum integer k for which
 | 
						|
     we can represent 10^k exactly), we may be able to
 | 
						|
     compute (d*10^k) * 10^(e-k) with just one roundoff.
 | 
						|
   3. Rather than a bit-at-a-time adjustment of the binary
 | 
						|
     result in the hard case, we use floating-point
 | 
						|
     arithmetic to determine the adjustment to within
 | 
						|
     one bit; only in really hard cases do we need to
 | 
						|
     compute a second residual.
 | 
						|
   4. Because of 3., we don't need a large table of powers of 10
 | 
						|
     for ten-to-e (just some small tables, e.g. of 10^k
 | 
						|
     for 0 <= k <= 22).
 | 
						|
*/
 | 
						|
 | 
						|
static double my_strtod_int(const char *s00, char **se, int *error, char *buf, size_t buf_size)
 | 
						|
{
 | 
						|
  int scale;
 | 
						|
  int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, UNINIT_VAR(c), dsign,
 | 
						|
     e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
 | 
						|
  const char *s, *s0, *s1, *end = *se;
 | 
						|
  double aadj, aadj1;
 | 
						|
  U aadj2, adj, rv, rv0;
 | 
						|
  Long L;
 | 
						|
  ULong y, z;
 | 
						|
  Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
 | 
						|
#ifdef SET_INEXACT
 | 
						|
  int inexact, oldinexact;
 | 
						|
#endif
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
  int rounding;
 | 
						|
#endif
 | 
						|
  Stack_alloc alloc;
 | 
						|
 | 
						|
  *error= 0;
 | 
						|
 | 
						|
  alloc.begin= alloc.free= buf;
 | 
						|
  alloc.end= buf + buf_size;
 | 
						|
  memset(alloc.freelist, 0, sizeof(alloc.freelist));
 | 
						|
 | 
						|
  sign= nz0= nz= 0;
 | 
						|
  dval(&rv)= 0.;
 | 
						|
  for (s= s00; s < end; s++)
 | 
						|
    switch (*s) {
 | 
						|
    case '-':
 | 
						|
      sign= 1;
 | 
						|
      /* fall through */
 | 
						|
    case '+':
 | 
						|
      s++;
 | 
						|
      goto break2;
 | 
						|
    case '\t':
 | 
						|
    case '\n':
 | 
						|
    case '\v':
 | 
						|
    case '\f':
 | 
						|
    case '\r':
 | 
						|
    case ' ':
 | 
						|
      continue;
 | 
						|
    default:
 | 
						|
      goto break2;
 | 
						|
    }
 | 
						|
 break2:
 | 
						|
  if (s >= end)
 | 
						|
    goto ret0;
 | 
						|
  
 | 
						|
  if (*s == '0')
 | 
						|
  {
 | 
						|
    nz0= 1;
 | 
						|
    while (++s < end && *s == '0') ;
 | 
						|
    if (s >= end)
 | 
						|
      goto ret;
 | 
						|
  }
 | 
						|
  s0= s;
 | 
						|
  y= z= 0;
 | 
						|
  for (nd= nf= 0; s < end && (c= *s) >= '0' && c <= '9'; nd++, s++)
 | 
						|
    if (nd < 9)
 | 
						|
      y= 10*y + c - '0';
 | 
						|
    else if (nd < 16)
 | 
						|
      z= 10*z + c - '0';
 | 
						|
  nd0= nd;
 | 
						|
  if (s < end && c == '.')
 | 
						|
  {
 | 
						|
    ++s;
 | 
						|
    if (!nd)
 | 
						|
    {
 | 
						|
      for (; s < end && (c= *s) == '0'; ++s)
 | 
						|
        nz++;
 | 
						|
      if (s < end && (c= *s) > '0' && c <= '9')
 | 
						|
      {
 | 
						|
        s0= s;
 | 
						|
        nf+= nz;
 | 
						|
        nz= 0;
 | 
						|
        goto have_dig;
 | 
						|
      }
 | 
						|
      goto dig_done;
 | 
						|
    }
 | 
						|
    for (; s < end && (c= *s) >= '0' && c <= '9'; ++s)
 | 
						|
    {
 | 
						|
 have_dig:
 | 
						|
      /*
 | 
						|
        Here we are parsing the fractional part.
 | 
						|
        We can stop counting digits after a while: the extra digits
 | 
						|
        will not contribute to the actual result produced by s2b().
 | 
						|
        We have to continue scanning, in case there is an exponent part.
 | 
						|
       */
 | 
						|
      if (nd < 2 * DBL_DIG)
 | 
						|
      {
 | 
						|
        nz++;
 | 
						|
        if (c-= '0')
 | 
						|
        {
 | 
						|
          nf+= nz;
 | 
						|
          for (i= 1; i < nz; i++)
 | 
						|
            if (nd++ < 9)
 | 
						|
              y*= 10;
 | 
						|
            else if (nd <= DBL_DIG + 1)
 | 
						|
              z*= 10;
 | 
						|
          if (nd++ < 9)
 | 
						|
            y= 10*y + c;
 | 
						|
          else if (nd <= DBL_DIG + 1)
 | 
						|
            z= 10*z + c;
 | 
						|
          nz= 0;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 dig_done:
 | 
						|
  e= 0;
 | 
						|
  if (s < end && (c == 'e' || c == 'E'))
 | 
						|
  {
 | 
						|
    if (!nd && !nz && !nz0)
 | 
						|
      goto ret0;
 | 
						|
    s00= s;
 | 
						|
    esign= 0;
 | 
						|
    if (++s < end)
 | 
						|
      switch (c= *s) {
 | 
						|
      case '-': esign= 1;
 | 
						|
        /* fall through */
 | 
						|
      case '+': c= *++s;
 | 
						|
      }
 | 
						|
    if (s < end && c >= '0' && c <= '9')
 | 
						|
    {
 | 
						|
      while (s < end && c == '0')
 | 
						|
        c= *++s;
 | 
						|
      if (s < end && c > '0' && c <= '9') {
 | 
						|
        L= c - '0';
 | 
						|
        s1= s;
 | 
						|
        while (++s < end && (c= *s) >= '0' && c <= '9')
 | 
						|
          L= 10*L + c - '0';
 | 
						|
        if (s - s1 > 8 || L > 19999)
 | 
						|
          /* Avoid confusion from exponents
 | 
						|
           * so large that e might overflow.
