mirror of
				https://github.com/MariaDB/server.git
				synced 2025-11-03 14:33:32 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			6093 lines
		
	
	
		
			199 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			6093 lines
		
	
	
		
			199 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* Copyright (C) 2005 MySQL AB
 | 
						||
 | 
						||
   This program is free software; you can redistribute it and/or modify
 | 
						||
   it under the terms of the GNU General Public License as published by
 | 
						||
   the Free Software Foundation; either version 2 of the License, or
 | 
						||
   (at your option) any later version.
 | 
						||
 | 
						||
   This program is distributed in the hope that it will be useful,
 | 
						||
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						||
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						||
   GNU General Public License for more details.
 | 
						||
 | 
						||
   You should have received a copy of the GNU General Public License
 | 
						||
   along with this program; if not, write to the Free Software
 | 
						||
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */
 | 
						||
 | 
						||
/*
 | 
						||
  This file was introduced as a container for general functionality related
 | 
						||
  to partitioning introduced in MySQL version 5.1. It contains functionality
 | 
						||
  used by all handlers that support partitioning, which in the first version
 | 
						||
  is the partitioning handler itself and the NDB handler.
 | 
						||
 | 
						||
  The first version was written by Mikael Ronstrom.
 | 
						||
 | 
						||
  This version supports RANGE partitioning, LIST partitioning, HASH
 | 
						||
  partitioning and composite partitioning (hereafter called subpartitioning)
 | 
						||
  where each RANGE/LIST partitioning is HASH partitioned. The hash function
 | 
						||
  can either be supplied by the user or by only a list of fields (also
 | 
						||
  called KEY partitioning, where the MySQL server will use an internal
 | 
						||
  hash function.
 | 
						||
  There are quite a few defaults that can be used as well.
 | 
						||
*/
 | 
						||
 | 
						||
/* Some general useful functions */
 | 
						||
 | 
						||
#include "mysql_priv.h"
 | 
						||
#include <errno.h>
 | 
						||
#include <m_ctype.h>
 | 
						||
#include "md5.h"
 | 
						||
 | 
						||
#ifdef WITH_PARTITION_STORAGE_ENGINE
 | 
						||
#include "ha_partition.h"
 | 
						||
/*
 | 
						||
  Partition related functions declarations and some static constants;
 | 
						||
*/
 | 
						||
const LEX_STRING partition_keywords[]=
 | 
						||
{
 | 
						||
  { (char *) STRING_WITH_LEN("HASH") },
 | 
						||
  { (char *) STRING_WITH_LEN("RANGE") },
 | 
						||
  { (char *) STRING_WITH_LEN("LIST") }, 
 | 
						||
  { (char *) STRING_WITH_LEN("KEY") },
 | 
						||
  { (char *) STRING_WITH_LEN("MAXVALUE") },
 | 
						||
  { (char *) STRING_WITH_LEN("LINEAR ") }
 | 
						||
};
 | 
						||
static const char *part_str= "PARTITION";
 | 
						||
static const char *sub_str= "SUB";
 | 
						||
static const char *by_str= "BY";
 | 
						||
static const char *space_str= " ";
 | 
						||
static const char *equal_str= "=";
 | 
						||
static const char *end_paren_str= ")";
 | 
						||
static const char *begin_paren_str= "(";
 | 
						||
static const char *comma_str= ",";
 | 
						||
static char buff[22];
 | 
						||
 | 
						||
int get_partition_id_list(partition_info *part_info,
 | 
						||
                           uint32 *part_id,
 | 
						||
                           longlong *func_value);
 | 
						||
int get_partition_id_range(partition_info *part_info,
 | 
						||
                            uint32 *part_id,
 | 
						||
                            longlong *func_value);
 | 
						||
int get_partition_id_hash_nosub(partition_info *part_info,
 | 
						||
                                 uint32 *part_id,
 | 
						||
                                 longlong *func_value);
 | 
						||
int get_partition_id_key_nosub(partition_info *part_info,
 | 
						||
                                uint32 *part_id,
 | 
						||
                                longlong *func_value);
 | 
						||
int get_partition_id_linear_hash_nosub(partition_info *part_info,
 | 
						||
                                        uint32 *part_id,
 | 
						||
                                        longlong *func_value);
 | 
						||
int get_partition_id_linear_key_nosub(partition_info *part_info,
 | 
						||
                                       uint32 *part_id,
 | 
						||
                                       longlong *func_value);
 | 
						||
int get_partition_id_range_sub_hash(partition_info *part_info,
 | 
						||
                                     uint32 *part_id,
 | 
						||
                                     longlong *func_value);
 | 
						||
int get_partition_id_range_sub_key(partition_info *part_info,
 | 
						||
                                    uint32 *part_id,
 | 
						||
                                    longlong *func_value);
 | 
						||
int get_partition_id_range_sub_linear_hash(partition_info *part_info,
 | 
						||
                                            uint32 *part_id,
 | 
						||
                                            longlong *func_value);
 | 
						||
int get_partition_id_range_sub_linear_key(partition_info *part_info,
 | 
						||
                                           uint32 *part_id,
 | 
						||
                                           longlong *func_value);
 | 
						||
int get_partition_id_list_sub_hash(partition_info *part_info,
 | 
						||
                                    uint32 *part_id,
 | 
						||
                                    longlong *func_value);
 | 
						||
int get_partition_id_list_sub_key(partition_info *part_info,
 | 
						||
                                   uint32 *part_id,
 | 
						||
                                   longlong *func_value);
 | 
						||
int get_partition_id_list_sub_linear_hash(partition_info *part_info,
 | 
						||
                                           uint32 *part_id,
 | 
						||
                                           longlong *func_value);
 | 
						||
int get_partition_id_list_sub_linear_key(partition_info *part_info,
 | 
						||
                                          uint32 *part_id,
 | 
						||
                                          longlong *func_value);
 | 
						||
uint32 get_partition_id_hash_sub(partition_info *part_info); 
 | 
						||
uint32 get_partition_id_key_sub(partition_info *part_info); 
 | 
						||
uint32 get_partition_id_linear_hash_sub(partition_info *part_info); 
 | 
						||
uint32 get_partition_id_linear_key_sub(partition_info *part_info); 
 | 
						||
#endif
 | 
						||
 | 
						||
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR*);
 | 
						||
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR*);
 | 
						||
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter);
 | 
						||
uint32 get_next_partition_id_list(PARTITION_ITERATOR* part_iter);
 | 
						||
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
 | 
						||
                                           bool is_subpart,
 | 
						||
                                           char *min_value, char *max_value,
 | 
						||
                                           uint flags,
 | 
						||
                                           PARTITION_ITERATOR *part_iter);
 | 
						||
int get_part_iter_for_interval_via_walking(partition_info *part_info,
 | 
						||
                                           bool is_subpart,
 | 
						||
                                           char *min_value, char *max_value,
 | 
						||
                                           uint flags,
 | 
						||
                                           PARTITION_ITERATOR *part_iter);
 | 
						||
static void set_up_range_analysis_info(partition_info *part_info);
 | 
						||
 | 
						||
/*
 | 
						||
  A routine used by the parser to decide whether we are specifying a full
 | 
						||
  partitioning or if only partitions to add or to split.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    is_partition_management()
 | 
						||
    lex                    Reference to the lex object
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                   Yes, it is part of a management partition command
 | 
						||
    FALSE                  No, not a management partition command
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    This needs to be outside of WITH_PARTITION_STORAGE_ENGINE since it is
 | 
						||
    used from the sql parser that doesn't have any #ifdef's
 | 
						||
*/
 | 
						||
 | 
						||
my_bool is_partition_management(LEX *lex)
 | 
						||
{
 | 
						||
  return (lex->sql_command == SQLCOM_ALTER_TABLE &&
 | 
						||
          (lex->alter_info.flags == ALTER_ADD_PARTITION ||
 | 
						||
           lex->alter_info.flags == ALTER_REORGANIZE_PARTITION));
 | 
						||
}
 | 
						||
 | 
						||
#ifdef WITH_PARTITION_STORAGE_ENGINE
 | 
						||
/*
 | 
						||
  A support function to check if a name is in a list of strings
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    is_name_in_list()
 | 
						||
    name               String searched for
 | 
						||
    list_names         A list of names searched in
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    TRUE               String found
 | 
						||
    FALSE              String not found
 | 
						||
*/
 | 
						||
 | 
						||
bool is_name_in_list(char *name,
 | 
						||
                          List<char> list_names)
 | 
						||
{
 | 
						||
  List_iterator<char> names_it(list_names);
 | 
						||
  uint no_names= list_names.elements;
 | 
						||
  uint i= 0;
 | 
						||
 | 
						||
  do
 | 
						||
  {
 | 
						||
    char *list_name= names_it++;
 | 
						||
    if (!(my_strcasecmp(system_charset_info, name, list_name)))
 | 
						||
      return TRUE;
 | 
						||
  } while (++i < no_names);
 | 
						||
  return FALSE;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  A support function to check partition names for duplication in a
 | 
						||
  partitioned table
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    are_partitions_in_table()
 | 
						||
    new_part_info      New partition info
 | 
						||
    old_part_info      Old partition info
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    TRUE               Duplicate names found
 | 
						||
    FALSE              Duplicate names not found
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Can handle that the new and old parts are the same in which case it
 | 
						||
    checks that the list of names in the partitions doesn't contain any
 | 
						||
    duplicated names.
 | 
						||
*/
 | 
						||
 | 
						||
char *are_partitions_in_table(partition_info *new_part_info,
 | 
						||
                              partition_info *old_part_info)
 | 
						||
{
 | 
						||
  uint no_new_parts= new_part_info->partitions.elements;
 | 
						||
  uint no_old_parts= old_part_info->partitions.elements;
 | 
						||
  uint new_count, old_count;
 | 
						||
  List_iterator<partition_element> new_parts_it(new_part_info->partitions);
 | 
						||
  bool is_same_part_info= (new_part_info == old_part_info);
 | 
						||
  DBUG_ENTER("are_partitions_in_table");
 | 
						||
  DBUG_PRINT("enter", ("%u", no_new_parts));
 | 
						||
 | 
						||
  new_count= 0;
 | 
						||
  do
 | 
						||
  {
 | 
						||
    List_iterator<partition_element> old_parts_it(old_part_info->partitions);
 | 
						||
    char *new_name= (new_parts_it++)->partition_name;
 | 
						||
    DBUG_PRINT("info", ("%s", new_name));
 | 
						||
    new_count++;
 | 
						||
    old_count= 0;
 | 
						||
    do
 | 
						||
    {
 | 
						||
      char *old_name= (old_parts_it++)->partition_name;
 | 
						||
      old_count++;
 | 
						||
      if (is_same_part_info && old_count == new_count)
 | 
						||
        break;
 | 
						||
      if (!(my_strcasecmp(system_charset_info, old_name, new_name)))
 | 
						||
      {
 | 
						||
        DBUG_PRINT("info", ("old_name = %s, not ok", old_name));
 | 
						||
        DBUG_RETURN(old_name);
 | 
						||
      }
 | 
						||
    } while (old_count < no_old_parts);
 | 
						||
  } while (new_count < no_new_parts);
 | 
						||
  DBUG_RETURN(NULL);
 | 
						||
}
 | 
						||
 | 
						||
/*
 | 
						||
  Set-up defaults for partitions. 
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    partition_default_handling()
 | 
						||
    table                         Table object
 | 
						||
    table_name                    Table name to use when getting no_parts
 | 
						||
    db_name                       Database name to use when getting no_parts
 | 
						||
    part_info                     Partition info to set up
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    TRUE                          Error
 | 
						||
    FALSE                         Success
 | 
						||
*/
 | 
						||
 | 
						||
bool partition_default_handling(TABLE *table, partition_info *part_info,
 | 
						||
                                const char *normalized_path)
 | 
						||
{
 | 
						||
  DBUG_ENTER("partition_default_handling");
 | 
						||
 | 
						||
  if (part_info->use_default_no_partitions)
 | 
						||
  {
 | 
						||
    if (table->file->get_no_parts(normalized_path, &part_info->no_parts))
 | 
						||
    {
 | 
						||
      DBUG_RETURN(TRUE);
 | 
						||
    }
 | 
						||
  }
 | 
						||
  else if (is_sub_partitioned(part_info) &&
 | 
						||
           part_info->use_default_no_subpartitions)
 | 
						||
  {
 | 
						||
    uint no_parts;
 | 
						||
    if (table->file->get_no_parts(normalized_path, &no_parts))
 | 
						||
    {
 | 
						||
      DBUG_RETURN(TRUE);
 | 
						||
    }
 | 
						||
    DBUG_ASSERT(part_info->no_parts > 0);
 | 
						||
    part_info->no_subparts= no_parts / part_info->no_parts;
 | 
						||
    DBUG_ASSERT((no_parts % part_info->no_parts) == 0);
 | 
						||
  }
 | 
						||
  set_up_defaults_for_partitioning(part_info, table->file,
 | 
						||
                                   (ulonglong)0, (uint)0);
 | 
						||
  DBUG_RETURN(FALSE);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Check that the reorganized table will not have duplicate partitions.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    check_reorganise_list()
 | 
						||
    new_part_info      New partition info
 | 
						||
    old_part_info      Old partition info
 | 
						||
    list_part_names    The list of partition names that will go away and can be reused in the
 | 
						||
                       new table.
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    TRUE               Inacceptable name conflict detected.
 | 
						||
    FALSE              New names are OK.
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Can handle that the 'new_part_info' and 'old_part_info' the same
 | 
						||
    in which case it checks that the list of names in the partitions
 | 
						||
    doesn't contain any duplicated names.
 | 
						||
*/
 | 
						||
 | 
						||
bool check_reorganise_list(partition_info *new_part_info,
 | 
						||
                           partition_info *old_part_info,
 | 
						||
                           List<char> list_part_names)
 | 
						||
{
 | 
						||
  uint new_count, old_count;
 | 
						||
  uint no_new_parts= new_part_info->partitions.elements;
 | 
						||
  uint no_old_parts= old_part_info->partitions.elements;
 | 
						||
  List_iterator<partition_element> new_parts_it(new_part_info->partitions);
 | 
						||
  bool same_part_info= (new_part_info == old_part_info);
 | 
						||
  DBUG_ENTER("check_reorganise_list");
 | 
						||
 | 
						||
  new_count= 0;
 | 
						||
  do
 | 
						||
  {
 | 
						||
    List_iterator<partition_element> old_parts_it(old_part_info->partitions);
 | 
						||
    char *new_name= (new_parts_it++)->partition_name;
 | 
						||
    new_count++;
 | 
						||
    old_count= 0;
 | 
						||
    do
 | 
						||
    {
 | 
						||
      char *old_name= (old_parts_it++)->partition_name;
 | 
						||
      old_count++;
 | 
						||
      if (same_part_info && old_count == new_count)
 | 
						||
        break;
 | 
						||
      if (!(my_strcasecmp(system_charset_info, old_name, new_name)))
 | 
						||
      {
 | 
						||
        if (!is_name_in_list(old_name, list_part_names))
 | 
						||
          DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
    } while (old_count < no_old_parts);
 | 
						||
  } while (new_count < no_new_parts);
 | 
						||
  DBUG_RETURN(FALSE);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  A useful routine used by update_row for partition handlers to calculate
 | 
						||
  the partition ids of the old and the new record.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_part_for_update()
 | 
						||
    old_data                Buffer of old record
 | 
						||
    new_data                Buffer of new record
 | 
						||
    rec0                    Reference to table->record[0]
 | 
						||
    part_info               Reference to partition information
 | 
						||
    out:old_part_id         The returned partition id of old record 
 | 
						||
    out:new_part_id         The returned partition id of new record
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    0                       Success
 | 
						||
    > 0                     Error code
 | 
						||
*/
 | 
						||
 | 
						||
int get_parts_for_update(const byte *old_data, byte *new_data,
 | 
						||
                         const byte *rec0, partition_info *part_info,
 | 
						||
                         uint32 *old_part_id, uint32 *new_part_id,
 | 
						||
                         longlong *new_func_value)
 | 
						||
{
 | 
						||
  Field **part_field_array= part_info->full_part_field_array;
 | 
						||
  int error;
 | 
						||
  longlong old_func_value;
 | 
						||
  DBUG_ENTER("get_parts_for_update");
 | 
						||
 | 
						||
  DBUG_ASSERT(new_data == rec0);
 | 
						||
  set_field_ptr(part_field_array, old_data, rec0);
 | 
						||
  error= part_info->get_partition_id(part_info, old_part_id,
 | 
						||
                                     &old_func_value);
 | 
						||
  set_field_ptr(part_field_array, rec0, old_data);
 | 
						||
  if (unlikely(error))                             // Should never happen
 | 
						||
  {
 | 
						||
    DBUG_ASSERT(0);
 | 
						||
    DBUG_RETURN(error);
 | 
						||
  }
 | 
						||
#ifdef NOT_NEEDED
 | 
						||
  if (new_data == rec0)
 | 
						||
#endif
 | 
						||
  {
 | 
						||
    if (unlikely(error= part_info->get_partition_id(part_info,
 | 
						||
                                                    new_part_id,
 | 
						||
                                                    new_func_value)))
 | 
						||
    {
 | 
						||
      DBUG_RETURN(error);
 | 
						||
    }
 | 
						||
  }
 | 
						||
#ifdef NOT_NEEDED
 | 
						||
  else
 | 
						||
  {
 | 
						||
    /*
 | 
						||
      This branch should never execute but it is written anyways for
 | 
						||
      future use. It will be tested by ensuring that the above
 | 
						||
      condition is false in one test situation before pushing the code.