 | 
						|
           */
 | 
						|
          e= 19999; /* safe for 16 bit ints */
 | 
						|
        else
 | 
						|
          e= (int)L;
 | 
						|
        if (esign)
 | 
						|
          e= -e;
 | 
						|
      }
 | 
						|
      else
 | 
						|
        e= 0;
 | 
						|
    }
 | 
						|
    else
 | 
						|
      s= s00;
 | 
						|
  }
 | 
						|
  if (!nd)
 | 
						|
  {
 | 
						|
    if (!nz && !nz0)
 | 
						|
    {
 | 
						|
 ret0:
 | 
						|
      s= s00;
 | 
						|
      sign= 0;
 | 
						|
    }
 | 
						|
    goto ret;
 | 
						|
  }
 | 
						|
  e1= e -= nf;
 | 
						|
 | 
						|
  /*
 | 
						|
    Now we have nd0 digits, starting at s0, followed by a
 | 
						|
    decimal point, followed by nd-nd0 digits.  The number we're
 | 
						|
    after is the integer represented by those digits times
 | 
						|
    10**e
 | 
						|
   */
 | 
						|
 | 
						|
  if (!nd0)
 | 
						|
    nd0= nd;
 | 
						|
  k= nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
 | 
						|
  dval(&rv)= y;
 | 
						|
  if (k > 9)
 | 
						|
  {
 | 
						|
#ifdef SET_INEXACT
 | 
						|
    if (k > DBL_DIG)
 | 
						|
      oldinexact = get_inexact();
 | 
						|
#endif
 | 
						|
    dval(&rv)= tens[k - 9] * dval(&rv) + z;
 | 
						|
  }
 | 
						|
  bd0= 0;
 | 
						|
  if (nd <= DBL_DIG
 | 
						|
#ifndef Honor_FLT_ROUNDS
 | 
						|
    && Flt_Rounds == 1
 | 
						|
#endif
 | 
						|
      )
 | 
						|
  {
 | 
						|
    if (!e)
 | 
						|
      goto ret;
 | 
						|
    if (e > 0)
 | 
						|
    {
 | 
						|
      if (e <= Ten_pmax)
 | 
						|
      {
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
        /* round correctly FLT_ROUNDS = 2 or 3 */
 | 
						|
        if (sign)
 | 
						|
        {
 | 
						|
          rv.d= -rv.d;
 | 
						|
          sign= 0;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        /* rv = */ rounded_product(dval(&rv), tens[e]);
 | 
						|
        goto ret;
 | 
						|
      }
 | 
						|
      i= DBL_DIG - nd;
 | 
						|
      if (e <= Ten_pmax + i)
 | 
						|
      {
 | 
						|
        /*
 | 
						|
          A fancier test would sometimes let us do
 | 
						|
          this for larger i values.
 | 
						|
        */
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
        /* round correctly FLT_ROUNDS = 2 or 3 */
 | 
						|
        if (sign)
 | 
						|
        {
 | 
						|
          rv.d= -rv.d;
 | 
						|
          sign= 0;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        e-= i;
 | 
						|
        dval(&rv)*= tens[i];
 | 
						|
        /* rv = */ rounded_product(dval(&rv), tens[e]);
 | 
						|
        goto ret;
 | 
						|
      }
 | 
						|
    }
 | 
						|
#ifndef Inaccurate_Divide
 | 
						|
    else if (e >= -Ten_pmax)
 | 
						|
    {
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
      /* round correctly FLT_ROUNDS = 2 or 3 */
 | 
						|
      if (sign)
 | 
						|
      {
 | 
						|
        rv.d= -rv.d;
 | 
						|
        sign= 0;
 | 
						|
      }
 | 
						|
#endif
 | 
						|
      /* rv = */ rounded_quotient(dval(&rv), tens[-e]);
 | 
						|
      goto ret;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  e1+= nd - k;
 | 
						|
 | 
						|
#ifdef SET_INEXACT
 | 
						|
  inexact= 1;
 | 
						|
  if (k <= DBL_DIG)
 | 
						|
    oldinexact= get_inexact();
 | 
						|
#endif
 | 
						|
  scale= 0;
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
  if ((rounding= Flt_Rounds) >= 2)
 | 
						|
  {
 | 
						|
    if (sign)
 | 
						|
      rounding= rounding == 2 ? 0 : 2;
 | 
						|
    else
 | 
						|
      if (rounding != 2)
 | 
						|
        rounding= 0;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  /* Get starting approximation = rv * 10**e1 */
 | 
						|
 | 
						|
  if (e1 > 0)
 | 
						|
  {
 | 
						|
    if ((i= e1 & 15))
 | 
						|
      dval(&rv)*= tens[i];
 | 
						|
    if (e1&= ~15)
 | 
						|
    {
 | 
						|
      if (e1 > DBL_MAX_10_EXP)
 | 
						|
      {
 | 
						|
 ovfl:
 | 
						|
        *error= EOVERFLOW;
 | 
						|
        /* Can't trust HUGE_VAL */
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
        switch (rounding)
 | 
						|
        {
 | 
						|
        case 0: /* toward 0 */
 | 
						|
        case 3: /* toward -infinity */
 | 
						|
          word0(&rv)= Big0;
 | 
						|
          word1(&rv)= Big1;
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          word0(&rv)= Exp_mask;
 | 
						|
          word1(&rv)= 0;
 | 
						|
        }
 | 
						|
#else /*Honor_FLT_ROUNDS*/
 | 
						|
        word0(&rv)= Exp_mask;
 | 
						|
        word1(&rv)= 0;
 | 
						|
#endif /*Honor_FLT_ROUNDS*/
 | 
						|
#ifdef SET_INEXACT
 | 
						|
        /* set overflow bit */
 | 
						|
        dval(&rv0)= 1e300;
 | 
						|
        dval(&rv0)*= dval(&rv0);
 | 
						|
#endif
 | 
						|
        if (bd0)
 | 
						|
          goto retfree;
 | 
						|
        goto ret;
 | 
						|
      }
 | 
						|
      e1>>= 4;
 | 
						|
      for(j= 0; e1 > 1; j++, e1>>= 1)
 | 
						|
        if (e1 & 1)
 | 
						|
          dval(&rv)*= bigtens[j];
 | 
						|
    /* The last multiplication could overflow. */
 | 
						|
      word0(&rv)-= P*Exp_msk1;
 | 
						|
      dval(&rv)*= bigtens[j];
 | 
						|
      if ((z= word0(&rv) & Exp_mask) > Exp_msk1 * (DBL_MAX_EXP + Bias - P))
 | 
						|
        goto ovfl;
 | 
						|
      if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P))
 | 
						|
      {
 | 
						|
        /* set to largest number (Can't trust DBL_MAX) */
 | 
						|
        word0(&rv)= Big0;
 | 
						|
        word1(&rv)= Big1;
 | 
						|
      }
 | 
						|
      else
 | 
						|
        word0(&rv)+= P*Exp_msk1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (e1 < 0)
 | 
						|
  {
 | 
						|
    e1= -e1;
 | 
						|
    if ((i= e1 & 15))
 | 
						|
      dval(&rv)/= tens[i];
 | 
						|
    if ((e1>>= 4))
 | 
						|
    {
 | 
						|
      if (e1 >= 1 << n_bigtens)
 | 
						|
        goto undfl;
 | 
						|
      if (e1 & Scale_Bit)
 | 
						|
        scale= 2 * P;
 | 
						|
      for(j= 0; e1 > 0; j++, e1>>= 1)
 | 
						|
        if (e1 & 1)
 | 
						|
          dval(&rv)*= tinytens[j];
 | 
						|
      if (scale && (j = 2 * P + 1 - ((word0(&rv) & Exp_mask) >> Exp_shift)) > 0)
 | 
						|
      {
 | 
						|
        /* scaled rv is denormal; zap j low bits */
 | 
						|
        if (j >= 32)
 | 
						|
        {
 | 
						|
          word1(&rv)= 0;
 | 
						|
          if (j >= 53)
 | 
						|
            word0(&rv)= (P + 2) * Exp_msk1;
 | 
						|
          else
 | 
						|
            word0(&rv)&= 0xffffffff << (j - 32);
 | 
						|
        }
 | 
						|
        else
 | 
						|
          word1(&rv)&= 0xffffffff << j;
 | 
						|
      }
 | 
						|
      if (!dval(&rv))
 | 
						|
      {
 | 
						|
 undfl:
 | 
						|
          dval(&rv)= 0.;
 | 
						|
          if (bd0)
 | 
						|
            goto retfree;
 | 
						|
          goto ret;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Now the hard part -- adjusting rv to the correct value.*/
 | 
						|
 | 
						|
  /* Put digits into bd: true value = bd * 10^e */
 | 
						|
 | 
						|
  bd0= s2b(s0, nd0, nd, y, &alloc);
 | 
						|
 | 
						|
  for(;;)
 | 
						|
  {
 | 
						|
    bd= Balloc(bd0->k, &alloc);
 | 
						|
    Bcopy(bd, bd0);
 | 
						|
    bb= d2b(&rv, &bbe, &bbbits, &alloc);  /* rv = bb * 2^bbe */
 | 
						|
    bs= i2b(1, &alloc);
 | 
						|
 | 
						|
    if (e >= 0)
 | 
						|
    {
 | 
						|
      bb2= bb5= 0;
 | 
						|
      bd2= bd5= e;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      bb2= bb5= -e;
 | 
						|
      bd2= bd5= 0;
 | 
						|
    }
 | 
						|
    if (bbe >= 0)
 | 
						|
      bb2+= bbe;
 | 
						|
    else
 | 
						|
      bd2-= bbe;
 | 
						|
    bs2= bb2;
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
    if (rounding != 1)
 | 
						|
      bs2++;
 | 
						|
#endif
 | 
						|
    j= bbe - scale;
 | 
						|
    i= j + bbbits - 1;  /* logb(rv) */
 | 
						|
    if (i < Emin)  /* denormal */
 | 
						|
      j+= P - Emin;
 | 
						|
    else
 | 
						|
      j= P + 1 - bbbits;
 | 
						|
    bb2+= j;
 | 
						|
    bd2+= j;
 | 
						|
    bd2+= scale;
 | 
						|
    i= bb2 < bd2 ? bb2 : bd2;
 | 
						|
    if (i > bs2)
 | 
						|
      i= bs2;
 | 
						|
    if (i > 0)
 | 
						|
    {
 | 
						|
      bb2-= i;
 | 
						|
      bd2-= i;
 | 
						|
      bs2-= i;
 | 
						|
    }
 | 
						|
    if (bb5 > 0)
 | 
						|
    {
 | 
						|
      bs= pow5mult(bs, bb5, &alloc);
 | 
						|
      bb1= mult(bs, bb, &alloc);
 | 
						|
      Bfree(bb, &alloc);
 | 
						|
      bb= bb1;
 | 
						|
    }
 | 
						|
    if (bb2 > 0)
 | 
						|
      bb= lshift(bb, bb2, &alloc);
 | 
						|
    if (bd5 > 0)
 | 
						|
      bd= pow5mult(bd, bd5, &alloc);
 | 
						|
    if (bd2 > 0)
 | 
						|
      bd= lshift(bd, bd2, &alloc);
 | 
						|
    if (bs2 > 0)
 | 
						|
      bs= lshift(bs, bs2, &alloc);
 | 
						|
    delta= diff(bb, bd, &alloc);
 | 
						|
    dsign= delta->sign;
 | 
						|
    delta->sign= 0;
 | 
						|
    i= cmp(delta, bs);
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
    if (rounding != 1)
 | 
						|
    {
 | 
						|
      if (i < 0)
 | 
						|
      {
 | 
						|
        /* Error is less than an ulp */
 | 
						|
        if (!delta->p.x[0] && delta->wds <= 1)
 | 
						|
        {
 | 
						|
          /* exact */
 | 
						|
#ifdef SET_INEXACT
 | 
						|
          inexact= 0;
 | 
						|
#endif
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (rounding)
 | 
						|
        {
 | 
						|
          if (dsign)
 | 
						|
          {
 | 
						|
            adj.d= 1.;
 | 
						|
            goto apply_adj;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        else if (!dsign)
 | 
						|
        {
 | 
						|
          adj.d= -1.;
 | 
						|
          if (!word1(&rv) && !(word0(&rv) & Frac_mask))
 | 
						|
          {
 | 
						|
            y= word0(&rv) & Exp_mask;
 | 
						|
            if (!scale || y > 2*P*Exp_msk1)
 | 
						|
            {
 | 
						|
              delta= lshift(delta, Log2P, &alloc);
 | 
						|
              if (cmp(delta, bs) <= 0)
 | 
						|
              adj.d= -0.5;
 | 
						|
            }
 | 
						|
          }
 | 
						|
 apply_adj:
 | 
						|
          if (scale && (y= word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1)
 | 
						|
            word0(&adj)+= (2 * P + 1) * Exp_msk1 - y;
 | 
						|
          dval(&rv)+= adj.d * ulp(&rv);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      adj.d= ratio(delta, bs);
 | 
						|
      if (adj.d < 1.)
 | 
						|
        adj.d= 1.;
 | 
						|
      if (adj.d <= 0x7ffffffe)
 | 
						|
      {
 | 
						|
        /* adj = rounding ? ceil(adj) : floor(adj); */
 | 
						|
        y= adj.d;
 | 
						|
        if (y != adj.d)
 | 
						|
        {
 | 
						|
          if (!((rounding >> 1) ^ dsign))
 | 
						|
            y++;
 | 
						|
          adj.d= y;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (scale && (y= word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1)
 | 
						|
        word0(&adj)+= (2 * P + 1) * Exp_msk1 - y;
 | 
						|
      adj.d*= ulp(&rv);
 | 
						|
      if (dsign)
 | 
						|
        dval(&rv)+= adj.d;
 | 
						|
      else
 | 
						|
        dval(&rv)-= adj.d;
 | 
						|
      goto cont;
 | 
						|
    }
 | 
						|
#endif /*Honor_FLT_ROUNDS*/
 | 
						|
 | 
						|
    if (i < 0)
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        Error is less than half an ulp -- check for special case of mantissa
 | 
						|
        a power of two.
 | 
						|
      */
 | 
						|
      if (dsign || word1(&rv) || word0(&rv) & Bndry_mask ||
 | 
						|
          (word0(&rv) & Exp_mask) <= (2 * P + 1) * Exp_msk1)
 | 
						|
      {
 | 
						|
#ifdef SET_INEXACT
 | 
						|
        if (!delta->x[0] && delta->wds <= 1)
 | 
						|
          inexact= 0;
 | 
						|
#endif
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (!delta->p.x[0] && delta->wds <= 1)
 | 
						|
      {
 | 
						|
        /* exact result */
 | 
						|
#ifdef SET_INEXACT
 | 
						|
        inexact= 0;
 | 
						|
#endif
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      delta= lshift(delta, Log2P, &alloc);
 | 
						|
      if (cmp(delta, bs) > 0)
 | 
						|
        goto drop_down;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (i == 0)
 | 
						|
    {
 | 
						|
      /* exactly half-way between */
 | 
						|
      if (dsign)
 | 
						|
      {
 | 
						|
        if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 &&
 | 
						|
            word1(&rv) ==
 | 
						|
            ((scale && (y = word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1) ?