 | 
						||
    */
 | 
						||
    set_field_ptr(part_field_array, new_data, rec0);
 | 
						||
    error= part_info->get_partition_id(part_info, new_part_id,
 | 
						||
                                       new_func_value);
 | 
						||
    set_field_ptr(part_field_array, rec0, new_data);
 | 
						||
    if (unlikely(error))
 | 
						||
    {
 | 
						||
      DBUG_RETURN(error);
 | 
						||
    }
 | 
						||
  }
 | 
						||
#endif
 | 
						||
  DBUG_RETURN(0);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  A useful routine used by delete_row for partition handlers to calculate
 | 
						||
  the partition id.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_part_for_delete()
 | 
						||
    buf                     Buffer of old record
 | 
						||
    rec0                    Reference to table->record[0]
 | 
						||
    part_info               Reference to partition information
 | 
						||
    out:part_id             The returned partition id to delete from
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    0                       Success
 | 
						||
    > 0                     Error code
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Dependent on whether buf is not record[0] we need to prepare the
 | 
						||
    fields. Then we call the function pointer get_partition_id to
 | 
						||
    calculate the partition id.
 | 
						||
*/
 | 
						||
 | 
						||
int get_part_for_delete(const byte *buf, const byte *rec0,
 | 
						||
                        partition_info *part_info, uint32 *part_id)
 | 
						||
{
 | 
						||
  int error;
 | 
						||
  longlong func_value;
 | 
						||
  DBUG_ENTER("get_part_for_delete");
 | 
						||
 | 
						||
  if (likely(buf == rec0))
 | 
						||
  {
 | 
						||
    if (unlikely((error= part_info->get_partition_id(part_info, part_id,
 | 
						||
                                                     &func_value))))
 | 
						||
    {
 | 
						||
      DBUG_RETURN(error);
 | 
						||
    }
 | 
						||
    DBUG_PRINT("info", ("Delete from partition %d", *part_id));
 | 
						||
  }
 | 
						||
  else
 | 
						||
  {
 | 
						||
    Field **part_field_array= part_info->full_part_field_array;
 | 
						||
    set_field_ptr(part_field_array, buf, rec0);
 | 
						||
    error= part_info->get_partition_id(part_info, part_id, &func_value);
 | 
						||
    set_field_ptr(part_field_array, rec0, buf);
 | 
						||
    if (unlikely(error))
 | 
						||
    {
 | 
						||
      DBUG_RETURN(error);
 | 
						||
    }
 | 
						||
    DBUG_PRINT("info", ("Delete from partition %d (path2)", *part_id));
 | 
						||
  }
 | 
						||
  DBUG_RETURN(0);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  This routine allocates an array for all range constants to achieve a fast
 | 
						||
  check what partition a certain value belongs to. At the same time it does
 | 
						||
  also check that the range constants are defined in increasing order and
 | 
						||
  that the expressions are constant integer expressions.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    check_range_constants()
 | 
						||
    part_info             Partition info
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                An error occurred during creation of range constants
 | 
						||
    FALSE               Successful creation of range constant mapping
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    This routine is called from check_partition_info to get a quick error
 | 
						||
    before we came too far into the CREATE TABLE process. It is also called
 | 
						||
    from fix_partition_func every time we open the .frm file. It is only
 | 
						||
    called for RANGE PARTITIONed tables.
 | 
						||
*/
 | 
						||
 | 
						||
static bool check_range_constants(partition_info *part_info)
 | 
						||
{
 | 
						||
  partition_element* part_def;
 | 
						||
  longlong current_largest_int= LONGLONG_MIN;
 | 
						||
  longlong part_range_value_int;
 | 
						||
  uint no_parts= part_info->no_parts;
 | 
						||
  uint i;
 | 
						||
  List_iterator<partition_element> it(part_info->partitions);
 | 
						||
  bool result= TRUE;
 | 
						||
  DBUG_ENTER("check_range_constants");
 | 
						||
  DBUG_PRINT("enter", ("INT_RESULT with %d parts", no_parts));
 | 
						||
 | 
						||
  part_info->part_result_type= INT_RESULT;
 | 
						||
  part_info->range_int_array= 
 | 
						||
                      (longlong*)sql_alloc(no_parts * sizeof(longlong));
 | 
						||
  if (unlikely(part_info->range_int_array == NULL))
 | 
						||
  {
 | 
						||
    mem_alloc_error(no_parts * sizeof(longlong));
 | 
						||
    goto end;
 | 
						||
  }
 | 
						||
  i= 0;
 | 
						||
  do
 | 
						||
  {
 | 
						||
    part_def= it++;
 | 
						||
    if ((i != (no_parts - 1)) || !part_info->defined_max_value)
 | 
						||
      part_range_value_int= part_def->range_value; 
 | 
						||
    else
 | 
						||
      part_range_value_int= LONGLONG_MAX;
 | 
						||
    if (likely(current_largest_int < part_range_value_int))
 | 
						||
    {
 | 
						||
      current_largest_int= part_range_value_int;
 | 
						||
      part_info->range_int_array[i]= part_range_value_int;
 | 
						||
    }
 | 
						||
    else
 | 
						||
    {
 | 
						||
      my_error(ER_RANGE_NOT_INCREASING_ERROR, MYF(0));
 | 
						||
      goto end;
 | 
						||
    }
 | 
						||
  } while (++i < no_parts);
 | 
						||
  result= FALSE;
 | 
						||
end:
 | 
						||
  DBUG_RETURN(result);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  A support routine for check_list_constants used by qsort to sort the
 | 
						||
  constant list expressions.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    list_part_cmp()
 | 
						||
      a                First list constant to compare with
 | 
						||
      b                Second list constant to compare with
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    +1                 a > b
 | 
						||
    0                  a  == b
 | 
						||
    -1                 a < b
 | 
						||
*/
 | 
						||
 | 
						||
static int list_part_cmp(const void* a, const void* b)
 | 
						||
{
 | 
						||
  longlong a1= ((LIST_PART_ENTRY*)a)->list_value;
 | 
						||
  longlong b1= ((LIST_PART_ENTRY*)b)->list_value;
 | 
						||
  if (a1 < b1)
 | 
						||
    return -1;
 | 
						||
  else if (a1 > b1)
 | 
						||
    return +1;
 | 
						||
  else
 | 
						||
    return 0;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  This routine allocates an array for all list constants to achieve a fast
 | 
						||
  check what partition a certain value belongs to. At the same time it does
 | 
						||
  also check that there are no duplicates among the list constants and that
 | 
						||
  that the list expressions are constant integer expressions.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    check_list_constants()
 | 
						||
    part_info             Partition info
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                  An error occurred during creation of list constants
 | 
						||
    FALSE                 Successful creation of list constant mapping
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    This routine is called from check_partition_info to get a quick error
 | 
						||
    before we came too far into the CREATE TABLE process. It is also called
 | 
						||
    from fix_partition_func every time we open the .frm file. It is only
 | 
						||
    called for LIST PARTITIONed tables.
 | 
						||
*/
 | 
						||
 | 
						||
static bool check_list_constants(partition_info *part_info)
 | 
						||
{
 | 
						||
  uint i, no_parts;
 | 
						||
  uint no_list_values= 0;
 | 
						||
  uint list_index= 0;
 | 
						||
  longlong *list_value;
 | 
						||
  bool not_first;
 | 
						||
  bool result= TRUE;
 | 
						||
  longlong curr_value, prev_value;
 | 
						||
  partition_element* part_def;
 | 
						||
  List_iterator<partition_element> list_func_it(part_info->partitions);
 | 
						||
  DBUG_ENTER("check_list_constants");
 | 
						||
 | 
						||
  part_info->part_result_type= INT_RESULT;
 | 
						||
 | 
						||
  /*
 | 
						||
    We begin by calculating the number of list values that have been
 | 
						||
    defined in the first step.
 | 
						||
 | 
						||
    We use this number to allocate a properly sized array of structs
 | 
						||
    to keep the partition id and the value to use in that partition.
 | 
						||
    In the second traversal we assign them values in the struct array.
 | 
						||
 | 
						||
    Finally we sort the array of structs in order of values to enable
 | 
						||
    a quick binary search for the proper value to discover the
 | 
						||
    partition id.
 | 
						||
    After sorting the array we check that there are no duplicates in the
 | 
						||
    list.
 | 
						||
  */
 | 
						||
 | 
						||
  no_parts= part_info->no_parts;
 | 
						||
  i= 0;
 | 
						||
  do
 | 
						||
  {
 | 
						||
    part_def= list_func_it++;
 | 
						||
    List_iterator<longlong> list_val_it1(part_def->list_val_list);
 | 
						||
    while (list_val_it1++)
 | 
						||
      no_list_values++;
 | 
						||
  } while (++i < no_parts);
 | 
						||
  list_func_it.rewind();
 | 
						||
  part_info->no_list_values= no_list_values;
 | 
						||
  part_info->list_array=
 | 
						||
      (LIST_PART_ENTRY*)sql_alloc(no_list_values*sizeof(LIST_PART_ENTRY));
 | 
						||
  if (unlikely(part_info->list_array == NULL))
 | 
						||
  {
 | 
						||
    mem_alloc_error(no_list_values * sizeof(LIST_PART_ENTRY));
 | 
						||
    goto end;
 | 
						||
  }
 | 
						||
 | 
						||
  i= 0;
 | 
						||
  do
 | 
						||
  {
 | 
						||
    part_def= list_func_it++;
 | 
						||
    List_iterator<longlong> list_val_it2(part_def->list_val_list);
 | 
						||
    while ((list_value= list_val_it2++))
 | 
						||
    {
 | 
						||
      part_info->list_array[list_index].list_value= *list_value;
 | 
						||
      part_info->list_array[list_index++].partition_id= i;
 | 
						||
    }
 | 
						||
  } while (++i < no_parts);
 | 
						||
 | 
						||
  qsort((void*)part_info->list_array, no_list_values,
 | 
						||
        sizeof(LIST_PART_ENTRY), &list_part_cmp);
 | 
						||
 | 
						||
  not_first= FALSE;
 | 
						||
  i= prev_value= 0; //prev_value initialised to quiet compiler
 | 
						||
  do
 | 
						||
  {
 | 
						||
    curr_value= part_info->list_array[i].list_value;
 | 
						||
    if (likely(!not_first || prev_value != curr_value))
 | 
						||
    {
 | 
						||
      prev_value= curr_value;
 | 
						||
      not_first= TRUE;
 | 
						||
    }
 | 
						||
    else
 | 
						||
    {
 | 
						||
      my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0));
 | 
						||
      goto end;
 | 
						||
    }
 | 
						||
  } while (++i < no_list_values);
 | 
						||
  result= FALSE;
 | 
						||
end:
 | 
						||
  DBUG_RETURN(result);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Create a memory area where default partition names are stored and fill it
 | 
						||
  up with the names.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    create_default_partition_names()
 | 
						||
    no_parts                        Number of partitions
 | 
						||
    start_no                        Starting partition number
 | 
						||
    subpart                         Is it subpartitions
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    A pointer to the memory area of the default partition names
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    A support routine for the partition code where default values are
 | 
						||
    generated.
 | 
						||
    The external routine needing this code is check_partition_info
 | 
						||
*/
 | 
						||
 | 
						||
#define MAX_PART_NAME_SIZE 8
 | 
						||
 | 
						||
static char *create_default_partition_names(uint no_parts, uint start_no,
 | 
						||
                                            bool is_subpart)
 | 
						||
{
 | 
						||
  char *ptr= sql_calloc(no_parts*MAX_PART_NAME_SIZE);
 | 
						||
  char *move_ptr= ptr;
 | 
						||
  uint i= 0;
 | 
						||
  DBUG_ENTER("create_default_partition_names");
 | 
						||
 | 
						||
  if (likely(ptr != 0))
 | 
						||
  {
 | 
						||
    do
 | 
						||
    {
 | 
						||
      if (is_subpart)
 | 
						||
        my_sprintf(move_ptr, (move_ptr,"sp%u", (start_no + i)));
 | 
						||
      else
 | 
						||
        my_sprintf(move_ptr, (move_ptr,"p%u", (start_no + i)));
 | 
						||
      move_ptr+=MAX_PART_NAME_SIZE;
 | 
						||
    } while (++i < no_parts);
 | 
						||
  }
 | 
						||
  else
 | 
						||
  {
 | 
						||
    mem_alloc_error(no_parts*MAX_PART_NAME_SIZE);
 | 
						||
  }
 | 
						||
  DBUG_RETURN(ptr);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Set up all the default partitions not set-up by the user in the SQL
 | 
						||
  statement. Also perform a number of checks that the user hasn't tried
 | 
						||
  to use default values where no defaults exists.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    set_up_default_partitions()
 | 
						||
    part_info           The reference to all partition information
 | 
						||
    file                A reference to a handler of the table
 | 
						||
    max_rows            Maximum number of rows stored in the table
 | 
						||
    start_no            Starting partition number
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                Error, attempted default values not possible
 | 
						||
    FALSE               Ok, default partitions set-up
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    The routine uses the underlying handler of the partitioning to define
 | 
						||
    the default number of partitions. For some handlers this requires
 | 
						||
    knowledge of the maximum number of rows to be stored in the table.
 | 
						||
    This routine only accepts HASH and KEY partitioning and thus there is
 | 
						||
    no subpartitioning if this routine is successful.
 | 
						||
    The external routine needing this code is check_partition_info
 | 
						||
*/
 | 
						||
 | 
						||
static bool set_up_default_partitions(partition_info *part_info,
 | 
						||
                                      handler *file, ulonglong max_rows,
 | 
						||
                                      uint start_no)
 | 
						||
{
 | 
						||
  uint no_parts, i;
 | 
						||
  char *default_name;
 | 
						||
  bool result= TRUE;
 | 
						||
  DBUG_ENTER("set_up_default_partitions");
 | 
						||
 | 
						||
  if (part_info->part_type != HASH_PARTITION)
 | 
						||
  {
 | 
						||
    const char *error_string;
 | 
						||
    if (part_info->part_type == RANGE_PARTITION)
 | 
						||
      error_string= partition_keywords[PKW_RANGE].str;
 | 
						||
    else
 | 
						||
      error_string= partition_keywords[PKW_LIST].str;
 | 
						||
    my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_string);
 | 
						||
    goto end;
 | 
						||
  }
 | 
						||
  if (part_info->no_parts == 0)
 | 
						||
    part_info->no_parts= file->get_default_no_partitions(max_rows);
 | 
						||
  no_parts= part_info->no_parts;
 | 
						||
  if (unlikely(no_parts > MAX_PARTITIONS))
 | 
						||
  {
 | 
						||
    my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
 | 
						||
    goto end;
 | 
						||
  }
 | 
						||
  if (unlikely((!(default_name= create_default_partition_names(no_parts,
 | 
						||
                                                               start_no,
 | 
						||
                                                               FALSE)))))
 | 
						||
    goto end;
 | 
						||
  i= 0;
 | 
						||
  do
 | 
						||
  {
 | 
						||
    partition_element *part_elem= new partition_element();
 | 
						||
    if (likely(part_elem != 0 &&
 | 
						||
               (!part_info->partitions.push_back(part_elem))))
 | 
						||
    {
 | 
						||
      part_elem->engine_type= part_info->default_engine_type;
 | 
						||
      part_elem->partition_name= default_name;
 | 
						||
      default_name+=MAX_PART_NAME_SIZE;
 | 
						||
    }
 | 
						||
    else
 | 
						||
    {
 | 
						||
      mem_alloc_error(sizeof(partition_element));
 | 
						||
      goto end;
 | 
						||
    }
 | 
						||
  } while (++i < no_parts);
 | 
						||
  result= FALSE;
 | 
						||
end:
 | 
						||
  DBUG_RETURN(result);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Set up all the default subpartitions not set-up by the user in the SQL
 | 
						||
  statement. Also perform a number of checks that the default partitioning
 | 
						||
  becomes an allowed partitioning scheme.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    set_up_default_subpartitions()
 | 
						||
    part_info           The reference to all partition information
 | 
						||
    file                A reference to a handler of the table
 | 
						||
    max_rows            Maximum number of rows stored in the table
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                Error, attempted default values not possible
 | 
						||
    FALSE               Ok, default partitions set-up
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    The routine uses the underlying handler of the partitioning to define
 | 
						||
    the default number of partitions. For some handlers this requires
 | 
						||
    knowledge of the maximum number of rows to be stored in the table.
 | 
						||
    This routine is only called for RANGE or LIST partitioning and those
 | 
						||
    need to be specified so only subpartitions are specified.
 | 
						||
    The external routine needing this code is check_partition_info
 | 
						||
*/
 | 
						||
 | 
						||
static bool set_up_default_subpartitions(partition_info *part_info,
 | 
						||
                                         handler *file, ulonglong max_rows)
 | 
						||
{
 | 
						||
  uint i, j, no_parts, no_subparts;
 | 
						||
  char *default_name, *name_ptr;
 | 
						||
  bool result= TRUE;
 | 
						||
  partition_element *part_elem;
 | 
						||
  List_iterator<partition_element> part_it(part_info->partitions);
 | 
						||
  DBUG_ENTER("set_up_default_subpartitions");
 | 
						||
 | 
						||
  if (part_info->no_subparts == 0)
 | 
						||
    part_info->no_subparts= file->get_default_no_partitions(max_rows);
 | 
						||
  no_parts= part_info->no_parts;
 | 
						||
  no_subparts= part_info->no_subparts;
 | 
						||
  if (unlikely((no_parts * no_subparts) > MAX_PARTITIONS))
 | 
						||
  {
 | 
						||
    my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
 | 
						||
    goto end;
 | 
						||
  }
 | 
						||
  if (unlikely((!(default_name=
 | 
						||
             create_default_partition_names(no_subparts, (uint)0, TRUE)))))
 | 
						||
    goto end;
 | 
						||
  i= 0;
 | 
						||
  do
 | 
						||
  {
 | 
						||
    part_elem= part_it++;
 | 
						||
    j= 0;
 | 
						||
    name_ptr= default_name;
 | 
						||
    do
 | 
						||
    {
 | 
						||
      partition_element *subpart_elem= new partition_element();
 | 
						||
      if (likely(subpart_elem != 0 &&
 | 
						||
          (!part_elem->subpartitions.push_back(subpart_elem))))
 | 
						||
      {
 | 
						||
        subpart_elem->engine_type= part_info->default_engine_type;
 | 
						||
        subpart_elem->partition_name= name_ptr;
 | 
						||
        name_ptr+= MAX_PART_NAME_SIZE;
 | 
						||
      }
 | 
						||
      else
 | 
						||
      {
 | 
						||
        mem_alloc_error(sizeof(partition_element));
 | 
						||
        goto end;
 | 
						||
      }
 | 
						||
    } while (++j < no_subparts);
 | 
						||
  } while (++i < no_parts);
 | 
						||
  result= FALSE;
 | 
						||
end:
 | 
						||
  DBUG_RETURN(result);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Support routine for check_partition_info
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    set_up_defaults_for_partitioning()
 | 
						||
    part_info           The reference to all partition information
 | 
						||
    file                A reference to a handler of the table
 | 
						||
    max_rows            Maximum number of rows stored in the table
 | 
						||
    start_no            Starting partition number
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                Error, attempted default values not possible
 | 
						||
    FALSE               Ok, default partitions set-up
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Set up defaults for partition or subpartition (cannot set-up for both,
 | 
						||
    this will return an error.
 | 
						||
*/
 | 
						||
 | 
						||
bool set_up_defaults_for_partitioning(partition_info *part_info,
 | 
						||
                                      handler *file,
 | 
						||
                                      ulonglong max_rows, uint start_no)
 | 
						||
{
 | 
						||
  DBUG_ENTER("set_up_defaults_for_partitioning");
 | 
						||
 | 
						||
  if (!part_info->default_partitions_setup)
 | 
						||
  {
 | 
						||
    part_info->default_partitions_setup= TRUE;
 | 
						||
    if (part_info->use_default_partitions)
 | 
						||
      DBUG_RETURN(set_up_default_partitions(part_info, file, max_rows,
 | 
						||
                                            start_no));
 | 
						||
    if (is_sub_partitioned(part_info) && part_info->use_default_subpartitions)
 | 
						||
      DBUG_RETURN(set_up_default_subpartitions(part_info, file, max_rows));
 | 
						||
  }
 | 
						||
  DBUG_RETURN(FALSE);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Check that all partitions use the same storage engine.
 | 
						||
  This is currently a limitation in this version.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    check_engine_mix()
 | 
						||
    engine_array           An array of engine identifiers
 | 
						||
    no_parts               Total number of partitions
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                   Error, mixed engines
 | 
						||
    FALSE                  Ok, no mixed engines
 | 
						||
  DESCRIPTION
 | 
						||
    Current check verifies only that all handlers are the same.
 | 
						||
    Later this check will be more sophisticated.
 | 
						||
*/
 | 
						||
 | 
						||
static bool check_engine_mix(handlerton **engine_array, uint no_parts)
 | 
						||
{
 | 
						||
  uint i= 0;
 | 
						||
  bool result= FALSE;
 | 
						||
  DBUG_ENTER("check_engine_mix");
 | 
						||
 | 
						||
  do
 | 
						||
  {
 | 
						||
    if (engine_array[i] != engine_array[0])
 | 
						||
    {
 | 
						||
      result= TRUE;
 | 
						||
      break;
 | 
						||
    }
 | 
						||
  } while (++i < no_parts);
 | 
						||
  DBUG_RETURN(result);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  This code is used early in the CREATE TABLE and ALTER TABLE process.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    check_partition_info()
 | 
						||
    part_info           The reference to all partition information
 | 
						||
    file                A reference to a handler of the table
 | 
						||
    max_rows            Maximum number of rows stored in the table
 | 
						||
    engine_type         Return value for used engine in partitions
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                 Error, something went wrong
 | 
						||
    FALSE                Ok, full partition data structures are now generated
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    We will check that the partition info requested is possible to set-up in
 | 
						||
    this version. This routine is an extension of the parser one could say.
 | 
						||
    If defaults were used we will generate default data structures for all
 | 
						||
    partitions.
 | 
						||
 | 
						||
*/
 | 
						||
 | 
						||
bool check_partition_info(partition_info *part_info,handlerton **eng_type,
 | 
						||
                          handler *file, ulonglong max_rows)
 | 
						||
{
 | 
						||
  handlerton **engine_array= NULL;
 | 
						||
  uint part_count= 0;
 | 
						||
  uint i, no_parts, tot_partitions;
 | 
						||
  bool result= TRUE;
 | 
						||
  char *same_name;
 | 
						||
  DBUG_ENTER("check_partition_info");
 | 
						||
 | 
						||
  if (unlikely(is_sub_partitioned(part_info) &&
 | 
						||
              (!(part_info->part_type == RANGE_PARTITION ||
 | 
						||
                 part_info->part_type == LIST_PARTITION))))
 | 
						||
  {
 | 
						||
    /* Only RANGE and LIST partitioning can be subpartitioned */
 | 
						||
    my_error(ER_SUBPARTITION_ERROR, MYF(0));
 | 
						||
    goto end;
 | 
						||
  }
 | 
						||
  if (unlikely(set_up_defaults_for_partitioning(part_info, file,
 | 
						||
                                                max_rows, (uint)0)))
 | 
						||
    goto end;
 | 
						||
  tot_partitions= get_tot_partitions(part_info);
 | 
						||
  if (unlikely(tot_partitions > MAX_PARTITIONS))
 | 
						||
  {
 | 
						||
    my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
 | 
						||
    goto end;
 | 
						||
  }
 | 
						||
  if (((same_name= are_partitions_in_table(part_info,
 | 
						||
                                           part_info))))
 | 
						||
  {
 | 
						||
    my_error(ER_SAME_NAME_PARTITION, MYF(0), same_name);
 | 
						||
    goto end;
 | 
						||
  }
 | 
						||
  engine_array= (handlerton**)my_malloc(tot_partitions * sizeof(handlerton *), 
 | 
						||
                                        MYF(MY_WME));
 | 
						||
  if (unlikely(!engine_array))
 | 
						||
    goto end;
 | 
						||
  i= 0;
 | 
						||
  no_parts= part_info->no_parts;
 | 
						||
  {
 | 
						||
    List_iterator<partition_element> part_it(part_info->partitions);
 | 
						||
    do
 | 
						||
    {
 | 
						||
      partition_element *part_elem= part_it++;
 | 
						||
      if (!is_sub_partitioned(part_info))
 | 
						||
      {
 | 
						||
        if (part_elem->engine_type == NULL)
 | 
						||
          part_elem->engine_type= part_info->default_engine_type;
 | 
						||
        DBUG_PRINT("info", ("engine = %d",
 | 
						||
                   ha_legacy_type(part_elem->engine_type)));
 | 
						||
        engine_array[part_count++]= part_elem->engine_type;
 | 
						||
      }
 | 
						||
      else
 | 
						||
      {
 | 
						||
        uint j= 0, no_subparts= part_info->no_subparts;;
 | 
						||
        List_iterator<partition_element> sub_it(part_elem->subpartitions);
 | 
						||
        do
 | 
						||
        {
 | 
						||
          part_elem= sub_it++;
 | 
						||
          if (part_elem->engine_type == NULL)
 | 
						||
            part_elem->engine_type= part_info->default_engine_type;
 | 
						||
          DBUG_PRINT("info", ("engine = %u",
 | 
						||
                     ha_legacy_type(part_elem->engine_type)));
 | 
						||
          engine_array[part_count++]= part_elem->engine_type;
 | 
						||
        } while (++j < no_subparts);
 | 
						||
      }
 | 
						||
    } while (++i < part_info->no_parts);
 | 
						||
  }
 | 
						||
  if (unlikely(check_engine_mix(engine_array, part_count)))
 | 
						||
  {
 | 
						||
    my_error(ER_MIX_HANDLER_ERROR, MYF(0));
 | 
						||
    goto end;
 | 
						||
  }
 | 
						||
 | 
						||
  if (eng_type)
 | 
						||
    *eng_type= (handlerton*)engine_array[0];
 | 
						||
 | 
						||
  /*
 | 
						||
    We need to check all constant expressions that they are of the correct
 | 
						||
    type and that they are increasing for ranges and not overlapping for
 | 
						||
    list constants.
 | 
						||
  */
 | 
						||
 | 
						||
  if (unlikely((part_info->part_type == RANGE_PARTITION &&
 | 
						||
                check_range_constants(part_info)) ||
 | 
						||
               (part_info->part_type == LIST_PARTITION &&
 | 
						||
                check_list_constants(part_info))))
 | 
						||
    goto end;
 | 
						||
  result= FALSE;
 | 
						||
end:
 | 
						||
  my_free((char*)engine_array,MYF(MY_ALLOW_ZERO_PTR));
 | 
						||
  DBUG_RETURN(result);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  This method is used to set-up both partition and subpartitioning
 | 
						||
  field array and used for all types of partitioning.
 | 
						||
  It is part of the logic around fix_partition_func.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    set_up_field_array()
 | 
						||
    table                TABLE object for which partition fields are set-up
 | 
						||
    sub_part             Is the table subpartitioned as well
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                 Error, some field didn't meet requirements
 | 
						||
    FALSE                Ok, partition field array set-up
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
 | 
						||
    A great number of functions below here is part of the fix_partition_func
 | 
						||
    method. It is used to set up the partition structures for execution from
 | 
						||
    openfrm. It is called at the end of the openfrm when the table struct has
 | 
						||
    been set-up apart from the partition information.
 | 
						||
    It involves:
 | 
						||
    1) Setting arrays of fields for the partition functions.
 | 
						||
    2) Setting up binary search array for LIST partitioning
 | 
						||
    3) Setting up array for binary search for RANGE partitioning
 | 
						||
    4) Setting up key_map's to assist in quick evaluation whether one
 | 
						||
       can deduce anything from a given index of what partition to use
 | 
						||
    5) Checking whether a set of partitions can be derived from a range on
 | 
						||
       a field in the partition function.
 | 
						||
    As part of doing this there is also a great number of error controls.
 | 
						||
    This is actually the place where most of the things are checked for
 | 
						||
    partition information when creating a table.
 | 
						||
    Things that are checked includes
 | 
						||
    1) All fields of partition function in Primary keys and unique indexes
 | 
						||
       (if not supported)
 | 
						||
 | 
						||
 | 
						||
    Create an array of partition fields (NULL terminated). Before this method
 | 
						||
    is called fix_fields or find_table_in_sef has been called to set
 | 
						||
    GET_FIXED_FIELDS_FLAG on all fields that are part of the partition
 | 
						||
    function.
 | 
						||
*/
 | 
						||
 | 
						||
static bool set_up_field_array(TABLE *table,
 | 
						||
                              bool is_sub_part)
 | 
						||
{
 | 
						||
  Field **ptr, *field, **field_array;
 | 
						||
  uint no_fields= 0;
 | 
						||
  uint size_field_array;
 | 
						||
  uint i= 0;
 | 
						||
  partition_info *part_info= table->part_info;
 | 
						||
  int result= FALSE;
 | 
						||
  DBUG_ENTER("set_up_field_array");
 | 
						||
 | 
						||
  ptr= table->field;
 | 
						||
  while ((field= *(ptr++))) 
 | 
						||
  {
 | 
						||
    if (field->flags & GET_FIXED_FIELDS_FLAG)
 | 
						||
      no_fields++;
 | 
						||
  }
 | 
						||
  if (no_fields == 0)
 | 
						||
  {
 | 
						||
    /*
 | 
						||
      We are using hidden key as partitioning field
 | 
						||
    */
 | 
						||
    DBUG_ASSERT(!is_sub_part);
 | 
						||
    DBUG_RETURN(result);
 | 
						||
  }
 | 
						||
  size_field_array= (no_fields+1)*sizeof(Field*);
 | 
						||
  field_array= (Field**)sql_alloc(size_field_array);
 | 
						||
  if (unlikely(!field_array))
 | 
						||
  {
 | 
						||
    mem_alloc_error(size_field_array);
 | 
						||
    result= TRUE;
 | 
						||
  }
 | 
						||
  ptr= table->field;
 | 
						||
  while ((field= *(ptr++))) 
 | 
						||
  {
 | 
						||
    if (field->flags & GET_FIXED_FIELDS_FLAG)
 | 
						||
    {
 | 
						||
      field->flags&= ~GET_FIXED_FIELDS_FLAG;
 | 
						||
      field->flags|= FIELD_IN_PART_FUNC_FLAG;
 | 
						||
      if (likely(!result))
 | 
						||
      {
 | 
						||
        field_array[i++]= field;
 | 
						||
 | 
						||
        /*
 | 
						||
          We check that the fields are proper. It is required for each
 | 
						||
          field in a partition function to:
 | 
						||
          1) Not be a BLOB of any type
 | 
						||
            A BLOB takes too long time to evaluate so we don't want it for
 | 
						||
            performance reasons.
 | 
						||
        */
 | 
						||
 | 
						||
        if (unlikely(field->flags & BLOB_FLAG))
 | 
						||
        {
 | 
						||
          my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0));
 | 
						||
          result= TRUE;
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
  field_array[no_fields]= 0;
 | 
						||
  if (!is_sub_part)
 | 
						||
  {
 | 
						||
    part_info->part_field_array= field_array;
 | 
						||
    part_info->no_part_fields= no_fields;
 | 
						||
  }
 | 
						||
  else
 | 
						||
  {
 | 
						||
    part_info->subpart_field_array= field_array;
 | 
						||
    part_info->no_subpart_fields= no_fields;
 | 
						||
  }
 | 
						||
  DBUG_RETURN(result);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Create a field array including all fields of both the partitioning and the
 | 
						||
  subpartitioning functions.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    create_full_part_field_array()
 | 
						||
    table                TABLE object for which partition fields are set-up
 | 
						||
    part_info            Reference to partitioning data structure
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                 Memory allocation of field array failed
 | 
						||
    FALSE                Ok
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    If there is no subpartitioning then the same array is used as for the
 | 
						||
    partitioning. Otherwise a new array is built up using the flag
 | 
						||
    FIELD_IN_PART_FUNC in the field object.
 | 
						||
    This function is called from fix_partition_func
 | 
						||
*/
 | 
						||
 | 
						||
static bool create_full_part_field_array(TABLE *table,
 | 
						||
                                         partition_info *part_info)
 | 
						||
{
 | 
						||
  bool result= FALSE;
 | 
						||
  DBUG_ENTER("create_full_part_field_array");
 | 
						||
 | 
						||
  if (!is_sub_partitioned(part_info))
 | 
						||
  {
 | 
						||
    part_info->full_part_field_array= part_info->part_field_array;
 | 
						||
    part_info->no_full_part_fields= part_info->no_part_fields;
 | 
						||
  }
 | 
						||
  else
 | 
						||
  {
 | 
						||
    Field **ptr, *field, **field_array;
 | 
						||
    uint no_part_fields=0, size_field_array;
 | 
						||
    ptr= table->field;
 | 
						||
    while ((field= *(ptr++)))
 | 
						||
    {
 | 
						||
      if (field->flags & FIELD_IN_PART_FUNC_FLAG)
 | 
						||
        no_part_fields++;
 | 
						||
    }
 | 
						||
    size_field_array= (no_part_fields+1)*sizeof(Field*);
 | 
						||
    field_array= (Field**)sql_alloc(size_field_array);
 | 
						||
    if (unlikely(!field_array))
 | 
						||
    {
 | 
						||
      mem_alloc_error(size_field_array);
 | 
						||
      result= TRUE;
 | 
						||
      goto end;
 | 
						||
    }
 | 
						||
    no_part_fields= 0;
 | 
						||
    ptr= table->field;
 | 
						||
    while ((field= *(ptr++)))
 | 
						||
    {
 | 
						||
      if (field->flags & FIELD_IN_PART_FUNC_FLAG)
 | 
						||
        field_array[no_part_fields++]= field;
 | 
						||
    }
 | 
						||
    field_array[no_part_fields]=0;
 | 
						||
    part_info->full_part_field_array= field_array;
 | 
						||
    part_info->no_full_part_fields= no_part_fields;
 | 
						||
  }
 | 
						||
end:
 | 
						||
  DBUG_RETURN(result);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
 | 
						||
  Clear flag GET_FIXED_FIELDS_FLAG in all fields of a key previously set by
 | 
						||
  set_indicator_in_key_fields (always used in pairs).