 | 
						|
             (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
 | 
						|
             0xffffffff))
 | 
						|
        {
 | 
						|
          /*boundary case -- increment exponent*/
 | 
						|
          word0(&rv)= (word0(&rv) & Exp_mask) + Exp_msk1;
 | 
						|
          word1(&rv) = 0;
 | 
						|
          dsign = 0;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else if (!(word0(&rv) & Bndry_mask) && !word1(&rv))
 | 
						|
      {
 | 
						|
 drop_down:
 | 
						|
        /* boundary case -- decrement exponent */
 | 
						|
        if (scale)
 | 
						|
        {
 | 
						|
          L= word0(&rv) & Exp_mask;
 | 
						|
          if (L <= (2 *P + 1) * Exp_msk1)
 | 
						|
          {
 | 
						|
            if (L > (P + 2) * Exp_msk1)
 | 
						|
              /* round even ==> accept rv */
 | 
						|
              break;
 | 
						|
            /* rv = smallest denormal */
 | 
						|
            goto undfl;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        L= (word0(&rv) & Exp_mask) - Exp_msk1;
 | 
						|
        word0(&rv)= L | Bndry_mask1;
 | 
						|
        word1(&rv)= 0xffffffff;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (!(word1(&rv) & LSB))
 | 
						|
        break;
 | 
						|
      if (dsign)
 | 
						|
        dval(&rv)+= ulp(&rv);
 | 
						|
      else
 | 
						|
      {
 | 
						|
        dval(&rv)-= ulp(&rv);
 | 
						|
        if (!dval(&rv))
 | 
						|
          goto undfl;
 | 
						|
      }
 | 
						|
      dsign= 1 - dsign;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if ((aadj= ratio(delta, bs)) <= 2.)
 | 
						|
    {
 | 
						|
      if (dsign)
 | 
						|
        aadj= aadj1= 1.;
 | 
						|
      else if (word1(&rv) || word0(&rv) & Bndry_mask)
 | 
						|
      {
 | 
						|
        if (word1(&rv) == Tiny1 && !word0(&rv))
 | 
						|
          goto undfl;
 | 
						|
        aadj= 1.;
 | 
						|
        aadj1= -1.;
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        /* special case -- power of FLT_RADIX to be rounded down... */
 | 
						|
        if (aadj < 2. / FLT_RADIX)
 | 
						|
          aadj= 1. / FLT_RADIX;
 | 
						|
        else
 | 
						|
          aadj*= 0.5;
 | 
						|
        aadj1= -aadj;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      aadj*= 0.5;
 | 
						|
      aadj1= dsign ? aadj : -aadj;
 | 
						|
#ifdef Check_FLT_ROUNDS
 | 
						|
      switch (Rounding)
 | 
						|
      {
 | 
						|
      case 2: /* towards +infinity */
 | 
						|
        aadj1-= 0.5;
 | 
						|
        break;
 | 
						|
      case 0: /* towards 0 */
 | 
						|
      case 3: /* towards -infinity */
 | 
						|
        aadj1+= 0.5;
 | 
						|
      }
 | 
						|
#else
 | 
						|
      if (Flt_Rounds == 0)
 | 
						|
        aadj1+= 0.5;
 | 
						|
#endif /*Check_FLT_ROUNDS*/
 | 
						|
    }
 | 
						|
    y= word0(&rv) & Exp_mask;
 | 
						|
 | 
						|
    /* Check for overflow */
 | 
						|
 | 
						|
    if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
 | 
						|
    {
 | 
						|
      dval(&rv0)= dval(&rv);
 | 
						|
      word0(&rv)-= P * Exp_msk1;
 | 
						|
      adj.d= aadj1 * ulp(&rv);
 | 
						|
      dval(&rv)+= adj.d;
 | 
						|
      if ((word0(&rv) & Exp_mask) >= Exp_msk1 * (DBL_MAX_EXP + Bias - P))
 | 
						|
      {
 | 
						|
        if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
 | 
						|
          goto ovfl;
 | 
						|
        word0(&rv)= Big0;
 | 
						|
        word1(&rv)= Big1;
 | 
						|
        goto cont;
 | 
						|
      }
 | 
						|
      else
 | 
						|
        word0(&rv)+= P * Exp_msk1;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      if (scale && y <= 2 * P * Exp_msk1)
 | 
						|
      {
 | 
						|
        if (aadj <= 0x7fffffff)
 | 
						|
        {
 | 
						|
          if ((z= (ULong) aadj) <= 0)
 | 
						|
            z= 1;
 | 
						|
          aadj= z;
 | 
						|
          aadj1= dsign ? aadj : -aadj;
 | 
						|
        }
 | 
						|
        dval(&aadj2) = aadj1;
 | 
						|
        word0(&aadj2)+= (2 * P + 1) * Exp_msk1 - y;
 | 
						|
        aadj1= dval(&aadj2);
 | 
						|
        adj.d= aadj1 * ulp(&rv);
 | 
						|
        dval(&rv)+= adj.d;
 | 
						|
        if (rv.d == 0.)
 | 
						|
          goto undfl;
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        adj.d= aadj1 * ulp(&rv);
 | 
						|
        dval(&rv)+= adj.d;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    z= word0(&rv) & Exp_mask;
 | 
						|
#ifndef SET_INEXACT
 | 
						|
    if (!scale)
 | 
						|
      if (y == z)
 | 
						|
      {
 | 
						|
        /* Can we stop now? */
 | 
						|
        L= (Long)aadj;
 | 
						|
        aadj-= L;
 | 
						|
        /* The tolerances below are conservative. */
 | 
						|
        if (dsign || word1(&rv) || word0(&rv) & Bndry_mask)
 | 
						|
        {
 | 
						|
          if (aadj < .4999999 || aadj > .5000001)
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        else if (aadj < .4999999 / FLT_RADIX)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
#endif
 | 
						|
 cont:
 | 
						|
    Bfree(bb, &alloc);
 | 
						|
    Bfree(bd, &alloc);
 | 
						|
    Bfree(bs, &alloc);
 | 
						|
    Bfree(delta, &alloc);
 | 
						|
  }
 | 
						|
#ifdef SET_INEXACT
 | 
						|
  if (inexact)
 | 
						|
  {
 | 
						|
    if (!oldinexact)
 | 
						|
    {
 | 
						|
      word0(&rv0)= Exp_1 + (70 << Exp_shift);
 | 
						|
      word1(&rv0)= 0;
 | 
						|
      dval(&rv0)+= 1.;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (!oldinexact)
 | 
						|
    clear_inexact();
 | 
						|
#endif
 | 
						|
  if (scale)
 | 
						|
  {
 | 
						|
    word0(&rv0)= Exp_1 - 2 * P * Exp_msk1;
 | 
						|
    word1(&rv0)= 0;
 | 
						|
    dval(&rv)*= dval(&rv0);
 | 
						|
  }
 | 
						|
#ifdef SET_INEXACT
 | 
						|
  if (inexact && !(word0(&rv) & Exp_mask))
 | 
						|
  {
 | 
						|
    /* set underflow bit */
 | 
						|
    dval(&rv0)= 1e-300;
 | 
						|
    dval(&rv0)*= dval(&rv0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 retfree:
 | 
						|
  Bfree(bb, &alloc);
 | 
						|
  Bfree(bd, &alloc);
 | 
						|
  Bfree(bs, &alloc);
 | 
						|
  Bfree(bd0, &alloc);
 | 
						|
  Bfree(delta, &alloc);
 | 
						|
 ret:
 | 
						|
  *se= (char *)s;
 | 
						|