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    clear_indicator_in_key_fields()
 | 
						||
    key_info                  Reference to find the key fields
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    NONE
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    These support routines is used to set/reset an indicator of all fields
 | 
						||
    in a certain key. It is used in conjunction with another support routine
 | 
						||
    that traverse all fields in the PF to find if all or some fields in the
 | 
						||
    PF is part of the key. This is used to check primary keys and unique
 | 
						||
    keys involve all fields in PF (unless supported) and to derive the
 | 
						||
    key_map's used to quickly decide whether the index can be used to
 | 
						||
    derive which partitions are needed to scan.
 | 
						||
*/
 | 
						||
 | 
						||
static void clear_indicator_in_key_fields(KEY *key_info)
 | 
						||
{
 | 
						||
  KEY_PART_INFO *key_part;
 | 
						||
  uint key_parts= key_info->key_parts, i;
 | 
						||
  for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
 | 
						||
    key_part->field->flags&= (~GET_FIXED_FIELDS_FLAG);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Set flag GET_FIXED_FIELDS_FLAG in all fields of a key.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    set_indicator_in_key_fields
 | 
						||
    key_info                  Reference to find the key fields
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    NONE
 | 
						||
*/
 | 
						||
 | 
						||
static void set_indicator_in_key_fields(KEY *key_info)
 | 
						||
{
 | 
						||
  KEY_PART_INFO *key_part;
 | 
						||
  uint key_parts= key_info->key_parts, i;
 | 
						||
  for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
 | 
						||
    key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Check if all or some fields in partition field array is part of a key
 | 
						||
  previously used to tag key fields.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    check_fields_in_PF()
 | 
						||
    ptr                  Partition field array
 | 
						||
    out:all_fields       Is all fields of partition field array used in key
 | 
						||
    out:some_fields      Is some fields of partition field array used in key
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    all_fields, some_fields
 | 
						||
*/
 | 
						||
 | 
						||
static void check_fields_in_PF(Field **ptr, bool *all_fields,
 | 
						||
                               bool *some_fields)
 | 
						||
{
 | 
						||
  DBUG_ENTER("check_fields_in_PF");
 | 
						||
 | 
						||
  *all_fields= TRUE;
 | 
						||
  *some_fields= FALSE;
 | 
						||
  if ((!ptr) || !(*ptr))
 | 
						||
  {
 | 
						||
    *all_fields= FALSE;
 | 
						||
    DBUG_VOID_RETURN;
 | 
						||
  }
 | 
						||
  do
 | 
						||
  {
 | 
						||
  /* Check if the field of the PF is part of the current key investigated */
 | 
						||
    if ((*ptr)->flags & GET_FIXED_FIELDS_FLAG)
 | 
						||
      *some_fields= TRUE; 
 | 
						||
    else
 | 
						||
      *all_fields= FALSE;
 | 
						||
  } while (*(++ptr));
 | 
						||
  DBUG_VOID_RETURN;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Clear flag GET_FIXED_FIELDS_FLAG in all fields of the table.
 | 
						||
  This routine is used for error handling purposes.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    clear_field_flag()
 | 
						||
    table                TABLE object for which partition fields are set-up
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    NONE
 | 
						||
*/
 | 
						||
 | 
						||
static void clear_field_flag(TABLE *table)
 | 
						||
{
 | 
						||
  Field **ptr;
 | 
						||
  DBUG_ENTER("clear_field_flag");
 | 
						||
 | 
						||
  for (ptr= table->field; *ptr; ptr++)
 | 
						||
    (*ptr)->flags&= (~GET_FIXED_FIELDS_FLAG);
 | 
						||
  DBUG_VOID_RETURN;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  find_field_in_table_sef finds the field given its name. All fields get
 | 
						||
  GET_FIXED_FIELDS_FLAG set.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    handle_list_of_fields()
 | 
						||
    it                   A list of field names for the partition function
 | 
						||
    table                TABLE object for which partition fields are set-up
 | 
						||
    part_info            Reference to partitioning data structure
 | 
						||
    sub_part             Is the table subpartitioned as well
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                 Fields in list of fields not part of table
 | 
						||
    FALSE                All fields ok and array created
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    This routine sets-up the partition field array for KEY partitioning, it
 | 
						||
    also verifies that all fields in the list of fields is actually a part of
 | 
						||
    the table.
 | 
						||
 | 
						||
*/
 | 
						||
 | 
						||
 | 
						||
static bool handle_list_of_fields(List_iterator<char> it,
 | 
						||
                                  TABLE *table,
 | 
						||
                                  partition_info *part_info,
 | 
						||
                                  bool is_sub_part)
 | 
						||
{
 | 
						||
  Field *field;
 | 
						||
  bool result;
 | 
						||
  char *field_name;
 | 
						||
  bool is_list_empty= TRUE;
 | 
						||
  DBUG_ENTER("handle_list_of_fields");
 | 
						||
 | 
						||
  while ((field_name= it++))
 | 
						||
  {
 | 
						||
    is_list_empty= FALSE;
 | 
						||
    field= find_field_in_table_sef(table, field_name);
 | 
						||
    if (likely(field != 0))
 | 
						||
      field->flags|= GET_FIXED_FIELDS_FLAG;
 | 
						||
    else
 | 
						||
    {
 | 
						||
      my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
 | 
						||
      clear_field_flag(table);
 | 
						||
      result= TRUE;
 | 
						||
      goto end;
 | 
						||
    }
 | 
						||
  }
 | 
						||
  if (is_list_empty)
 | 
						||
  {
 | 
						||
    uint primary_key= table->s->primary_key;
 | 
						||
    if (primary_key != MAX_KEY)
 | 
						||
    {
 | 
						||
      uint no_key_parts= table->key_info[primary_key].key_parts, i;
 | 
						||
      /*
 | 
						||
        In the case of an empty list we use primary key as partition key.
 | 
						||
      */
 | 
						||
      for (i= 0; i < no_key_parts; i++)
 | 
						||
      {
 | 
						||
        Field *field= table->key_info[primary_key].key_part[i].field;
 | 
						||
        field->flags|= GET_FIXED_FIELDS_FLAG;
 | 
						||
      }
 | 
						||
    }
 | 
						||
    else
 | 
						||
    {
 | 
						||
      if (table->s->db_type->partition_flags &&
 | 
						||
          (table->s->db_type->partition_flags() & HA_USE_AUTO_PARTITION) &&
 | 
						||
          (table->s->db_type->partition_flags() & HA_CAN_PARTITION))
 | 
						||
      {
 | 
						||
        /*
 | 
						||
          This engine can handle automatic partitioning and there is no
 | 
						||
          primary key. In this case we rely on that the engine handles
 | 
						||
          partitioning based on a hidden key. Thus we allocate no
 | 
						||
          array for partitioning fields.
 | 
						||
        */
 | 
						||
        DBUG_RETURN(FALSE);
 | 
						||
      }
 | 
						||
      else
 | 
						||
      {
 | 
						||
        my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
  result= set_up_field_array(table, is_sub_part);
 | 
						||
end:
 | 
						||
  DBUG_RETURN(result);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  The function uses a new feature in fix_fields where the flag 
 | 
						||
  GET_FIXED_FIELDS_FLAG is set for all fields in the item tree.
 | 
						||
  This field must always be reset before returning from the function
 | 
						||
  since it is used for other purposes as well.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    fix_fields_part_func()
 | 
						||
    thd                  The thread object
 | 
						||
    tables               A list of one table, the partitioned table
 | 
						||
    func_expr            The item tree reference of the partition function
 | 
						||
    part_info            Reference to partitioning data structure
 | 
						||
    sub_part             Is the table subpartitioned as well
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                 An error occurred, something was wrong with the
 | 
						||
                         partition function.
 | 
						||
    FALSE                Ok, a partition field array was created
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    This function is used to build an array of partition fields for the
 | 
						||
    partitioning function and subpartitioning function. The partitioning
 | 
						||
    function is an item tree that must reference at least one field in the
 | 
						||
    table. This is checked first in the parser that the function doesn't
 | 
						||
    contain non-cacheable parts (like a random function) and by checking
 | 
						||
    here that the function isn't a constant function.
 | 
						||
 | 
						||
    Calculate the number of fields in the partition function.
 | 
						||
    Use it allocate memory for array of Field pointers.
 | 
						||
    Initialise array of field pointers. Use information set when
 | 
						||
    calling fix_fields and reset it immediately after.
 | 
						||
    The get_fields_in_item_tree activates setting of bit in flags
 | 
						||
    on the field object.
 | 
						||
*/
 | 
						||
 | 
						||
static bool fix_fields_part_func(THD *thd, TABLE_LIST *tables,
 | 
						||
                                 Item* func_expr, partition_info *part_info,
 | 
						||
                                 bool is_sub_part)
 | 
						||
{
 | 
						||
  bool result= TRUE;
 | 
						||
  TABLE *table= tables->table;
 | 
						||
  TABLE_LIST *save_table_list, *save_first_table, *save_last_table;
 | 
						||
  int error;
 | 
						||
  Name_resolution_context *context;
 | 
						||
  const char *save_where;
 | 
						||
  DBUG_ENTER("fix_fields_part_func");
 | 
						||
 | 
						||
  context= thd->lex->current_context();
 | 
						||
  table->map= 1; //To ensure correct calculation of const item
 | 
						||
  table->get_fields_in_item_tree= TRUE;
 | 
						||
  save_table_list= context->table_list;
 | 
						||
  save_first_table= context->first_name_resolution_table;
 | 
						||
  save_last_table= context->last_name_resolution_table;
 | 
						||
  context->table_list= tables;
 | 
						||
  context->first_name_resolution_table= tables;
 | 
						||
  context->last_name_resolution_table= NULL;
 | 
						||
  func_expr->walk(&Item::change_context_processor, (byte*) context);
 | 
						||
  save_where= thd->where;
 | 
						||
  thd->where= "partition function";
 | 
						||
  error= func_expr->fix_fields(thd, (Item**)0);
 | 
						||
  context->table_list= save_table_list;
 | 
						||
  context->first_name_resolution_table= save_first_table;
 | 
						||
  context->last_name_resolution_table= save_last_table;
 | 
						||
  if (unlikely(error))
 | 
						||
  {
 | 
						||
    DBUG_PRINT("info", ("Field in partition function not part of table"));
 | 
						||
    clear_field_flag(table);
 | 
						||
    goto end;
 | 
						||
  }
 | 
						||
  thd->where= save_where;
 | 
						||
  if (unlikely(func_expr->const_item()))
 | 
						||
  {
 | 
						||
    my_error(ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0));
 | 
						||
    clear_field_flag(table);
 | 
						||
    goto end;
 | 
						||
  }
 | 
						||
  result= set_up_field_array(table, is_sub_part);
 | 
						||
end:
 | 
						||
  table->get_fields_in_item_tree= FALSE;
 | 
						||
  table->map= 0; //Restore old value
 | 
						||
  DBUG_RETURN(result);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Check that the primary key contains all partition fields if defined
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    check_primary_key()
 | 
						||
    table                TABLE object for which partition fields are set-up
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    TRUE                 Not all fields in partitioning function was part
 | 
						||
                         of primary key
 | 
						||
    FALSE                Ok, all fields of partitioning function were part
 | 
						||
                         of primary key
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    This function verifies that if there is a primary key that it contains
 | 
						||
    all the fields of the partition function.
 | 
						||
    This is a temporary limitation that will hopefully be removed after a
 | 
						||
    while.
 | 
						||
*/
 | 
						||
 | 
						||
static bool check_primary_key(TABLE *table)
 | 
						||
{
 | 
						||
  uint primary_key= table->s->primary_key;
 | 
						||
  bool all_fields, some_fields;
 | 
						||
  bool result= FALSE;
 | 
						||
  DBUG_ENTER("check_primary_key");
 | 
						||
 | 
						||
  if (primary_key < MAX_KEY)
 | 
						||
  {
 | 
						||
    set_indicator_in_key_fields(table->key_info+primary_key);
 | 
						||
    check_fields_in_PF(table->part_info->full_part_field_array,
 | 
						||
                        &all_fields, &some_fields);
 | 
						||
    clear_indicator_in_key_fields(table->key_info+primary_key);
 | 
						||
    if (unlikely(!all_fields))
 | 
						||
    {
 | 
						||
      my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"PRIMARY KEY");
 | 
						||
      result= TRUE;
 | 
						||
    }
 | 
						||
  }
 | 
						||
  DBUG_RETURN(result);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Check that unique keys contains all partition fields
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    check_unique_keys()
 | 
						||
    table                TABLE object for which partition fields are set-up
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    TRUE                 Not all fields in partitioning function was part
 | 
						||
                         of all unique keys
 | 
						||
    FALSE                Ok, all fields of partitioning function were part
 | 
						||
                         of unique keys
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    This function verifies that if there is a unique index that it contains
 | 
						||
    all the fields of the partition function.
 | 
						||
    This is a temporary limitation that will hopefully be removed after a
 | 
						||
    while.
 | 
						||
*/
 | 
						||
 | 
						||
static bool check_unique_keys(TABLE *table)
 | 
						||
{
 | 
						||
  bool all_fields, some_fields;
 | 
						||
  bool result= FALSE;
 | 
						||
  uint keys= table->s->keys;
 | 
						||
  uint i;
 | 
						||
  DBUG_ENTER("check_unique_keys");
 | 
						||
 | 
						||
  for (i= 0; i < keys; i++)
 | 
						||
  {
 | 
						||
    if (table->key_info[i].flags & HA_NOSAME) //Unique index
 | 
						||
    {
 | 
						||
      set_indicator_in_key_fields(table->key_info+i);
 | 
						||
      check_fields_in_PF(table->part_info->full_part_field_array,
 | 
						||
                         &all_fields, &some_fields);
 | 
						||
      clear_indicator_in_key_fields(table->key_info+i);
 | 
						||
      if (unlikely(!all_fields))
 | 
						||
      {
 | 
						||
        my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"UNIQUE INDEX");
 | 
						||
        result= TRUE;
 | 
						||
        break;
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
  DBUG_RETURN(result);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  An important optimisation is whether a range on a field can select a subset
 | 
						||
  of the partitions.
 | 
						||
  A prerequisite for this to happen is that the PF is a growing function OR
 | 
						||
  a shrinking function.
 | 
						||
  This can never happen for a multi-dimensional PF. Thus this can only happen
 | 
						||
  with PF with at most one field involved in the PF.
 | 
						||
  The idea is that if the function is a growing function and you know that
 | 
						||
  the field of the PF is 4 <= A <= 6 then we can convert this to a range
 | 
						||
  in the PF instead by setting the range to PF(4) <= PF(A) <= PF(6). In the
 | 
						||
  case of RANGE PARTITIONING and LIST PARTITIONING this can be used to
 | 
						||
  calculate a set of partitions rather than scanning all of them.
 | 
						||
  Thus the following prerequisites are there to check if sets of partitions
 | 
						||
  can be found.
 | 
						||
  1) Only possible for RANGE and LIST partitioning (not for subpartitioning)
 | 
						||
  2) Only possible if PF only contains 1 field
 | 
						||
  3) Possible if PF is a growing function of the field
 | 
						||
  4) Possible if PF is a shrinking function of the field
 | 
						||
  OBSERVATION:
 | 
						||
  1) IF f1(A) is a growing function AND f2(A) is a growing function THEN
 | 
						||
     f1(A) + f2(A) is a growing function
 | 
						||
     f1(A) * f2(A) is a growing function if f1(A) >= 0 and f2(A) >= 0
 | 
						||
  2) IF f1(A) is a growing function and f2(A) is a shrinking function THEN
 | 
						||
     f1(A) / f2(A) is a growing function if f1(A) >= 0 and f2(A) > 0
 | 
						||
  3) IF A is a growing function then a function f(A) that removes the
 | 
						||
     least significant portion of A is a growing function
 | 
						||
     E.g. DATE(datetime) is a growing function
 | 
						||
     MONTH(datetime) is not a growing/shrinking function
 | 
						||
  4) IF f1(A) is a growing function and f2(A) is a growing function THEN
 | 
						||
     f1(f2(A)) and f2(f1(A)) are also growing functions
 | 
						||
  5) IF f1(A) is a shrinking function and f2(A) is a growing function THEN
 | 
						||
     f1(f2(A)) is a shrinking function and f2(f1(A)) is a shrinking function
 | 
						||
  6) f1(A) = A is a growing function
 | 
						||
  7) f1(A) = A*a + b (where a and b are constants) is a growing function
 | 
						||
 | 
						||
  By analysing the item tree of the PF we can use these deducements and
 | 
						||
  derive whether the PF is a growing function or a shrinking function or
 | 
						||
  neither of it.
 | 
						||
 | 
						||
  If the PF is range capable then a flag is set on the table object
 | 
						||
  indicating this to notify that we can use also ranges on the field
 | 
						||
  of the PF to deduce a set of partitions if the fields of the PF were
 | 
						||
  not all fully bound.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    check_range_capable_PF()
 | 
						||
    table                TABLE object for which partition fields are set-up
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Support for this is not implemented yet.
 | 
						||
*/
 | 
						||
 | 
						||
void check_range_capable_PF(TABLE *table)
 | 
						||
{
 | 
						||
  DBUG_ENTER("check_range_capable_PF");
 | 
						||
 | 
						||
  DBUG_VOID_RETURN;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Set up partition bitmap
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    set_up_partition_bitmap()
 | 
						||
    thd                  Thread object
 | 
						||
    part_info            Reference to partitioning data structure
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                 Memory allocation failure
 | 
						||
    FALSE                Success
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Allocate memory for bitmap of the partitioned table
 | 
						||
    and initialise it.
 | 
						||
*/
 | 
						||
 | 
						||
static bool set_up_partition_bitmap(THD *thd, partition_info *part_info)
 | 
						||
{
 | 
						||
  uint32 *bitmap_buf;
 | 
						||
  uint bitmap_bits= part_info->no_subparts? 
 | 
						||
                     (part_info->no_subparts* part_info->no_parts):
 | 
						||
                      part_info->no_parts;
 | 
						||
  uint bitmap_bytes= bitmap_buffer_size(bitmap_bits);
 | 
						||
  DBUG_ENTER("set_up_partition_bitmap");
 | 
						||
 | 
						||
  if (!(bitmap_buf= (uint32*)thd->alloc(bitmap_bytes)))
 | 
						||
  {
 | 
						||
    mem_alloc_error(bitmap_bytes);
 | 
						||
    DBUG_RETURN(TRUE);
 | 
						||
  }
 | 
						||
  bitmap_init(&part_info->used_partitions, bitmap_buf, bitmap_bytes*8, FALSE);
 | 
						||
  DBUG_RETURN(FALSE);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Set up partition key maps
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    set_up_partition_key_maps()
 | 
						||
    table                TABLE object for which partition fields are set-up
 | 
						||
    part_info            Reference to partitioning data structure
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    None
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    This function sets up a couple of key maps to be able to quickly check
 | 
						||
    if an index ever can be used to deduce the partition fields or even
 | 
						||
    a part of the fields of the  partition function.
 | 
						||
    We set up the following key_map's.