  return sign ? -dval(&rv) : dval(&rv);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int quorem(Bigint *b, Bigint *S)
 | 
						|
{
 | 
						|
  int n;
 | 
						|
  ULong *bx, *bxe, q, *sx, *sxe;
 | 
						|
  ULLong borrow, carry, y, ys;
 | 
						|
 | 
						|
  n= S->wds;
 | 
						|
  if (b->wds < n)
 | 
						|
    return 0;
 | 
						|
  sx= S->p.x;
 | 
						|
  sxe= sx + --n;
 | 
						|
  bx= b->p.x;
 | 
						|
  bxe= bx + n;
 | 
						|
  q= *bxe / (*sxe + 1);  /* ensure q <= true quotient */
 | 
						|
  if (q)
 | 
						|
  {
 | 
						|
    borrow= 0;
 | 
						|
    carry= 0;
 | 
						|
    do
 | 
						|
    {
 | 
						|
      ys= *sx++ * (ULLong)q + carry;
 | 
						|
      carry= ys >> 32;
 | 
						|
      y= *bx - (ys & FFFFFFFF) - borrow;
 | 
						|
      borrow= y >> 32 & (ULong)1;
 | 
						|
      *bx++= (ULong) (y & FFFFFFFF);
 | 
						|
    }
 | 
						|
    while (sx <= sxe);
 | 
						|
    if (!*bxe)
 | 
						|
    {
 | 
						|
      bx= b->p.x;
 | 
						|
      while (--bxe > bx && !*bxe)
 | 
						|
        --n;
 | 
						|
      b->wds= n;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (cmp(b, S) >= 0)
 | 
						|
  {
 | 
						|
    q++;
 | 
						|
    borrow= 0;
 | 
						|
    carry= 0;
 | 
						|
    bx= b->p.x;
 | 
						|
    sx= S->p.x;
 | 
						|
    do
 | 
						|
    {
 | 
						|
      ys= *sx++ + carry;
 | 
						|
      carry= ys >> 32;
 | 
						|
      y= *bx - (ys & FFFFFFFF) - borrow;
 | 
						|
      borrow= y >> 32 & (ULong)1;
 | 
						|
      *bx++= (ULong) (y & FFFFFFFF);
 | 
						|
    }
 | 
						|
    while (sx <= sxe);
 | 
						|
    bx= b->p.x;
 | 
						|
    bxe= bx + n;
 | 
						|
    if (!*bxe)
 | 
						|
    {
 | 
						|
      while (--bxe > bx && !*bxe)
 | 
						|
        --n;
 | 
						|
      b->wds= n;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return q;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
   dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 | 
						|
 | 
						|
   Inspired by "How to Print Floating-Point Numbers Accurately" by
 | 
						|
   Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
 | 
						|
 | 
						|
   Modifications:
 | 
						|
        1. Rather than iterating, we use a simple numeric overestimate
 | 
						|
           to determine k= floor(log10(d)).  We scale relevant
 | 
						|
           quantities using O(log2(k)) rather than O(k) multiplications.
 | 
						|
        2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 | 
						|
           try to generate digits strictly left to right.  Instead, we
 | 
						|
           compute with fewer bits and propagate the carry if necessary
 | 
						|
           when rounding the final digit up.  This is often faster.
 | 
						|
        3. Under the assumption that input will be rounded nearest,
 | 
						|
           mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 | 
						|
           That is, we allow equality in stopping tests when the
 | 
						|
           round-nearest rule will give the same floating-point value
 | 
						|
           as would satisfaction of the stopping test with strict
 | 
						|
           inequality.
 | 
						|
        4. We remove common factors of powers of 2 from relevant
 | 
						|
           quantities.
 | 
						|
        5. When converting floating-point integers less than 1e16,
 | 
						|
           we use floating-point arithmetic rather than resorting
 | 
						|
           to multiple-precision integers.
 | 
						|
        6. When asked to produce fewer than 15 digits, we first try
 | 
						|
           to get by with floating-point arithmetic; we resort to
 | 
						|
           multiple-precision integer arithmetic only if we cannot
 | 
						|
           guarantee that the floating-point calculation has given
 | 
						|
           the correctly rounded result.  For k requested digits and
 | 
						|
           "uniformly" distributed input, the probability is
 | 
						|
           something like 10^(k-15) that we must resort to the Long
 | 
						|
           calculation.
 | 
						|
 */
 | 
						|
 | 
						|
static char *dtoa(double dd, int mode, int ndigits, int *decpt, int *sign,
 | 
						|
                  char **rve, char *buf, size_t buf_size)
 | 
						|
{
 | 
						|
  /*
 | 
						|
    Arguments ndigits, decpt, sign are similar to those
 | 
						|
    of ecvt and fcvt; trailing zeros are suppressed from
 | 
						|
    the returned string.  If not null, *rve is set to point
 | 
						|
    to the end of the return value.  If d is +-Infinity or NaN,
 | 
						|
    then *decpt is set to DTOA_OVERFLOW.
 | 
						|
 | 
						|
    mode:
 | 
						|
          0 ==> shortest string that yields d when read in
 | 
						|
                and rounded to nearest.
 | 
						|
          1 ==> like 0, but with Steele & White stopping rule;
 | 
						|
                e.g. with IEEE P754 arithmetic , mode 0 gives
 | 
						|
                1e23 whereas mode 1 gives 9.999999999999999e22.
 | 
						|
          2 ==> MY_MAX(1,ndigits) significant digits.  This gives a
 | 
						|
                return value similar to that of ecvt, except
 | 
						|
                that trailing zeros are suppressed.
 | 
						|
          3 ==> through ndigits past the decimal point.  This
 | 
						|
                gives a return value similar to that from fcvt,
 | 
						|
                except that trailing zeros are suppressed, and
 | 
						|
                ndigits can be negative.
 | 
						|
          4,5 ==> similar to 2 and 3, respectively, but (in
 | 
						|
                round-nearest mode) with the tests of mode 0 to
 | 
						|
                possibly return a shorter string that rounds to d.
 | 
						|
                With IEEE arithmetic and compilation with
 | 
						|
                -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
 | 
						|
                as modes 2 and 3 when FLT_ROUNDS != 1.
 | 
						|
          6-9 ==> Debugging modes similar to mode - 4:  don't try
 | 
						|
                fast floating-point estimate (if applicable).
 | 
						|
 | 
						|
      Values of mode other than 0-9 are treated as mode 0.
 | 
						|
 | 
						|
    Sufficient space is allocated to the return value
 | 
						|
    to hold the suppressed trailing zeros.
 | 
						|
  */
 | 
						|
 | 
						|
  int bbits, b2, b5, be, dig, i, ieps, UNINIT_VAR(ilim), ilim0, 
 | 
						|
    UNINIT_VAR(ilim1), j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
 | 
						|
    spec_case, try_quick;
 | 
						|
  Long L;
 | 
						|
  int denorm;
 | 
						|
  ULong x;
 | 
						|
  Bigint *b, *b1, *delta, *mlo, *mhi, *S;
 | 
						|
  U d2, eps, u;
 | 
						|
  double ds;
 | 
						|
  char *s, *s0;
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
  int rounding;
 | 
						|
#endif
 | 
						|
  Stack_alloc alloc;
 | 
						|
  
 | 
						|
  alloc.begin= alloc.free= buf;
 | 
						|
  alloc.end= buf + buf_size;
 | 
						|
  memset(alloc.freelist, 0, sizeof(alloc.freelist));
 | 
						|
 | 
						|
  u.d= dd;
 | 
						|
  if (word0(&u) & Sign_bit)
 | 
						|
  {
 | 
						|
    /* set sign for everything, including 0's and NaNs */
 | 
						|
    *sign= 1;
 | 
						|
    word0(&u) &= ~Sign_bit;  /* clear sign bit */
 | 
						|
  }
 | 
						|
  else
 | 
						|
    *sign= 0;
 | 
						|
 | 
						|
  /* If infinity, set decpt to DTOA_OVERFLOW, if 0 set it to 1 */
 | 
						|
  if (((word0(&u) & Exp_mask) == Exp_mask && (*decpt= DTOA_OVERFLOW)) ||
 | 
						|
      (!dval(&u) && (*decpt= 1)))
 | 
						|
  {
 | 
						|
    /* Infinity, NaN, 0 */
 | 
						|
    char *res= (char*) dtoa_alloc(2, &alloc);
 | 
						|
    res[0]= '0';
 | 
						|
    res[1]= '\0';
 | 
						|
    if (rve)
 | 
						|
      *rve= res + 1;
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
  
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
  if ((rounding= Flt_Rounds) >= 2)
 | 
						|
  {
 | 
						|
    if (*sign)
 | 
						|
      rounding= rounding == 2 ? 0 : 2;
 | 
						|
    else
 | 
						|
      if (rounding != 2)
 | 
						|
        rounding= 0;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  b= d2b(&u, &be, &bbits, &alloc);
 | 
						|
  if ((i= (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1))))
 | 
						|
  {
 | 
						|
    dval(&d2)= dval(&u);
 | 
						|
    word0(&d2) &= Frac_mask1;
 | 
						|
    word0(&d2) |= Exp_11;
 | 
						|
 | 
						|
    /*
 | 
						|
      log(x)       ~=~ log(1.5) + (x-1.5)/1.5
 | 
						|
      log10(x)      =  log(x) / log(10)
 | 
						|
                   ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
 | 
						|
      log10(d)= (i-Bias)*log(2)/log(10) + log10(d2)
 | 
						|
     
 | 
						|
      This suggests computing an approximation k to log10(d) by
 | 
						|
     
 | 
						|
      k= (i - Bias)*0.301029995663981
 | 
						|
           + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
 | 
						|
     
 | 
						|
      We want k to be too large rather than too small.
 | 
						|
      The error in the first-order Taylor series approximation
 | 
						|
      is in our favor, so we just round up the constant enough
 | 
						|
      to compensate for any error in the multiplication of
 | 
						|
      (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
 | 
						|
      and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
 | 
						|
      adding 1e-13 to the constant term more than suffices.
 | 
						|
      Hence we adjust the constant term to 0.1760912590558.
 | 
						|
      (We could get a more accurate k by invoking log10,
 | 
						|
       but this is probably not worthwhile.)
 | 
						|
    */
 | 
						|
 | 
						|
    i-= Bias;
 | 
						|
    denorm= 0;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    /* d is denormalized */
 | 
						|
 | 
						|
    i= bbits + be + (Bias + (P-1) - 1);
 | 
						|
    x= i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
 | 
						|
      : word1(&u) << (32 - i);
 | 
						|
    dval(&d2)= x;
 | 
						|
    word0(&d2)-= 31*Exp_msk1; /* adjust exponent */
 | 
						|
    i-= (Bias + (P-1) - 1) + 1;
 | 
						|
    denorm= 1;
 | 
						|
  }
 | 
						|
  ds= (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
 | 
						|
  k= (int)ds;
 | 
						|
  if (ds < 0. && ds != k)
 | 
						|
    k--;    /* want k= floor(ds) */
 | 
						|
  k_check= 1;
 | 
						|
  if (k >= 0 && k <= Ten_pmax)
 | 
						|
  {
 | 
						|
    if (dval(&u) < tens[k])
 | 
						|
      k--;
 | 
						|
    k_check= 0;
 | 
						|
  }
 | 
						|
  j= bbits - i - 1;
 | 
						|
  if (j >= 0)
 | 
						|
  {
 | 
						|
    b2= 0;
 | 
						|
    s2= j;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    b2= -j;
 | 
						|
    s2= 0;
 | 
						|
  }
 | 
						|
  if (k >= 0)
 | 
						|
  {
 | 
						|
    b5= 0;
 | 
						|
    s5= k;
 | 
						|
    s2+= k;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    b2-= k;
 | 
						|
    b5= -k;
 | 
						|
    s5= 0;
 | 
						|
  }
 | 
						|
  if (mode < 0 || mode > 9)
 | 
						|
    mode= 0;
 | 
						|
 | 
						|
#ifdef Check_FLT_ROUNDS
 | 
						|
  try_quick= Rounding == 1;
 | 
						|
#else
 | 
						|
  try_quick= 1;
 | 
						|
#endif
 | 
						|
 | 
						|
  if (mode > 5)
 | 
						|
  {
 | 
						|
    mode-= 4;
 | 
						|
    try_quick= 0;
 | 
						|
  }
 | 
						|
  leftright= 1;
 | 
						|
  switch (mode) {
 | 
						|
  case 0:
 | 
						|
  case 1:
 | 
						|
    ilim= ilim1= -1;
 | 
						|
    i= 18;
 | 
						|
    ndigits= 0;
 | 
						|
    break;
 | 
						|
  case 2:
 | 
						|
    leftright= 0;
 | 
						|
    /* fall through */
 | 
						|
  case 4:
 | 
						|
    if (ndigits <= 0)
 | 
						|
      ndigits= 1;
 | 
						|
    ilim= ilim1= i= ndigits;
 | 
						|
    break;
 | 
						|
  case 3:
 | 
						|
    leftright= 0;
 | 
						|
    /* fall through */
 | 
						|
  case 5:
 | 
						|
    i= ndigits + k + 1;
 | 
						|
    ilim= i;
 | 
						|
    ilim1= i - 1;
 | 
						|
    if (i <= 0)
 | 
						|
      i= 1;
 | 
						|
  }
 | 
						|
  s= s0= dtoa_alloc(i, &alloc);
 | 
						|
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
  if (mode > 1 && rounding != 1)
 | 
						|
    leftright= 0;
 | 
						|
#endif
 | 
						|
 | 
						|
  if (ilim >= 0 && ilim <= Quick_max && try_quick)
 | 
						|
  {
 | 
						|
    /* Try to get by with floating-point arithmetic. */
 | 
						|
    i= 0;
 | 
						|
    dval(&d2)= dval(&u);
 | 
						|
    k0= k;
 | 
						|
    ilim0= ilim;
 | 
						|
    ieps= 2; /* conservative */
 | 
						|
    if (k > 0)
 | 
						|
    {
 | 
						|
      ds= tens[k&0xf];
 | 
						|
      j= k >> 4;
 | 
						|
      if (j & Bletch)
 | 
						|
      {
 | 
						|
        /* prevent overflows */
 | 
						|
        j&= Bletch - 1;
 | 
						|
        dval(&u)/= bigtens[n_bigtens-1];
 | 
						|
        ieps++;
 | 
						|
      }
 | 
						|
      for (; j; j>>= 1, i++)
 | 
						|
      {
 | 
						|
        if (j & 1)
 | 
						|
        {
 | 
						|
          ieps++;
 | 
						|
          ds*= bigtens[i];
 | 
						|
        }
 | 
						|
      }
 | 
						|
      dval(&u)/= ds;
 | 
						|
    }
 | 
						|
    else if ((j1= -k))
 | 
						|
    {
 | 
						|
      dval(&u)*= tens[j1 & 0xf];
 | 
						|
      for (j= j1 >> 4; j; j>>= 1, i++)
 | 
						|
      {
 | 
						|
        if (j & 1)
 | 
						|
        {
 | 
						|
          ieps++;
 | 
						|
          dval(&u)*= bigtens[i];
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (k_check && dval(&u) < 1. && ilim > 0)
 | 
						|
    {
 | 
						|
      if (ilim1 <= 0)
 | 
						|
        goto fast_failed;
 | 
						|
      ilim= ilim1;
 | 
						|
      k--;
 | 
						|
      dval(&u)*= 10.;
 | 
						|
      ieps++;
 | 
						|
    }
 | 
						|
    dval(&eps)= ieps*dval(&u) + 7.;
 | 
						|
    word0(&eps)-= (P-1)*Exp_msk1;
 | 
						|
    if (ilim == 0)
 | 
						|
    {
 | 
						|
      S= mhi= 0;
 | 
						|
      dval(&u)-= 5.;
 | 
						|
      if (dval(&u) > dval(&eps))
 | 
						|
        goto one_digit;
 | 
						|
      if (dval(&u) < -dval(&eps))
 | 
						|
        goto no_digits;
 | 
						|
      goto fast_failed;
 | 
						|
    }
 | 
						|
    if (leftright)
 | 
						|
    {
 | 
						|
      /* Use Steele & White method of only generating digits needed. */
 | 
						|
      dval(&eps)= 0.5/tens[ilim-1] - dval(&eps);
 | 
						|
      for (i= 0;;)
 | 
						|
      {
 | 
						|
        L= (Long) dval(&u);
 | 
						|
        dval(&u)-= L;
 | 
						|
        *s++= '0' + (int)L;
 | 
						|
        if (dval(&u) < dval(&eps))
 | 
						|
          goto ret1;
 | 
						|
        if (1. - dval(&u) < dval(&eps))
 | 
						|
          goto bump_up;
 | 
						|
        if (++i >= ilim)
 | 
						|
          break;
 | 
						|
        dval(&eps)*= 10.;
 | 
						|
        dval(&u)*= 10.;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      /* Generate ilim digits, then fix them up. */
 | 
						|
      dval(&eps)*= tens[ilim-1];
 | 
						|
      for (i= 1;; i++, dval(&u)*= 10.)