 | 
						||
    PF = Partition Function
 | 
						||
    1) All fields of the PF is set even by equal on the first fields in the
 | 
						||
       key
 | 
						||
    2) All fields of the PF is set if all fields of the key is set
 | 
						||
    3) At least one field in the PF is set if all fields is set
 | 
						||
    4) At least one field in the PF is part of the key
 | 
						||
*/
 | 
						||
 | 
						||
static void set_up_partition_key_maps(TABLE *table,
 | 
						||
                                      partition_info *part_info)
 | 
						||
{
 | 
						||
  uint keys= table->s->keys;
 | 
						||
  uint i;
 | 
						||
  bool all_fields, some_fields;
 | 
						||
  DBUG_ENTER("set_up_partition_key_maps");
 | 
						||
 | 
						||
  part_info->all_fields_in_PF.clear_all();
 | 
						||
  part_info->all_fields_in_PPF.clear_all();
 | 
						||
  part_info->all_fields_in_SPF.clear_all();
 | 
						||
  part_info->some_fields_in_PF.clear_all();
 | 
						||
  for (i= 0; i < keys; i++)
 | 
						||
  {
 | 
						||
    set_indicator_in_key_fields(table->key_info+i);
 | 
						||
    check_fields_in_PF(part_info->full_part_field_array,
 | 
						||
                       &all_fields, &some_fields);
 | 
						||
    if (all_fields)
 | 
						||
      part_info->all_fields_in_PF.set_bit(i);
 | 
						||
    if (some_fields)
 | 
						||
      part_info->some_fields_in_PF.set_bit(i);
 | 
						||
    if (is_sub_partitioned(part_info))
 | 
						||
    {
 | 
						||
      check_fields_in_PF(part_info->part_field_array,
 | 
						||
                         &all_fields, &some_fields);
 | 
						||
      if (all_fields)
 | 
						||
        part_info->all_fields_in_PPF.set_bit(i);
 | 
						||
      check_fields_in_PF(part_info->subpart_field_array,
 | 
						||
                         &all_fields, &some_fields);
 | 
						||
      if (all_fields)
 | 
						||
        part_info->all_fields_in_SPF.set_bit(i);
 | 
						||
    }
 | 
						||
    clear_indicator_in_key_fields(table->key_info+i);
 | 
						||
  }
 | 
						||
  DBUG_VOID_RETURN;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Set up function pointers for partition function
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    set_up_partition_func_pointers()
 | 
						||
    part_info            Reference to partitioning data structure
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    NONE
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Set-up all function pointers for calculation of partition id,
 | 
						||
    subpartition id and the upper part in subpartitioning. This is to speed up
 | 
						||
    execution of get_partition_id which is executed once every record to be
 | 
						||
    written and deleted and twice for updates.
 | 
						||
*/
 | 
						||
 | 
						||
static void set_up_partition_func_pointers(partition_info *part_info)
 | 
						||
{
 | 
						||
  DBUG_ENTER("set_up_partition_func_pointers");
 | 
						||
 | 
						||
  if (is_sub_partitioned(part_info))
 | 
						||
  {
 | 
						||
    if (part_info->part_type == RANGE_PARTITION)
 | 
						||
    {
 | 
						||
      part_info->get_part_partition_id= get_partition_id_range;
 | 
						||
      if (part_info->list_of_subpart_fields)
 | 
						||
      {
 | 
						||
        if (part_info->linear_hash_ind)
 | 
						||
        {
 | 
						||
          part_info->get_partition_id= get_partition_id_range_sub_linear_key;
 | 
						||
          part_info->get_subpartition_id= get_partition_id_linear_key_sub;
 | 
						||
        }
 | 
						||
        else
 | 
						||
        {
 | 
						||
          part_info->get_partition_id= get_partition_id_range_sub_key;
 | 
						||
          part_info->get_subpartition_id= get_partition_id_key_sub;
 | 
						||
        }
 | 
						||
      }
 | 
						||
      else
 | 
						||
      {
 | 
						||
        if (part_info->linear_hash_ind)
 | 
						||
        {
 | 
						||
          part_info->get_partition_id= get_partition_id_range_sub_linear_hash;
 | 
						||
          part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
 | 
						||
        }
 | 
						||
        else
 | 
						||
        {
 | 
						||
          part_info->get_partition_id= get_partition_id_range_sub_hash;
 | 
						||
          part_info->get_subpartition_id= get_partition_id_hash_sub;
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
    else /* LIST Partitioning */
 | 
						||
    {
 | 
						||
      part_info->get_part_partition_id= get_partition_id_list;
 | 
						||
      if (part_info->list_of_subpart_fields)
 | 
						||
      {
 | 
						||
        if (part_info->linear_hash_ind)
 | 
						||
        {
 | 
						||
          part_info->get_partition_id= get_partition_id_list_sub_linear_key;
 | 
						||
          part_info->get_subpartition_id= get_partition_id_linear_key_sub;
 | 
						||
        }
 | 
						||
        else
 | 
						||
        {
 | 
						||
          part_info->get_partition_id= get_partition_id_list_sub_key;
 | 
						||
          part_info->get_subpartition_id= get_partition_id_key_sub;
 | 
						||
        }
 | 
						||
      }
 | 
						||
      else
 | 
						||
      {
 | 
						||
        if (part_info->linear_hash_ind)
 | 
						||
        {
 | 
						||
          part_info->get_partition_id= get_partition_id_list_sub_linear_hash;
 | 
						||
          part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
 | 
						||
        }
 | 
						||
        else
 | 
						||
        {
 | 
						||
          part_info->get_partition_id= get_partition_id_list_sub_hash;
 | 
						||
          part_info->get_subpartition_id= get_partition_id_hash_sub;
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
  else /* No subpartitioning */
 | 
						||
  {
 | 
						||
    part_info->get_part_partition_id= NULL;
 | 
						||
    part_info->get_subpartition_id= NULL;
 | 
						||
    if (part_info->part_type == RANGE_PARTITION)
 | 
						||
      part_info->get_partition_id= get_partition_id_range;
 | 
						||
    else if (part_info->part_type == LIST_PARTITION)
 | 
						||
      part_info->get_partition_id= get_partition_id_list;
 | 
						||
    else /* HASH partitioning */
 | 
						||
    {
 | 
						||
      if (part_info->list_of_part_fields)
 | 
						||
      {
 | 
						||
        if (part_info->linear_hash_ind)
 | 
						||
          part_info->get_partition_id= get_partition_id_linear_key_nosub;
 | 
						||
        else
 | 
						||
          part_info->get_partition_id= get_partition_id_key_nosub;
 | 
						||
      }
 | 
						||
      else
 | 
						||
      {
 | 
						||
        if (part_info->linear_hash_ind)
 | 
						||
          part_info->get_partition_id= get_partition_id_linear_hash_nosub;
 | 
						||
        else
 | 
						||
          part_info->get_partition_id= get_partition_id_hash_nosub;
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
  DBUG_VOID_RETURN;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  For linear hashing we need a mask which is on the form 2**n - 1 where
 | 
						||
  2**n >= no_parts. Thus if no_parts is 6 then mask is 2**3 - 1 = 8 - 1 = 7.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    set_linear_hash_mask()
 | 
						||
    part_info            Reference to partitioning data structure
 | 
						||
    no_parts             Number of parts in linear hash partitioning
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    NONE
 | 
						||
*/
 | 
						||
 | 
						||
static void set_linear_hash_mask(partition_info *part_info, uint no_parts)
 | 
						||
{
 | 
						||
  uint mask;
 | 
						||
 | 
						||
  for (mask= 1; mask < no_parts; mask<<=1)
 | 
						||
    ;
 | 
						||
  part_info->linear_hash_mask= mask - 1;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  This function calculates the partition id provided the result of the hash
 | 
						||
  function using linear hashing parameters, mask and number of partitions.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_part_id_from_linear_hash()
 | 
						||
    hash_value          Hash value calculated by HASH function or KEY function
 | 
						||
    mask                Mask calculated previously by set_linear_hash_mask
 | 
						||
    no_parts            Number of partitions in HASH partitioned part
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    part_id             The calculated partition identity (starting at 0)
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    The partition is calculated according to the theory of linear hashing.
 | 
						||
    See e.g. Linear hashing: a new tool for file and table addressing,
 | 
						||
    Reprinted from VLDB-80 in Readings Database Systems, 2nd ed, M. Stonebraker
 | 
						||
    (ed.), Morgan Kaufmann 1994.
 | 
						||
*/
 | 
						||
 | 
						||
static uint32 get_part_id_from_linear_hash(longlong hash_value, uint mask,
 | 
						||
                                           uint no_parts)
 | 
						||
{
 | 
						||
  uint32 part_id= (uint32)(hash_value & mask);
 | 
						||
 | 
						||
  if (part_id >= no_parts)
 | 
						||
  {
 | 
						||
    uint new_mask= ((mask + 1) >> 1) - 1;
 | 
						||
    part_id= (uint32)(hash_value & new_mask);
 | 
						||
  }
 | 
						||
  return part_id;
 | 
						||
}
 | 
						||
 | 
						||
/*
 | 
						||
  fix partition functions
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    fix_partition_func()
 | 
						||
    thd                  The thread object
 | 
						||
    name                 The name of the partitioned table
 | 
						||
    table                TABLE object for which partition fields are set-up
 | 
						||
    create_table_ind     Indicator of whether openfrm was called as part of
 | 
						||
                         CREATE or ALTER TABLE
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                 Error
 | 
						||
    FALSE                Success
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    The name parameter contains the full table name and is used to get the
 | 
						||
    database name of the table which is used to set-up a correct
 | 
						||
    TABLE_LIST object for use in fix_fields.
 | 
						||
 | 
						||
NOTES
 | 
						||
    This function is called as part of opening the table by opening the .frm
 | 
						||
    file. It is a part of CREATE TABLE to do this so it is quite permissible
 | 
						||
    that errors due to erroneus syntax isn't found until we come here.
 | 
						||
    If the user has used a non-existing field in the table is one such example
 | 
						||
    of an error that is not discovered until here.
 | 
						||
*/
 | 
						||
 | 
						||
bool fix_partition_func(THD *thd, const char* name, TABLE *table,
 | 
						||
                        bool is_create_table_ind)
 | 
						||
{
 | 
						||
  bool result= TRUE;
 | 
						||
  uint dir_length, home_dir_length;
 | 
						||
  TABLE_LIST tables;
 | 
						||
  TABLE_SHARE *share= table->s;
 | 
						||
  char db_name_string[FN_REFLEN];
 | 
						||
  char* db_name;
 | 
						||
  partition_info *part_info= table->part_info;
 | 
						||
  ulong save_set_query_id= thd->set_query_id;
 | 
						||
  DBUG_ENTER("fix_partition_func");
 | 
						||
 | 
						||
  if (part_info->fixed)
 | 
						||
  {
 | 
						||
    DBUG_RETURN(FALSE);
 | 
						||
  }
 | 
						||
  thd->set_query_id= 0;
 | 
						||
  DBUG_PRINT("info", ("thd->set_query_id: %d", thd->set_query_id));
 | 
						||
  /*
 | 
						||
    Set-up the TABLE_LIST object to be a list with a single table
 | 
						||
    Set the object to zero to create NULL pointers and set alias
 | 
						||
    and real name to table name and get database name from file name.
 | 
						||
  */
 | 
						||
 | 
						||
  bzero((void*)&tables, sizeof(TABLE_LIST));
 | 
						||
  tables.alias= tables.table_name= (char*) share->table_name.str;
 | 
						||
  tables.table= table;
 | 
						||
  tables.next_local= 0;
 | 
						||
  tables.next_name_resolution_table= 0;
 | 
						||
  strmov(db_name_string, name);
 | 
						||
  dir_length= dirname_length(db_name_string);
 | 
						||
  db_name_string[dir_length - 1]= 0;
 | 
						||
  home_dir_length= dirname_length(db_name_string);
 | 
						||
  db_name= &db_name_string[home_dir_length];
 | 
						||
  tables.db= db_name;
 | 
						||
 | 
						||
  if (!is_create_table_ind)
 | 
						||
  {
 | 
						||
    if (partition_default_handling(table, part_info,
 | 
						||
                                   table->s->normalized_path.str))
 | 
						||
    {
 | 
						||
      DBUG_RETURN(TRUE);
 | 
						||
    }
 | 
						||
  }
 | 
						||
  if (is_sub_partitioned(part_info))
 | 
						||
  {
 | 
						||
    DBUG_ASSERT(part_info->subpart_type == HASH_PARTITION);
 | 
						||
    /*
 | 
						||
      Subpartition is defined. We need to verify that subpartitioning
 | 
						||
      function is correct.
 | 
						||
    */
 | 
						||
    if (part_info->linear_hash_ind)
 | 
						||
      set_linear_hash_mask(part_info, part_info->no_subparts);
 | 
						||
    if (part_info->list_of_subpart_fields)
 | 
						||
    {
 | 
						||
      List_iterator<char> it(part_info->subpart_field_list);
 | 
						||
      if (unlikely(handle_list_of_fields(it, table, part_info, TRUE)))
 | 
						||
        goto end;
 | 
						||
    }
 | 
						||
    else
 | 
						||
    {
 | 
						||
      if (unlikely(fix_fields_part_func(thd, &tables,
 | 
						||
                                        part_info->subpart_expr, part_info,
 | 
						||
                                        TRUE)))
 | 
						||
        goto end;
 | 
						||
      if (unlikely(part_info->subpart_expr->result_type() != INT_RESULT))
 | 
						||
      {
 | 
						||
        my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0),
 | 
						||
                 "SUBPARTITION");
 | 
						||
        goto end;
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
  DBUG_ASSERT(part_info->part_type != NOT_A_PARTITION);
 | 
						||
  /*
 | 
						||
    Partition is defined. We need to verify that partitioning
 | 
						||
    function is correct.
 | 
						||
  */
 | 
						||
  if (part_info->part_type == HASH_PARTITION)
 | 
						||
  {
 | 
						||
    if (part_info->linear_hash_ind)
 | 
						||
      set_linear_hash_mask(part_info, part_info->no_parts);
 | 
						||
    if (part_info->list_of_part_fields)
 | 
						||
    {
 | 
						||
      List_iterator<char> it(part_info->part_field_list);
 | 
						||
      if (unlikely(handle_list_of_fields(it, table, part_info, FALSE)))
 | 
						||
        goto end;
 | 
						||
    }
 | 
						||
    else
 | 
						||
    {
 | 
						||
      if (unlikely(fix_fields_part_func(thd, &tables, part_info->part_expr,
 | 
						||
                                        part_info, FALSE)))
 | 
						||
        goto end;
 | 
						||
      if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
 | 
						||
      {
 | 
						||
        my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
 | 
						||
        goto end;
 | 
						||
      }
 | 
						||
      part_info->part_result_type= INT_RESULT;
 | 
						||
    }
 | 
						||
  }
 | 
						||
  else
 | 
						||
  {
 | 
						||
    const char *error_str;
 | 
						||
    if (part_info->part_type == RANGE_PARTITION)
 | 
						||
    {
 | 
						||
      error_str= partition_keywords[PKW_RANGE].str; 
 | 
						||
      if (unlikely(check_range_constants(part_info)))
 | 
						||
        goto end;
 | 
						||
    }
 | 
						||
    else if (part_info->part_type == LIST_PARTITION)
 | 
						||
    {
 | 
						||
      error_str= partition_keywords[PKW_LIST].str; 
 | 
						||
      if (unlikely(check_list_constants(part_info)))
 | 
						||
        goto end;
 | 
						||
    }
 | 
						||
    else
 | 
						||
    {
 | 
						||
      DBUG_ASSERT(0);
 | 
						||
      my_error(ER_INCONSISTENT_PARTITION_INFO_ERROR, MYF(0));
 | 
						||
      goto end;
 | 
						||
    }
 | 
						||
    if (unlikely(part_info->no_parts < 1))
 | 
						||
    {
 | 
						||
      my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_str);
 | 
						||
      goto end;
 | 
						||
    }
 | 
						||
    if (unlikely(fix_fields_part_func(thd, &tables, part_info->part_expr,
 | 
						||
                                      part_info, FALSE)))
 | 
						||
      goto end;
 | 
						||
    if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
 | 
						||
    {
 | 
						||
      my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
 | 
						||
      goto end;
 | 
						||
    }
 | 
						||
  }
 | 
						||
  if (unlikely(create_full_part_field_array(table, part_info)))
 | 
						||
    goto end;
 | 
						||
  if (unlikely(check_primary_key(table)))
 | 
						||
    goto end;
 | 
						||
  if (unlikely((!(table->s->db_type->partition_flags &&
 | 
						||
      (table->s->db_type->partition_flags() & HA_CAN_PARTITION_UNIQUE))) &&
 | 
						||
               check_unique_keys(table)))
 | 
						||
    goto end;
 | 
						||
  if (unlikely(set_up_partition_bitmap(thd, part_info)))
 | 
						||
    goto end;
 | 
						||
  check_range_capable_PF(table);
 | 
						||
  set_up_partition_key_maps(table, part_info);
 | 
						||
  set_up_partition_func_pointers(part_info);
 | 
						||
  part_info->fixed= TRUE;
 | 
						||
  set_up_range_analysis_info(part_info);
 | 
						||
  result= FALSE;
 | 
						||
end:
 | 
						||
  thd->set_query_id= save_set_query_id;
 | 
						||
  DBUG_PRINT("info", ("thd->set_query_id: %d", thd->set_query_id));
 | 
						||
  DBUG_RETURN(result);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  The code below is support routines for the reverse parsing of the 
 | 
						||
  partitioning syntax. This feature is very useful to generate syntax for
 | 
						||
  all default values to avoid all default checking when opening the frm
 | 
						||
  file. It is also used when altering the partitioning by use of various
 | 
						||
  ALTER TABLE commands. Finally it is used for SHOW CREATE TABLES.