 | 
						|
      {
 | 
						|
        L= (Long)(dval(&u));
 | 
						|
        if (!(dval(&u)-= L))
 | 
						|
          ilim= i;
 | 
						|
        *s++= '0' + (int)L;
 | 
						|
        if (i == ilim)
 | 
						|
        {
 | 
						|
          if (dval(&u) > 0.5 + dval(&eps))
 | 
						|
            goto bump_up;
 | 
						|
          else if (dval(&u) < 0.5 - dval(&eps))
 | 
						|
          {
 | 
						|
            while (*--s == '0');
 | 
						|
            s++;
 | 
						|
            goto ret1;
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  fast_failed:
 | 
						|
    s= s0;
 | 
						|
    dval(&u)= dval(&d2);
 | 
						|
    k= k0;
 | 
						|
    ilim= ilim0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Do we have a "small" integer? */
 | 
						|
 | 
						|
  if (be >= 0 && k <= Int_max)
 | 
						|
  {
 | 
						|
    /* Yes. */
 | 
						|
    ds= tens[k];
 | 
						|
    if (ndigits < 0 && ilim <= 0)
 | 
						|
    {
 | 
						|
      S= mhi= 0;
 | 
						|
      if (ilim < 0 || dval(&u) <= 5*ds)
 | 
						|
        goto no_digits;
 | 
						|
      goto one_digit;
 | 
						|
    }
 | 
						|
    for (i= 1;; i++, dval(&u)*= 10.)
 | 
						|
    {
 | 
						|
      L= (Long)(dval(&u) / ds);
 | 
						|
      dval(&u)-= L*ds;
 | 
						|
#ifdef Check_FLT_ROUNDS
 | 
						|
      /* If FLT_ROUNDS == 2, L will usually be high by 1 */
 | 
						|
      if (dval(&u) < 0)
 | 
						|
      {
 | 
						|
        L--;
 | 
						|
        dval(&u)+= ds;
 | 
						|
      }
 | 
						|
#endif
 | 
						|
      *s++= '0' + (int)L;
 | 
						|
      if (!dval(&u))
 | 
						|
      {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (i == ilim)
 | 
						|
      {
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
        if (mode > 1)
 | 
						|
        {
 | 
						|
          switch (rounding) {
 | 
						|
          case 0: goto ret1;
 | 
						|
          case 2: goto bump_up;
 | 
						|
          }
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        dval(&u)+= dval(&u);
 | 
						|
        if (dval(&u) > ds || (dval(&u) == ds && L & 1))
 | 
						|
        {
 | 
						|
bump_up:
 | 
						|
          while (*--s == '9')
 | 
						|
            if (s == s0)
 | 
						|
            {
 | 
						|
              k++;
 | 
						|
              *s= '0';
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          ++*s++;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    goto ret1;
 | 
						|
  }
 | 
						|
 | 
						|
  m2= b2;
 | 
						|
  m5= b5;
 | 
						|
  mhi= mlo= 0;
 | 
						|
  if (leftright)
 | 
						|
  {
 | 
						|
    i = denorm ? be + (Bias + (P-1) - 1 + 1) : 1 + P - bbits;
 | 
						|
    b2+= i;
 | 
						|
    s2+= i;
 | 
						|
    mhi= i2b(1, &alloc);
 | 
						|
  }
 | 
						|
  if (m2 > 0 && s2 > 0)
 | 
						|
  {
 | 
						|
    i= m2 < s2 ? m2 : s2;
 | 
						|
    b2-= i;
 | 
						|
    m2-= i;
 | 
						|
    s2-= i;
 | 
						|
  }
 | 
						|
  if (b5 > 0)
 | 
						|
  {
 | 
						|
    if (leftright)
 | 
						|
    {
 | 
						|
      if (m5 > 0)
 | 
						|
      {
 | 
						|
        mhi= pow5mult(mhi, m5, &alloc);
 | 
						|
        b1= mult(mhi, b, &alloc);
 | 
						|
        Bfree(b, &alloc);
 | 
						|
        b= b1;
 | 
						|
      }
 | 
						|
      if ((j= b5 - m5))
 | 
						|
        b= pow5mult(b, j, &alloc);
 | 
						|
    }
 | 
						|
    else
 | 
						|
      b= pow5mult(b, b5, &alloc);
 | 
						|
  }
 | 
						|
  S= i2b(1, &alloc);
 | 
						|
  if (s5 > 0)
 | 
						|
    S= pow5mult(S, s5, &alloc);
 | 
						|
 | 
						|
  /* Check for special case that d is a normalized power of 2. */
 | 
						|
 | 
						|
  spec_case= 0;
 | 
						|
  if ((mode < 2 || leftright)
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
      && rounding == 1
 | 
						|
#endif
 | 
						|
     )
 | 
						|
  {
 | 
						|
    if (!word1(&u) && !(word0(&u) & Bndry_mask) &&
 | 
						|
        word0(&u) & (Exp_mask & ~Exp_msk1)
 | 
						|
       )
 | 
						|
    {
 | 
						|
      /* The special case */
 | 
						|
      b2+= Log2P;
 | 
						|
      s2+= Log2P;
 | 
						|
      spec_case= 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
    Arrange for convenient computation of quotients:
 | 
						|
    shift left if necessary so divisor has 4 leading 0 bits.
 | 
						|
    
 | 
						|
    Perhaps we should just compute leading 28 bits of S once
 | 
						|
    a nd for all and pass them and a shift to quorem, so it
 | 
						|
    can do shifts and ors to compute the numerator for q.