 | 
						||
*/
 | 
						||
 | 
						||
static int add_write(File fptr, const char *buf, uint len)
 | 
						||
{
 | 
						||
  uint len_written= my_write(fptr, (const byte*)buf, len, MYF(0));
 | 
						||
 | 
						||
  if (likely(len == len_written))
 | 
						||
    return 0;
 | 
						||
  else
 | 
						||
    return 1;
 | 
						||
}
 | 
						||
 | 
						||
static int add_string(File fptr, const char *string)
 | 
						||
{
 | 
						||
  return add_write(fptr, string, strlen(string));
 | 
						||
}
 | 
						||
 | 
						||
static int add_string_len(File fptr, const char *string, uint len)
 | 
						||
{
 | 
						||
  return add_write(fptr, string, len);
 | 
						||
}
 | 
						||
 | 
						||
static int add_space(File fptr)
 | 
						||
{
 | 
						||
  return add_string(fptr, space_str);
 | 
						||
}
 | 
						||
 | 
						||
static int add_comma(File fptr)
 | 
						||
{
 | 
						||
  return add_string(fptr, comma_str);
 | 
						||
}
 | 
						||
 | 
						||
static int add_equal(File fptr)
 | 
						||
{
 | 
						||
  return add_string(fptr, equal_str);
 | 
						||
}
 | 
						||
 | 
						||
static int add_end_parenthesis(File fptr)
 | 
						||
{
 | 
						||
  return add_string(fptr, end_paren_str);
 | 
						||
}
 | 
						||
 | 
						||
static int add_begin_parenthesis(File fptr)
 | 
						||
{
 | 
						||
  return add_string(fptr, begin_paren_str);
 | 
						||
}
 | 
						||
 | 
						||
static int add_part_key_word(File fptr, const char *key_string)
 | 
						||
{
 | 
						||
  int err= add_string(fptr, key_string);
 | 
						||
 | 
						||
  err+= add_space(fptr);
 | 
						||
  return err + add_begin_parenthesis(fptr);
 | 
						||
}
 | 
						||
 | 
						||
static int add_hash(File fptr)
 | 
						||
{
 | 
						||
  return add_part_key_word(fptr, partition_keywords[PKW_HASH].str);
 | 
						||
}
 | 
						||
 | 
						||
static int add_partition(File fptr)
 | 
						||
{
 | 
						||
  strxmov(buff, part_str, space_str, NullS);
 | 
						||
  return add_string(fptr, buff);
 | 
						||
}
 | 
						||
 | 
						||
static int add_subpartition(File fptr)
 | 
						||
{
 | 
						||
  int err= add_string(fptr, sub_str);
 | 
						||
 | 
						||
  return err + add_partition(fptr);
 | 
						||
}
 | 
						||
 | 
						||
static int add_partition_by(File fptr)
 | 
						||
{
 | 
						||
  strxmov(buff, part_str, space_str, by_str, space_str, NullS);
 | 
						||
  return add_string(fptr, buff);
 | 
						||
}
 | 
						||
 | 
						||
static int add_subpartition_by(File fptr)
 | 
						||
{
 | 
						||
  int err= add_string(fptr, sub_str);
 | 
						||
 | 
						||
  return err + add_partition_by(fptr);
 | 
						||
}
 | 
						||
 | 
						||
static int add_key_partition(File fptr, List<char> field_list)
 | 
						||
{
 | 
						||
  uint i, no_fields;
 | 
						||
  int err;
 | 
						||
 | 
						||
  List_iterator<char> part_it(field_list);
 | 
						||
  err= add_part_key_word(fptr, partition_keywords[PKW_KEY].str);
 | 
						||
  no_fields= field_list.elements;
 | 
						||
  i= 0;
 | 
						||
  while (i < no_fields)
 | 
						||
  {
 | 
						||
    const char *field_str= part_it++;
 | 
						||
    err+= add_string(fptr, field_str);
 | 
						||
    if (i != (no_fields-1))
 | 
						||
      err+= add_comma(fptr);
 | 
						||
    i++;
 | 
						||
  }
 | 
						||
  return err;
 | 
						||
}
 | 
						||
 | 
						||
static int add_int(File fptr, longlong number)
 | 
						||
{
 | 
						||
  llstr(number, buff);
 | 
						||
  return add_string(fptr, buff);
 | 
						||
}
 | 
						||
 | 
						||
static int add_keyword_string(File fptr, const char *keyword,
 | 
						||
                              bool should_use_quotes, 
 | 
						||
                              const char *keystr)
 | 
						||
{
 | 
						||
  int err= add_string(fptr, keyword);
 | 
						||
 | 
						||
  err+= add_space(fptr);
 | 
						||
  err+= add_equal(fptr);
 | 
						||
  err+= add_space(fptr);
 | 
						||
  if (should_use_quotes)
 | 
						||
    err+= add_string(fptr, "'");
 | 
						||
  err+= add_string(fptr, keystr);
 | 
						||
  if (should_use_quotes)
 | 
						||
    err+= add_string(fptr, "'");
 | 
						||
  return err + add_space(fptr);
 | 
						||
}
 | 
						||
 | 
						||
static int add_keyword_int(File fptr, const char *keyword, longlong num)
 | 
						||
{
 | 
						||
  int err= add_string(fptr, keyword);
 | 
						||
 | 
						||
  err+= add_space(fptr);
 | 
						||
  err+= add_equal(fptr);
 | 
						||
  err+= add_space(fptr);
 | 
						||
  err+= add_int(fptr, num);
 | 
						||
  return err + add_space(fptr);
 | 
						||
}
 | 
						||
 | 
						||
static int add_engine(File fptr, handlerton *engine_type)
 | 
						||
{
 | 
						||
  const char *engine_str= engine_type->name;
 | 
						||
  DBUG_PRINT("info", ("ENGINE = %s", engine_str));
 | 
						||
  int err= add_string(fptr, "ENGINE = ");
 | 
						||
  return err + add_string(fptr, engine_str);
 | 
						||
}
 | 
						||
 | 
						||
static int add_partition_options(File fptr, partition_element *p_elem)
 | 
						||
{
 | 
						||
  int err= 0;
 | 
						||
 | 
						||
  if (p_elem->tablespace_name)
 | 
						||
    err+= add_keyword_string(fptr,"TABLESPACE", FALSE, 
 | 
						||
                             p_elem->tablespace_name);
 | 
						||
  if (p_elem->nodegroup_id != UNDEF_NODEGROUP)
 | 
						||
    err+= add_keyword_int(fptr,"NODEGROUP",(longlong)p_elem->nodegroup_id);
 | 
						||
  if (p_elem->part_max_rows)
 | 
						||
    err+= add_keyword_int(fptr,"MAX_ROWS",(longlong)p_elem->part_max_rows);
 | 
						||
  if (p_elem->part_min_rows)
 | 
						||
    err+= add_keyword_int(fptr,"MIN_ROWS",(longlong)p_elem->part_min_rows);
 | 
						||
  if (p_elem->data_file_name)
 | 
						||
    err+= add_keyword_string(fptr, "DATA DIRECTORY", TRUE, 
 | 
						||
                             p_elem->data_file_name);
 | 
						||
  if (p_elem->index_file_name)
 | 
						||
    err+= add_keyword_string(fptr, "INDEX DIRECTORY", TRUE, 
 | 
						||
                             p_elem->index_file_name);
 | 
						||
  if (p_elem->part_comment)
 | 
						||
    err+= add_keyword_string(fptr, "COMMENT", FALSE, p_elem->part_comment);
 | 
						||
  return err + add_engine(fptr,p_elem->engine_type);
 | 
						||
}
 | 
						||
 | 
						||
static int add_partition_values(File fptr, partition_info *part_info,
 | 
						||
                         partition_element *p_elem)
 | 
						||
{
 | 
						||
  int err= 0;
 | 
						||
 | 
						||
  if (part_info->part_type == RANGE_PARTITION)
 | 
						||
  {
 | 
						||
    err+= add_string(fptr, "VALUES LESS THAN ");
 | 
						||
    if (p_elem->range_value != LONGLONG_MAX)
 | 
						||
    {
 | 
						||
      err+= add_begin_parenthesis(fptr);
 | 
						||
      err+= add_int(fptr, p_elem->range_value);
 | 
						||
      err+= add_end_parenthesis(fptr);
 | 
						||
    }
 | 
						||
    else
 | 
						||
      err+= add_string(fptr, partition_keywords[PKW_MAXVALUE].str);
 | 
						||
  }
 | 
						||
  else if (part_info->part_type == LIST_PARTITION)
 | 
						||
  {
 | 
						||
    uint i;
 | 
						||
    List_iterator<longlong> list_val_it(p_elem->list_val_list);
 | 
						||
    err+= add_string(fptr, "VALUES IN ");
 | 
						||
    uint no_items= p_elem->list_val_list.elements;
 | 
						||
    err+= add_begin_parenthesis(fptr);
 | 
						||
    i= 0;
 | 
						||
    do
 | 
						||
    {
 | 
						||
      longlong *list_value= list_val_it++;
 | 
						||
      err+= add_int(fptr, *list_value);
 | 
						||
      if (i != (no_items-1))
 | 
						||
        err+= add_comma(fptr);
 | 
						||
    } while (++i < no_items);
 | 
						||
    err+= add_end_parenthesis(fptr);
 | 
						||
  }
 | 
						||
  return err + add_space(fptr);
 | 
						||
}
 | 
						||
 | 
						||
/*
 | 
						||
  Generate the partition syntax from the partition data structure.
 | 
						||
  Useful for support of generating defaults, SHOW CREATE TABLES
 | 
						||
  and easy partition management.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    generate_partition_syntax()
 | 
						||
    part_info                  The partitioning data structure
 | 
						||
    buf_length                 A pointer to the returned buffer length
 | 
						||
    use_sql_alloc              Allocate buffer from sql_alloc if true
 | 
						||
                               otherwise use my_malloc
 | 
						||
    write_all                  Write everything, also default values
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    NULL error
 | 
						||
    buf, buf_length            Buffer and its length
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
  Here we will generate the full syntax for the given command where all
 | 
						||
  defaults have been expanded. By so doing the it is also possible to
 | 
						||
  make lots of checks of correctness while at it.
 | 
						||
  This could will also be reused for SHOW CREATE TABLES and also for all
 | 
						||
  type ALTER TABLE commands focusing on changing the PARTITION structure
 | 
						||
  in any fashion.
 | 
						||
 | 
						||
  The implementation writes the syntax to a temporary file (essentially
 | 
						||
  an abstraction of a dynamic array) and if all writes goes well it
 | 
						||
  allocates a buffer and writes the syntax into this one and returns it.
 | 
						||
 | 
						||
  As a security precaution the file is deleted before writing into it. This
 | 
						||
  means that no other processes on the machine can open and read the file
 | 
						||
  while this processing is ongoing.
 | 
						||
 | 
						||
  The code is optimised for minimal code size since it is not used in any
 | 
						||
  common queries.
 | 
						||
*/
 | 
						||
 | 
						||
char *generate_partition_syntax(partition_info *part_info,
 | 
						||
                                uint *buf_length,
 | 
						||
                                bool use_sql_alloc,
 | 
						||
                                bool write_all)
 | 
						||
{
 | 
						||
  uint i,j, tot_no_parts, no_subparts, no_parts;
 | 
						||
  partition_element *part_elem;
 | 
						||
  partition_element *save_part_elem= NULL;
 | 
						||
  ulonglong buffer_length;
 | 
						||
  char path[FN_REFLEN];
 | 
						||
  int err= 0;
 | 
						||
  List_iterator<partition_element> part_it(part_info->partitions);
 | 
						||
  List_iterator<partition_element> temp_it(part_info->temp_partitions);
 | 
						||
  File fptr;
 | 
						||
  char *buf= NULL; //Return buffer
 | 
						||
  uint use_temp= 0;
 | 
						||
  uint no_temp_parts= part_info->temp_partitions.elements;
 | 
						||
  bool write_part_state;
 | 
						||
  DBUG_ENTER("generate_partition_syntax");
 | 
						||
 | 
						||
  write_part_state= (part_info->part_state && !part_info->part_state_len);
 | 
						||
  if (unlikely(((fptr= create_temp_file(path,mysql_tmpdir,"psy", 
 | 
						||
                                        O_RDWR | O_BINARY | O_TRUNC |  
 | 
						||
                                        O_TEMPORARY, MYF(MY_WME)))) < 0))
 | 
						||
    DBUG_RETURN(NULL);
 | 
						||
#ifndef __WIN__
 | 
						||
  unlink(path);
 | 
						||
#endif
 | 
						||
  err+= add_space(fptr);
 | 
						||
  err+= add_partition_by(fptr);
 | 
						||
  switch (part_info->part_type)
 | 
						||
  {
 | 
						||
    case RANGE_PARTITION:
 | 
						||
      err+= add_part_key_word(fptr, partition_keywords[PKW_RANGE].str);
 | 
						||
      break;
 | 
						||
    case LIST_PARTITION:
 | 
						||
      err+= add_part_key_word(fptr, partition_keywords[PKW_LIST].str);
 | 
						||
      break;
 | 
						||
    case HASH_PARTITION:
 | 
						||
      if (part_info->linear_hash_ind)
 | 
						||
        err+= add_string(fptr, partition_keywords[PKW_LINEAR].str);
 | 
						||
      if (part_info->list_of_part_fields)
 | 
						||
        err+= add_key_partition(fptr, part_info->part_field_list);
 | 
						||
      else
 | 
						||
        err+= add_hash(fptr);
 | 
						||
      break;
 | 
						||
    default:
 | 
						||
      DBUG_ASSERT(0);
 | 
						||
      /* We really shouldn't get here, no use in continuing from here */
 | 
						||
      current_thd->fatal_error();
 | 
						||
      DBUG_RETURN(NULL);
 | 
						||
  }
 | 
						||
  if (part_info->part_expr)
 | 
						||
    err+= add_string_len(fptr, part_info->part_func_string,
 | 
						||
                         part_info->part_func_len);
 | 
						||
  err+= add_end_parenthesis(fptr);
 | 
						||
  err+= add_space(fptr);
 | 
						||
  if ((!part_info->use_default_no_partitions) &&
 | 
						||
       part_info->use_default_partitions)
 | 
						||
  {
 | 
						||
    err+= add_string(fptr, "PARTITIONS ");
 | 
						||
    err+= add_int(fptr, part_info->no_parts);
 | 
						||
    err+= add_space(fptr);
 | 
						||
  }
 | 
						||
  if (is_sub_partitioned(part_info))
 | 
						||
  {
 | 
						||
    err+= add_subpartition_by(fptr);
 | 
						||
    /* Must be hash partitioning for subpartitioning */
 | 
						||
    if (part_info->list_of_subpart_fields)
 | 
						||
      err+= add_key_partition(fptr, part_info->subpart_field_list);
 | 
						||
    else
 | 
						||
      err+= add_hash(fptr);
 | 
						||
    if (part_info->subpart_expr)
 | 
						||
      err+= add_string_len(fptr, part_info->subpart_func_string,
 | 
						||
                           part_info->subpart_func_len);
 | 
						||
    err+= add_end_parenthesis(fptr);
 | 
						||
    err+= add_space(fptr);
 | 
						||
    if ((!part_info->use_default_no_subpartitions) && 
 | 
						||
          part_info->use_default_subpartitions)
 | 
						||
    {
 | 
						||
      err+= add_string(fptr, "SUBPARTITIONS ");
 | 
						||
      err+= add_int(fptr, part_info->no_subparts);
 | 
						||
      err+= add_space(fptr);
 | 
						||
    }
 | 
						||
  }
 | 
						||
  no_parts= part_info->no_parts;
 | 
						||
  tot_no_parts= no_parts + no_temp_parts;
 | 
						||
  no_subparts= part_info->no_subparts;
 | 
						||
 | 
						||
  if (write_all || (!part_info->use_default_partitions))
 | 
						||
  {
 | 
						||
    err+= add_begin_parenthesis(fptr);
 | 
						||
    i= 0;
 | 
						||
    do
 | 
						||
    {
 | 
						||
      /*
 | 
						||
        We need to do some clever list manipulation here since we have two
 | 
						||
        different needs for our list processing and here we take some of the
 | 
						||
        cost of using a simpler list processing for the other parts of the
 | 
						||
        code.
 | 
						||
 | 
						||
        ALTER TABLE REORGANIZE PARTITIONS has the list of partitions to be
 | 
						||
        the final list as the main list and the reorganised partitions is in
 | 
						||
        the temporary partition list. Thus when finding the first part added
 | 
						||
        we insert the temporary list if there is such a list. If there is no
 | 
						||
        temporary list we are performing an ADD PARTITION.
 | 
						||
      */
 | 
						||
      if (use_temp && use_temp <= no_temp_parts)
 | 
						||
      {
 | 
						||
        part_elem= temp_it++;
 | 
						||
        DBUG_ASSERT(no_temp_parts);
 | 
						||
        no_temp_parts--;
 | 
						||
      }
 | 
						||
      else if (use_temp)
 | 
						||
      {
 | 
						||
        DBUG_ASSERT(no_parts);
 | 
						||
        part_elem= save_part_elem;
 | 
						||
        use_temp= 0;
 | 
						||
        no_parts--;
 | 
						||
      }
 | 
						||
      else
 | 
						||
      {
 | 
						||
        part_elem= part_it++;
 | 
						||
        if ((part_elem->part_state == PART_TO_BE_ADDED ||
 | 
						||
             part_elem->part_state == PART_IS_ADDED) && no_temp_parts)
 | 
						||
        {
 | 
						||
          save_part_elem= part_elem;
 | 
						||
          part_elem= temp_it++;
 | 
						||
          no_temp_parts--;
 | 
						||
          use_temp= 1;
 | 
						||
        }
 | 
						||
        else
 | 
						||
        {
 | 
						||
          DBUG_ASSERT(no_parts);
 | 
						||
          no_parts--;
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      if (part_elem->part_state != PART_IS_DROPPED)
 | 
						||
      {
 | 
						||
        if (write_part_state)
 | 
						||
        {
 | 
						||
          uint32 part_state_id= part_info->part_state_len;
 | 
						||
          part_info->part_state[part_state_id]= (uchar)part_elem->part_state;
 | 
						||
          part_info->part_state_len= part_state_id+1;
 | 
						||
        }
 | 
						||
        err+= add_partition(fptr);
 | 
						||
        err+= add_string(fptr, part_elem->partition_name);
 | 
						||
        err+= add_space(fptr);
 | 
						||
        err+= add_partition_values(fptr, part_info, part_elem);
 | 
						||
        if (!is_sub_partitioned(part_info))
 | 
						||
          err+= add_partition_options(fptr, part_elem);
 | 
						||
        if (is_sub_partitioned(part_info) &&
 | 
						||
            (write_all || (!part_info->use_default_subpartitions)))
 | 
						||
        {
 | 
						||
          err+= add_space(fptr);
 | 
						||
          err+= add_begin_parenthesis(fptr);
 | 
						||
          List_iterator<partition_element> sub_it(part_elem->subpartitions);
 | 
						||
          j= 0;
 | 
						||
          do
 | 
						||
          {
 | 
						||
            part_elem= sub_it++;
 | 
						||
            err+= add_subpartition(fptr);
 | 
						||
            err+= add_string(fptr, part_elem->partition_name);
 | 
						||
            err+= add_space(fptr);
 | 
						||
            err+= add_partition_options(fptr, part_elem);
 | 
						||
            if (j != (no_subparts-1))
 | 
						||
            {
 | 
						||
              err+= add_comma(fptr);
 | 
						||
              err+= add_space(fptr);
 | 
						||
            }
 | 
						||
            else
 | 
						||
              err+= add_end_parenthesis(fptr);
 | 
						||
          } while (++j < no_subparts);
 | 
						||
        }
 | 
						||
        if (i != (tot_no_parts-1))
 | 
						||
        {
 | 
						||
          err+= add_comma(fptr);
 | 
						||
          err+= add_space(fptr);
 | 
						||
        }
 | 
						||
      }
 | 
						||
      if (i == (tot_no_parts-1))
 | 
						||
        err+= add_end_parenthesis(fptr);
 | 
						||
    } while (++i < tot_no_parts);
 | 
						||
    DBUG_ASSERT(!no_parts && !no_temp_parts);
 | 
						||
  }
 | 
						||
  if (err)
 | 
						||
    goto close_file;
 | 
						||
  buffer_length= my_seek(fptr, 0L,MY_SEEK_END,MYF(0));
 | 
						||
  if (unlikely(buffer_length == MY_FILEPOS_ERROR))
 | 
						||
    goto close_file;
 | 
						||
  if (unlikely(my_seek(fptr, 0L, MY_SEEK_SET, MYF(0)) == MY_FILEPOS_ERROR))
 | 
						||
    goto close_file;
 | 
						||
  *buf_length= (uint)buffer_length;
 | 
						||
  if (use_sql_alloc)
 | 
						||
    buf= sql_alloc(*buf_length+1);
 | 
						||
  else
 | 
						||
    buf= my_malloc(*buf_length+1, MYF(MY_WME));
 | 
						||
  if (!buf)
 | 
						||
    goto close_file;
 | 
						||
 | 
						||
  if (unlikely(my_read(fptr, (byte*)buf, *buf_length, MYF(MY_FNABP))))
 | 
						||
  {
 | 
						||
    if (!use_sql_alloc)
 | 
						||
      my_free(buf, MYF(0));
 | 
						||
    else
 | 
						||
      buf= NULL;
 | 
						||
  }
 | 
						||
  else
 | 
						||
    buf[*buf_length]= 0;
 | 
						||
 | 
						||
close_file:
 | 
						||
  my_close(fptr, MYF(0));
 | 
						||
  DBUG_RETURN(buf);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Check if partition key fields are modified and if it can be handled by the
 | 
						||
  underlying storage engine.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    partition_key_modified
 | 
						||
    table                TABLE object for which partition fields are set-up
 | 
						||
    fields               A list of the to be modifed
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    TRUE                 Need special handling of UPDATE
 | 
						||
    FALSE                Normal UPDATE handling is ok
 | 
						||
*/
 | 
						||
 | 
						||
bool partition_key_modified(TABLE *table, List<Item> &fields)
 | 
						||
{
 | 
						||
  List_iterator_fast<Item> f(fields);
 | 
						||
  partition_info *part_info= table->part_info;
 | 
						||
  Item_field *item_field;
 | 
						||
  DBUG_ENTER("partition_key_modified");
 | 
						||
 | 
						||
  if (!part_info)
 | 
						||
    DBUG_RETURN(FALSE);
 | 
						||
  if (table->s->db_type->partition_flags &&
 | 
						||
      (table->s->db_type->partition_flags() & HA_CAN_UPDATE_PARTITION_KEY))
 | 
						||
    DBUG_RETURN(FALSE);
 | 
						||
  f.rewind();
 | 
						||
  while ((item_field=(Item_field*) f++))
 | 
						||
    if (item_field->field->flags & FIELD_IN_PART_FUNC_FLAG)
 | 
						||
      DBUG_RETURN(TRUE);
 | 
						||
  DBUG_RETURN(FALSE);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  The next set of functions are used to calculate the partition identity.
 | 
						||
  A handler sets up a variable that corresponds to one of these functions
 | 
						||
  to be able to quickly call it whenever the partition id needs to calculated
 | 
						||
  based on the record in table->record[0] (or set up to fake that).
 | 
						||
  There are 4 functions for hash partitioning and 2 for RANGE/LIST partitions.
 | 
						||
  In addition there are 4 variants for RANGE subpartitioning and 4 variants
 | 
						||
  for LIST subpartitioning thus in total there are 14 variants of this
 | 
						||
  function.
 | 
						||
 | 
						||
  We have a set of support functions for these 14 variants. There are 4
 | 
						||
  variants of hash functions and there is a function for each. The KEY
 | 
						||
  partitioning uses the function calculate_key_value to calculate the hash
 | 
						||
  value based on an array of fields. The linear hash variants uses the
 | 
						||
  method get_part_id_from_linear_hash to get the partition id using the
 | 
						||
  hash value and some parameters calculated from the number of partitions.
 | 
						||
*/
 | 
						||
 | 
						||
/*
 | 
						||
  Calculate hash value for KEY partitioning using an array of fields.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    calculate_key_value()
 | 
						||
    field_array             An array of the fields in KEY partitioning
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    hash_value calculated
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Uses the hash function on the character set of the field. Integer and
 | 
						||
    floating point fields use the binary character set by default.
 | 
						||
*/
 | 
						||
 | 
						||
static uint32 calculate_key_value(Field **field_array)
 | 
						||
{
 | 
						||
  uint32 hashnr= 0;
 | 
						||
  ulong nr2= 4;
 | 
						||
 | 
						||
  do
 | 
						||
  {
 | 
						||
    Field *field= *field_array;
 | 
						||
    if (field->is_null())
 | 
						||
    {
 | 
						||
      hashnr^= (hashnr << 1) | 1;
 | 
						||
    }
 | 
						||
    else
 | 
						||
    {
 | 
						||
      uint len= field->pack_length();
 | 
						||
      ulong nr1= 1;
 | 
						||
      CHARSET_INFO *cs= field->charset();
 | 
						||
      cs->coll->hash_sort(cs, (uchar*)field->ptr, len, &nr1, &nr2);
 | 
						||
      hashnr^= (uint32)nr1;
 | 
						||
    }
 | 
						||
  } while (*(++field_array));
 | 
						||
  return hashnr;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  A simple support function to calculate part_id given local part and
 | 
						||
  sub part.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_part_id_for_sub()
 | 
						||
    loc_part_id             Local partition id
 | 
						||
    sub_part_id             Subpartition id
 | 
						||
    no_subparts             Number of subparts
 | 
						||
*/
 | 
						||
 | 
						||
inline
 | 
						||
static uint32 get_part_id_for_sub(uint32 loc_part_id, uint32 sub_part_id,
 | 
						||
                                  uint no_subparts)
 | 
						||
{
 | 
						||
  return (uint32)((loc_part_id * no_subparts) + sub_part_id);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Calculate part_id for (SUB)PARTITION BY HASH
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_part_id_hash()
 | 
						||
    no_parts                 Number of hash partitions
 | 
						||
    part_expr                Item tree of hash function
 | 
						||
    out:func_value      Value of hash function
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    Calculated partition id
 | 
						||
*/
 | 
						||
 | 
						||
inline
 | 
						||
static uint32 get_part_id_hash(uint no_parts,
 | 
						||
                               Item *part_expr,
 | 
						||
                               longlong *func_value)
 | 
						||
{
 | 
						||
  DBUG_ENTER("get_part_id_hash");
 | 
						||
  *func_value= part_expr->val_int();
 | 
						||
  longlong int_hash_id= *func_value % no_parts;
 | 
						||
  DBUG_RETURN(int_hash_id < 0 ? -int_hash_id : int_hash_id);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Calculate part_id for (SUB)PARTITION BY LINEAR HASH
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_part_id_linear_hash()
 | 
						||
    part_info           A reference to the partition_info struct where all the
 | 
						||
                        desired information is given
 | 
						||
    no_parts            Number of hash partitions
 | 
						||
    part_expr           Item tree of hash function
 | 
						||
    out:func_value      Value of hash function
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    Calculated partition id
 | 
						||
*/
 | 
						||
 | 
						||
inline
 | 
						||
static uint32 get_part_id_linear_hash(partition_info *part_info,
 | 
						||
                                      uint no_parts,
 | 
						||
                                      Item *part_expr,
 | 
						||
                                      longlong *func_value)
 | 
						||
{
 | 
						||
  DBUG_ENTER("get_part_id_linear_hash");
 | 
						||
 | 
						||
  *func_value= part_expr->val_int();
 | 
						||
  DBUG_RETURN(get_part_id_from_linear_hash(*func_value,
 | 
						||
                                           part_info->linear_hash_mask,
 | 
						||
                                           no_parts));
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Calculate part_id for (SUB)PARTITION BY KEY
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_part_id_key()
 | 
						||
    field_array         Array of fields for PARTTION KEY
 | 
						||
    no_parts            Number of KEY partitions
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    Calculated partition id
 | 
						||
*/
 | 
						||
 | 
						||
inline
 | 
						||
static uint32 get_part_id_key(Field **field_array,
 | 
						||
                              uint no_parts,
 | 
						||
                              longlong *func_value)
 | 
						||
{
 | 
						||
  DBUG_ENTER("get_part_id_key");
 | 
						||
  *func_value= calculate_key_value(field_array);
 | 
						||
  DBUG_RETURN(*func_value % no_parts);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Calculate part_id for (SUB)PARTITION BY LINEAR KEY
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_part_id_linear_key()
 | 
						||
    part_info           A reference to the partition_info struct where all the
 | 
						||
                        desired information is given
 | 
						||
    field_array         Array of fields for PARTTION KEY
 | 
						||
    no_parts            Number of KEY partitions
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    Calculated partition id
 | 
						||
*/
 | 
						||
 | 
						||
inline
 | 
						||
static uint32 get_part_id_linear_key(partition_info *part_info,
 | 
						||
                                     Field **field_array,
 | 
						||
                                     uint no_parts,
 | 
						||
                                     longlong *func_value)
 | 
						||
{
 | 
						||
  DBUG_ENTER("get_partition_id_linear_key");
 | 
						||
 | 
						||
  *func_value= calculate_key_value(field_array);
 | 
						||
  DBUG_RETURN(get_part_id_from_linear_hash(*func_value,
 | 
						||
                                           part_info->linear_hash_mask,
 | 
						||
                                           no_parts));
 | 
						||
}
 | 
						||
 | 
						||
/*
 | 
						||
  This function is used to calculate the partition id where all partition
 | 
						||
  fields have been prepared to point to a record where the partition field
 | 
						||
  values are bound.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_partition_id()
 | 
						||
    part_info           A reference to the partition_info struct where all the
 | 
						||
                        desired information is given
 | 
						||
    out:part_id         The partition id is returned through this pointer
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    part_id
 | 
						||
    return TRUE means that the fields of the partition function didn't fit
 | 
						||
    into any partition and thus the values of the PF-fields are not allowed.
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    A routine used from write_row, update_row and delete_row from any
 | 
						||
    handler supporting partitioning. It is also a support routine for
 | 
						||
    get_partition_set used to find the set of partitions needed to scan
 | 
						||
    for a certain index scan or full table scan.
 | 
						||
    
 | 
						||
    It is actually 14 different variants of this function which are called
 | 
						||
    through a function pointer.
 | 
						||
 | 
						||
    get_partition_id_list
 | 
						||
    get_partition_id_range
 | 
						||
    get_partition_id_hash_nosub
 | 
						||
    get_partition_id_key_nosub
 | 
						||
    get_partition_id_linear_hash_nosub
 | 
						||
    get_partition_id_linear_key_nosub
 | 
						||
    get_partition_id_range_sub_hash
 | 
						||
    get_partition_id_range_sub_key
 | 
						||
    get_partition_id_range_sub_linear_hash
 | 
						||
    get_partition_id_range_sub_linear_key
 | 
						||
    get_partition_id_list_sub_hash
 | 
						||
    get_partition_id_list_sub_key
 | 
						||
    get_partition_id_list_sub_linear_hash
 | 
						||
    get_partition_id_list_sub_linear_key
 | 
						||
*/
 | 
						||
 | 
						||
/*
 | 
						||
  This function is used to calculate the main partition to use in the case of
 | 
						||
  subpartitioning and we don't know enough to get the partition identity in
 | 
						||
  total.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_part_partition_id()
 | 
						||
    part_info           A reference to the partition_info struct where all the
 | 
						||
                        desired information is given
 | 
						||
    out:part_id         The partition id is returned through this pointer
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    part_id
 | 
						||
    return TRUE means that the fields of the partition function didn't fit
 | 
						||
    into any partition and thus the values of the PF-fields are not allowed.
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    
 | 
						||
    It is actually 6 different variants of this function which are called
 | 
						||
    through a function pointer.
 | 
						||
 | 
						||
    get_partition_id_list
 | 
						||
    get_partition_id_range
 | 
						||
    get_partition_id_hash_nosub
 | 
						||
    get_partition_id_key_nosub
 | 
						||
    get_partition_id_linear_hash_nosub
 | 
						||
    get_partition_id_linear_key_nosub
 | 
						||
*/
 | 
						||
 | 
						||
 | 
						||
int get_partition_id_list(partition_info *part_info,
 | 
						||
                           uint32 *part_id,
 | 
						||
                           longlong *func_value)
 | 
						||
{
 | 
						||
  LIST_PART_ENTRY *list_array= part_info->list_array;
 | 
						||
  int list_index;
 | 
						||
  longlong list_value;
 | 
						||
  int min_list_index= 0;
 | 
						||
  int max_list_index= part_info->no_list_values - 1;
 | 
						||
  longlong part_func_value= part_info->part_expr->val_int();
 | 
						||
  DBUG_ENTER("get_partition_id_list");
 | 
						||
 | 
						||
  *func_value= part_func_value;
 | 
						||
  while (max_list_index >= min_list_index)
 | 
						||
  {
 | 
						||
    list_index= (max_list_index + min_list_index) >> 1;
 | 
						||
    list_value= list_array[list_index].list_value;
 | 
						||
    if (list_value < part_func_value)
 | 
						||
      min_list_index= list_index + 1;
 | 
						||
    else if (list_value > part_func_value)
 | 
						||
    {
 | 
						||
      if (!list_index)
 | 
						||
        goto notfound;
 | 
						||
      max_list_index= list_index - 1;
 | 
						||
    }
 | 
						||
    else
 | 
						||
    {
 | 
						||
      *part_id= (uint32)list_array[list_index].partition_id;
 | 
						||
      DBUG_RETURN(0);
 | 
						||
    }
 | 
						||
  }
 | 
						||
notfound:
 | 
						||
  *part_id= 0;
 | 
						||
  DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Find the sub-array part_info->list_array that corresponds to given interval
 | 
						||
 | 
						||
  SYNOPSIS 
 | 
						||
    get_list_array_idx_for_endpoint()
 | 
						||
      part_info         Partitioning info (partitioning type must be LIST)
 | 
						||
      left_endpoint     TRUE  - the interval is [a; +inf) or (a; +inf)
 | 
						||
                        FALSE - the interval is (-inf; a] or (-inf; a)
 | 
						||
      include_endpoint  TRUE iff the interval includes the endpoint
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    This function finds the sub-array of part_info->list_array where values of
 | 
						||
    list_array[idx].list_value are contained within the specifed interval.
 | 
						||
    list_array is ordered by list_value, so
 | 
						||
    1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the 
 | 
						||
       sought sub-array starts at some index idx and continues till array end.
 | 
						||
       The function returns first number idx, such that 
 | 
						||
       list_array[idx].list_value is contained within the passed interval.
 | 
						||
       
 | 
						||
    2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the
 | 
						||
       sought sub-array starts at array start and continues till some last 
 | 
						||
       index idx.
 | 
						||
       The function returns first number idx, such that 
 | 
						||
       list_array[idx].list_value is NOT contained within the passed interval.
 | 
						||
       If all array elements are contained, part_info->no_list_values is
 | 
						||
       returned.
 | 
						||
 | 
						||
  NOTE
 | 
						||
    The caller will call this function and then will run along the sub-array of
 | 
						||
    list_array to collect partition ids. If the number of list values is 
 | 
						||
    significantly higher then number of partitions, this could be slow and
 | 
						||
    we could invent some other approach. The "run over list array" part is
 | 
						||
    already wrapped in a get_next()-like function.