 | 
						|
  */
 | 
						|
  if ((i= ((s5 ? 32 - hi0bits(S->p.x[S->wds-1]) : 1) + s2) & 0x1f))
 | 
						|
    i= 32 - i;
 | 
						|
  if (i > 4)
 | 
						|
  {
 | 
						|
    i-= 4;
 | 
						|
    b2+= i;
 | 
						|
    m2+= i;
 | 
						|
    s2+= i;
 | 
						|
  }
 | 
						|
  else if (i < 4)
 | 
						|
  {
 | 
						|
    i+= 28;
 | 
						|
    b2+= i;
 | 
						|
    m2+= i;
 | 
						|
    s2+= i;
 | 
						|
  }
 | 
						|
  if (b2 > 0)
 | 
						|
    b= lshift(b, b2, &alloc);
 | 
						|
  if (s2 > 0)
 | 
						|
    S= lshift(S, s2, &alloc);
 | 
						|
  if (k_check)
 | 
						|
  {
 | 
						|
    if (cmp(b,S) < 0)
 | 
						|
    {
 | 
						|
      k--;
 | 
						|
      /* we botched the k estimate */
 | 
						|
      b= multadd(b, 10, 0, &alloc);
 | 
						|
      if (leftright)
 | 
						|
        mhi= multadd(mhi, 10, 0, &alloc);
 | 
						|
      ilim= ilim1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (ilim <= 0 && (mode == 3 || mode == 5))
 | 
						|
  {
 | 
						|
    if (ilim < 0 || cmp(b,S= multadd(S,5,0, &alloc)) <= 0)
 | 
						|
    {
 | 
						|
      /* no digits, fcvt style */
 | 
						|
no_digits:
 | 
						|
      k= -1 - ndigits;
 | 
						|
      goto ret;
 | 
						|
    }
 | 
						|
one_digit:
 | 
						|
    *s++= '1';
 | 
						|
    k++;
 | 
						|
    goto ret;
 | 
						|
  }
 | 
						|
  if (leftright)
 | 
						|
  {
 | 
						|
    if (m2 > 0)
 | 
						|
      mhi= lshift(mhi, m2, &alloc);
 | 
						|
 | 
						|
    /*
 | 
						|
      Compute mlo -- check for special case that d is a normalized power of 2.
 | 
						|
    */
 | 
						|
 | 
						|
    mlo= mhi;
 | 
						|
    if (spec_case)
 | 
						|
    {
 | 
						|
      mhi= Balloc(mhi->k, &alloc);
 | 
						|
      Bcopy(mhi, mlo);
 | 
						|
      mhi= lshift(mhi, Log2P, &alloc);
 | 
						|
    }
 | 
						|
 | 
						|
    for (i= 1;;i++)
 | 
						|
    {
 | 
						|
      dig= quorem(b,S) + '0';
 | 
						|
      /* Do we yet have the shortest decimal string that will round to d? */
 | 
						|
      j= cmp(b, mlo);
 | 
						|
      delta= diff(S, mhi, &alloc);
 | 
						|
      j1= delta->sign ? 1 : cmp(b, delta);
 | 
						|
      Bfree(delta, &alloc);
 | 
						|
      if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
          && rounding >= 1
 | 
						|
#endif
 | 
						|
         )
 | 
						|
      {
 | 
						|
        if (dig == '9')
 | 
						|
          goto round_9_up;
 | 
						|
        if (j > 0)
 | 
						|
          dig++;
 | 
						|
        *s++= dig;
 | 
						|
        goto ret;
 | 
						|
      }
 | 
						|
      if (j < 0 || (j == 0 && mode != 1 && !(word1(&u) & 1)))
 | 
						|
      {
 | 
						|
        if (!b->p.x[0] && b->wds <= 1)
 | 
						|
        {
 | 
						|
          goto accept_dig;
 | 
						|
        }
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
        if (mode > 1)
 | 
						|
          switch (rounding) {
 | 
						|
          case 0: goto accept_dig;
 | 
						|
          case 2: goto keep_dig;
 | 
						|
          }
 | 
						|
#endif /*Honor_FLT_ROUNDS*/
 | 
						|
        if (j1 > 0)
 | 
						|
        {
 | 
						|
          b= lshift(b, 1, &alloc);
 | 
						|
          j1= cmp(b, S);
 | 
						|
          if ((j1 > 0 || (j1 == 0 && dig & 1))
 | 
						|
              && dig++ == '9')
 | 
						|
            goto round_9_up;
 | 
						|
        }
 | 
						|
accept_dig:
 | 
						|
        *s++= dig;
 | 
						|
        goto ret;
 | 
						|
      }
 | 
						|
      if (j1 > 0)
 | 
						|
      {
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
        if (!rounding)
 | 
						|
          goto accept_dig;
 | 
						|
#endif
 | 
						|
        if (dig == '9')
 | 
						|
        { /* possible if i == 1 */
 | 
						|
round_9_up:
 | 
						|
          *s++= '9';
 | 
						|
          goto roundoff;
 | 
						|
        }
 | 
						|
        *s++= dig + 1;
 | 
						|
        goto ret;
 | 
						|
      }
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
keep_dig:
 | 
						|
#endif
 | 
						|
      *s++= dig;
 | 
						|
      if (i == ilim)
 | 
						|
        break;
 | 
						|
      b= multadd(b, 10, 0, &alloc);
 | 
						|
      if (mlo == mhi)
 | 
						|
        mlo= mhi= multadd(mhi, 10, 0, &alloc);
 | 
						|
      else
 | 
						|
      {
 | 
						|
        mlo= multadd(mlo, 10, 0, &alloc);
 | 
						|
        mhi= multadd(mhi, 10, 0, &alloc);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
    for (i= 1;; i++)
 | 
						|
    {
 | 
						|
      *s++= dig= quorem(b,S) + '0';
 | 
						|
      if (!b->p.x[0] && b->wds <= 1)
 | 
						|
      {
 | 
						|
        goto ret;
 | 
						|
      }
 | 
						|
      if (i >= ilim)
 | 
						|
        break;
 | 
						|
      b= multadd(b, 10, 0, &alloc);
 | 
						|
    }
 | 
						|
 | 
						|
  /* Round off last digit */
 | 
						|
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
  switch (rounding) {
 | 
						|
  case 0: goto trimzeros;
 | 
						|
  case 2: goto roundoff;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  b= lshift(b, 1, &alloc);
 | 
						|
  j= cmp(b, S);
 | 
						|
  if (j > 0 || (j == 0 && dig & 1))
 | 
						|
  {
 | 
						|
roundoff:
 | 
						|
    while (*--s == '9')
 | 
						|
      if (s == s0)
 | 
						|
      {
 | 
						|
        k++;
 | 
						|
        *s++= '1';
 | 
						|
        goto ret;
 | 
						|
      }
 | 
						|
    ++*s++;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
trimzeros:
 | 
						|
#endif
 | 
						|
    while (*--s == '0');
 | 
						|
    s++;
 | 
						|
  }
 | 
						|
ret:
 | 
						|
  Bfree(S, &alloc);
 | 
						|
  if (mhi)
 | 
						|
  {
 | 
						|
    if (mlo && mlo != mhi)
 | 
						|
      Bfree(mlo, &alloc);
 | 
						|
    Bfree(mhi, &alloc);
 | 
						|
  }
 | 
						|
ret1:
 | 
						|
  Bfree(b, &alloc);
 | 
						|
  *s= 0;
 | 
						|
  *decpt= k + 1;
 | 
						|
  if (rve)
 | 
						|
    *rve= s;
 | 
						|
  return s0;
 | 
						|
}
 |