 | 
						||
 | 
						||
  RETURN
 | 
						||
    The edge of corresponding sub-array of part_info->list_array
 | 
						||
*/
 | 
						||
 | 
						||
uint32 get_list_array_idx_for_endpoint(partition_info *part_info,
 | 
						||
                                       bool left_endpoint,
 | 
						||
                                       bool include_endpoint)
 | 
						||
{
 | 
						||
  DBUG_ENTER("get_list_array_idx_for_endpoint");
 | 
						||
  LIST_PART_ENTRY *list_array= part_info->list_array;
 | 
						||
  uint list_index;
 | 
						||
  longlong list_value;
 | 
						||
  uint min_list_index= 0, max_list_index= part_info->no_list_values - 1;
 | 
						||
  /* Get the partitioning function value for the endpoint */
 | 
						||
  longlong part_func_value= part_info->part_expr->val_int();
 | 
						||
  while (max_list_index >= min_list_index)
 | 
						||
  {
 | 
						||
    list_index= (max_list_index + min_list_index) >> 1;
 | 
						||
    list_value= list_array[list_index].list_value;
 | 
						||
    if (list_value < part_func_value)
 | 
						||
      min_list_index= list_index + 1;
 | 
						||
    else if (list_value > part_func_value)
 | 
						||
    {
 | 
						||
      if (!list_index)
 | 
						||
        goto notfound;
 | 
						||
      max_list_index= list_index - 1;
 | 
						||
    }
 | 
						||
    else 
 | 
						||
    {
 | 
						||
      DBUG_RETURN(list_index + test(left_endpoint ^ include_endpoint));
 | 
						||
    }
 | 
						||
  }
 | 
						||
notfound:
 | 
						||
  if (list_value < part_func_value)
 | 
						||
    list_index++;
 | 
						||
  DBUG_RETURN(list_index);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
int get_partition_id_range(partition_info *part_info,
 | 
						||
                            uint32 *part_id,
 | 
						||
                            longlong *func_value)
 | 
						||
{
 | 
						||
  longlong *range_array= part_info->range_int_array;
 | 
						||
  uint max_partition= part_info->no_parts - 1;
 | 
						||
  uint min_part_id= 0;
 | 
						||
  uint max_part_id= max_partition;
 | 
						||
  uint loc_part_id;
 | 
						||
  longlong part_func_value= part_info->part_expr->val_int();
 | 
						||
  DBUG_ENTER("get_partition_id_int_range");
 | 
						||
 | 
						||
  while (max_part_id > min_part_id)
 | 
						||
  {
 | 
						||
    loc_part_id= (max_part_id + min_part_id + 1) >> 1;
 | 
						||
    if (range_array[loc_part_id] <= part_func_value)
 | 
						||
      min_part_id= loc_part_id + 1;
 | 
						||
    else
 | 
						||
      max_part_id= loc_part_id - 1;
 | 
						||
  }
 | 
						||
  loc_part_id= max_part_id;
 | 
						||
  if (part_func_value >= range_array[loc_part_id])
 | 
						||
    if (loc_part_id != max_partition)
 | 
						||
      loc_part_id++;
 | 
						||
  *part_id= (uint32)loc_part_id;
 | 
						||
  *func_value= part_func_value;
 | 
						||
  if (loc_part_id == max_partition)
 | 
						||
    if (range_array[loc_part_id] != LONGLONG_MAX)
 | 
						||
      if (part_func_value >= range_array[loc_part_id])
 | 
						||
        DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
 | 
						||
  DBUG_RETURN(0);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Find the sub-array of part_info->range_int_array that covers given interval
 | 
						||
 
 | 
						||
  SYNOPSIS 
 | 
						||
    get_partition_id_range_for_endpoint()
 | 
						||
      part_info         Partitioning info (partitioning type must be RANGE)
 | 
						||
      left_endpoint     TRUE  - the interval is [a; +inf) or (a; +inf)
 | 
						||
                        FALSE - the interval is (-inf; a] or (-inf; a).
 | 
						||
      include_endpoint  TRUE <=> the endpoint itself is included in the
 | 
						||
                        interval
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    This function finds the sub-array of part_info->range_int_array where the
 | 
						||
    elements have non-empty intersections with the given interval.
 | 
						||
 
 | 
						||
    A range_int_array element at index idx represents the interval
 | 
						||
      
 | 
						||
      [range_int_array[idx-1], range_int_array[idx]),
 | 
						||
 | 
						||
    intervals are disjoint and ordered by their right bound, so
 | 
						||
    
 | 
						||
    1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the
 | 
						||
       sought sub-array starts at some index idx and continues till array end.
 | 
						||
       The function returns first number idx, such that the interval
 | 
						||
       represented by range_int_array[idx] has non empty intersection with 
 | 
						||
       the passed interval.
 | 
						||
       
 | 
						||
    2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the
 | 
						||
       sought sub-array starts at array start and continues till some last
 | 
						||
       index idx.
 | 
						||
       The function returns first number idx, such that the interval
 | 
						||
       represented by range_int_array[idx] has EMPTY intersection with the
 | 
						||
       passed interval.
 | 
						||
       If the interval represented by the last array element has non-empty 
 | 
						||
       intersection with the passed interval, part_info->no_parts is
 | 
						||
       returned.
 | 
						||
       
 | 
						||
  RETURN
 | 
						||
    The edge of corresponding part_info->range_int_array sub-array.
 | 
						||
*/
 | 
						||
 | 
						||
uint32 get_partition_id_range_for_endpoint(partition_info *part_info,
 | 
						||
                                           bool left_endpoint,
 | 
						||
                                           bool include_endpoint)
 | 
						||
{
 | 
						||
  DBUG_ENTER("get_partition_id_range_for_endpoint");
 | 
						||
  longlong *range_array= part_info->range_int_array;
 | 
						||
  uint max_partition= part_info->no_parts - 1;
 | 
						||
  uint min_part_id= 0, max_part_id= max_partition, loc_part_id;
 | 
						||
  /* Get the partitioning function value for the endpoint */
 | 
						||
  longlong part_func_value= part_info->part_expr->val_int();
 | 
						||
  while (max_part_id > min_part_id)
 | 
						||
  {
 | 
						||
    loc_part_id= (max_part_id + min_part_id + 1) >> 1;
 | 
						||
    if (range_array[loc_part_id] <= part_func_value)
 | 
						||
      min_part_id= loc_part_id + 1;
 | 
						||
    else
 | 
						||
      max_part_id= loc_part_id - 1;
 | 
						||
  }
 | 
						||
  loc_part_id= max_part_id;
 | 
						||
  if (loc_part_id < max_partition && 
 | 
						||
      part_func_value >= range_array[loc_part_id+1])
 | 
						||
  {
 | 
						||
     loc_part_id++;
 | 
						||
  }
 | 
						||
  if (left_endpoint)
 | 
						||
  {
 | 
						||
    if (part_func_value >= range_array[loc_part_id])
 | 
						||
      loc_part_id++;
 | 
						||
  }
 | 
						||
  else 
 | 
						||
  {
 | 
						||
    if (part_func_value == range_array[loc_part_id])
 | 
						||
      loc_part_id += test(include_endpoint);
 | 
						||
    else if (part_func_value > range_array[loc_part_id])
 | 
						||
      loc_part_id++;
 | 
						||
    loc_part_id++;
 | 
						||
  }
 | 
						||
  DBUG_RETURN(loc_part_id);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
int get_partition_id_hash_nosub(partition_info *part_info,
 | 
						||
                                 uint32 *part_id,
 | 
						||
                                 longlong *func_value)
 | 
						||
{
 | 
						||
  *part_id= get_part_id_hash(part_info->no_parts, part_info->part_expr,
 | 
						||
                             func_value);
 | 
						||
  return 0;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
int get_partition_id_linear_hash_nosub(partition_info *part_info,
 | 
						||
                                        uint32 *part_id,
 | 
						||
                                        longlong *func_value)
 | 
						||
{
 | 
						||
  *part_id= get_part_id_linear_hash(part_info, part_info->no_parts,
 | 
						||
                                    part_info->part_expr, func_value);
 | 
						||
  return 0;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
int get_partition_id_key_nosub(partition_info *part_info,
 | 
						||
                                uint32 *part_id,
 | 
						||
                                longlong *func_value)
 | 
						||
{
 | 
						||
  *part_id= get_part_id_key(part_info->part_field_array,
 | 
						||
                            part_info->no_parts, func_value);
 | 
						||
  return 0;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
int get_partition_id_linear_key_nosub(partition_info *part_info,
 | 
						||
                                       uint32 *part_id,
 | 
						||
                                       longlong *func_value)
 | 
						||
{
 | 
						||
  *part_id= get_part_id_linear_key(part_info,
 | 
						||
                                   part_info->part_field_array,
 | 
						||
                                   part_info->no_parts, func_value);
 | 
						||
  return 0;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
int get_partition_id_range_sub_hash(partition_info *part_info,
 | 
						||
                                     uint32 *part_id,
 | 
						||
                                     longlong *func_value)
 | 
						||
{
 | 
						||
  uint32 loc_part_id, sub_part_id;
 | 
						||
  uint no_subparts;
 | 
						||
  longlong local_func_value;
 | 
						||
  int error;
 | 
						||
  DBUG_ENTER("get_partition_id_range_sub_hash");
 | 
						||
 | 
						||
  if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
 | 
						||
                                              func_value))))
 | 
						||
  {
 | 
						||
    DBUG_RETURN(error);
 | 
						||
  }
 | 
						||
  no_subparts= part_info->no_subparts;
 | 
						||
  sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr,
 | 
						||
                                &local_func_value);
 | 
						||
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
 | 
						||
  DBUG_RETURN(0);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
int get_partition_id_range_sub_linear_hash(partition_info *part_info,
 | 
						||
                                            uint32 *part_id,
 | 
						||
                                            longlong *func_value)
 | 
						||
{
 | 
						||
  uint32 loc_part_id, sub_part_id;
 | 
						||
  uint no_subparts;
 | 
						||
  longlong local_func_value;
 | 
						||
  int error;
 | 
						||
  DBUG_ENTER("get_partition_id_range_sub_linear_hash");
 | 
						||
 | 
						||
  if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
 | 
						||
                                              func_value))))
 | 
						||
  {
 | 
						||
    DBUG_RETURN(error);
 | 
						||
  }
 | 
						||
  no_subparts= part_info->no_subparts;
 | 
						||
  sub_part_id= get_part_id_linear_hash(part_info, no_subparts,
 | 
						||
                                       part_info->subpart_expr,
 | 
						||
                                       &local_func_value);
 | 
						||
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
 | 
						||
  DBUG_RETURN(0);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
int get_partition_id_range_sub_key(partition_info *part_info,
 | 
						||
                                    uint32 *part_id,
 | 
						||
                                    longlong *func_value)
 | 
						||
{
 | 
						||
  uint32 loc_part_id, sub_part_id;
 | 
						||
  uint no_subparts;
 | 
						||
  longlong local_func_value;
 | 
						||
  int error;
 | 
						||
  DBUG_ENTER("get_partition_id_range_sub_key");
 | 
						||
 | 
						||
  if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
 | 
						||
                                              func_value))))
 | 
						||
  {
 | 
						||
    DBUG_RETURN(error);
 | 
						||
  }
 | 
						||
  no_subparts= part_info->no_subparts;
 | 
						||
  sub_part_id= get_part_id_key(part_info->subpart_field_array,
 | 
						||
                               no_subparts, &local_func_value);
 | 
						||
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
 | 
						||
  DBUG_RETURN(0);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
int get_partition_id_range_sub_linear_key(partition_info *part_info,
 | 
						||
                                           uint32 *part_id,
 | 
						||
                                           longlong *func_value)
 | 
						||
{
 | 
						||
  uint32 loc_part_id, sub_part_id;
 | 
						||
  uint no_subparts;
 | 
						||
  longlong local_func_value;
 | 
						||
  int error;
 | 
						||
  DBUG_ENTER("get_partition_id_range_sub_linear_key");
 | 
						||
 | 
						||
  if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
 | 
						||
                                              func_value))))
 | 
						||
  {
 | 
						||
    DBUG_RETURN(error);
 | 
						||
  }
 | 
						||
  no_subparts= part_info->no_subparts;
 | 
						||
  sub_part_id= get_part_id_linear_key(part_info,
 | 
						||
                                      part_info->subpart_field_array,
 | 
						||
                                      no_subparts, &local_func_value);
 | 
						||
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
 | 
						||
  DBUG_RETURN(0);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
int get_partition_id_list_sub_hash(partition_info *part_info,
 | 
						||
                                    uint32 *part_id,
 | 
						||
                                    longlong *func_value)
 | 
						||
{
 | 
						||
  uint32 loc_part_id, sub_part_id;
 | 
						||
  uint no_subparts;
 | 
						||
  longlong local_func_value;
 | 
						||
  int error;
 | 
						||
  DBUG_ENTER("get_partition_id_list_sub_hash");
 | 
						||
 | 
						||
  if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
 | 
						||
                                             func_value))))
 | 
						||
  {
 | 
						||
    DBUG_RETURN(error);
 | 
						||
  }
 | 
						||
  no_subparts= part_info->no_subparts;
 | 
						||
  sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr,
 | 
						||
                                &local_func_value);
 | 
						||
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
 | 
						||
  DBUG_RETURN(0);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
int get_partition_id_list_sub_linear_hash(partition_info *part_info,
 | 
						||
                                           uint32 *part_id,
 | 
						||
                                           longlong *func_value)
 | 
						||
{
 | 
						||
  uint32 loc_part_id, sub_part_id;
 | 
						||
  uint no_subparts;
 | 
						||
  longlong local_func_value;
 | 
						||
  int error;
 | 
						||
  DBUG_ENTER("get_partition_id_list_sub_linear_hash");
 | 
						||
 | 
						||
  if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
 | 
						||
                                             func_value))))
 | 
						||
  {
 | 
						||
    DBUG_RETURN(error);
 | 
						||
  }
 | 
						||
  no_subparts= part_info->no_subparts;
 | 
						||
  sub_part_id= get_part_id_linear_hash(part_info, no_subparts,
 | 
						||
                                       part_info->subpart_expr,
 | 
						||
                                       &local_func_value);
 | 
						||
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
 | 
						||
  DBUG_RETURN(0);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
int get_partition_id_list_sub_key(partition_info *part_info,
 | 
						||
                                   uint32 *part_id,
 | 
						||
                                   longlong *func_value)
 | 
						||
{
 | 
						||
  uint32 loc_part_id, sub_part_id;
 | 
						||
  uint no_subparts;
 | 
						||
  longlong local_func_value;
 | 
						||
  int error;
 | 
						||
  DBUG_ENTER("get_partition_id_range_sub_key");
 | 
						||
 | 
						||
  if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
 | 
						||
                                             func_value))))
 | 
						||
  {
 | 
						||
    DBUG_RETURN(error);
 | 
						||
  }
 | 
						||
  no_subparts= part_info->no_subparts;
 | 
						||
  sub_part_id= get_part_id_key(part_info->subpart_field_array,
 | 
						||
                               no_subparts, &local_func_value);
 | 
						||
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
 | 
						||
  DBUG_RETURN(0);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
int get_partition_id_list_sub_linear_key(partition_info *part_info,
 | 
						||
                                          uint32 *part_id,
 | 
						||
                                          longlong *func_value)
 | 
						||
{
 | 
						||
  uint32 loc_part_id, sub_part_id;
 | 
						||
  uint no_subparts;
 | 
						||
  longlong local_func_value;
 | 
						||
  int error;
 | 
						||
  DBUG_ENTER("get_partition_id_list_sub_linear_key");
 | 
						||
 | 
						||
  if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
 | 
						||
                                             func_value))))
 | 
						||
  {
 | 
						||
    DBUG_RETURN(error);
 | 
						||
  }
 | 
						||
  no_subparts= part_info->no_subparts;
 | 
						||
  sub_part_id= get_part_id_linear_key(part_info,
 | 
						||
                                      part_info->subpart_field_array,
 | 
						||
                                      no_subparts, &local_func_value);
 | 
						||
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
 | 
						||
  DBUG_RETURN(0);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  This function is used to calculate the subpartition id
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_subpartition_id()
 | 
						||
    part_info           A reference to the partition_info struct where all the
 | 
						||
                        desired information is given
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    part_id             The subpartition identity
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    A routine used in some SELECT's when only partial knowledge of the
 | 
						||
    partitions is known.
 | 
						||
    
 | 
						||
    It is actually 4 different variants of this function which are called
 | 
						||
    through a function pointer.
 | 
						||
 | 
						||
    get_partition_id_hash_sub
 | 
						||
    get_partition_id_key_sub
 | 
						||
    get_partition_id_linear_hash_sub
 | 
						||
    get_partition_id_linear_key_sub
 | 
						||
*/
 | 
						||
 | 
						||
uint32 get_partition_id_hash_sub(partition_info *part_info)
 | 
						||
{
 | 
						||
  longlong func_value;
 | 
						||
  return get_part_id_hash(part_info->no_subparts, part_info->subpart_expr,
 | 
						||
                          &func_value);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
uint32 get_partition_id_linear_hash_sub(partition_info *part_info)
 | 
						||
{
 | 
						||
  longlong func_value;
 | 
						||
  return get_part_id_linear_hash(part_info, part_info->no_subparts,
 | 
						||
                                 part_info->subpart_expr, &func_value);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
uint32 get_partition_id_key_sub(partition_info *part_info)
 | 
						||
{
 | 
						||
  longlong func_value;
 | 
						||
  return get_part_id_key(part_info->subpart_field_array,
 | 
						||
                         part_info->no_subparts, &func_value);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
uint32 get_partition_id_linear_key_sub(partition_info *part_info)
 | 
						||
{
 | 
						||
  longlong func_value;
 | 
						||
  return get_part_id_linear_key(part_info,
 | 
						||
                                part_info->subpart_field_array,
 | 
						||
                                part_info->no_subparts, &func_value);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Set an indicator on all partition fields that are set by the key
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    set_PF_fields_in_key()
 | 
						||
    key_info                   Information about the index
 | 
						||
    key_length                 Length of key
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                       Found partition field set by key
 | 
						||
    FALSE                      No partition field set by key
 | 
						||
*/
 | 
						||
 | 
						||
static bool set_PF_fields_in_key(KEY *key_info, uint key_length)
 | 
						||
{
 | 
						||
  KEY_PART_INFO *key_part;
 | 
						||
  bool found_part_field= FALSE;
 | 
						||
  DBUG_ENTER("set_PF_fields_in_key");
 | 
						||
 | 
						||
  for (key_part= key_info->key_part; (int)key_length > 0; key_part++)
 | 
						||
  {
 | 
						||
    if (key_part->null_bit)
 | 
						||
      key_length--;
 | 
						||
    if (key_part->type == HA_KEYTYPE_BIT)
 | 
						||
    {
 | 
						||
      if (((Field_bit*)key_part->field)->bit_len)
 | 
						||
        key_length--;
 | 
						||
    }
 | 
						||
    if (key_part->key_part_flag & (HA_BLOB_PART + HA_VAR_LENGTH_PART))
 | 
						||
    {
 | 
						||
      key_length-= HA_KEY_BLOB_LENGTH;
 | 
						||
    }
 | 
						||
    if (key_length < key_part->length)
 | 
						||
      break;
 | 
						||
    key_length-= key_part->length;
 | 
						||
    if (key_part->field->flags & FIELD_IN_PART_FUNC_FLAG)
 | 
						||
    {
 | 
						||
      found_part_field= TRUE;
 | 
						||
      key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
 | 
						||
    }
 | 
						||
  }
 | 
						||
  DBUG_RETURN(found_part_field);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  We have found that at least one partition field was set by a key, now
 | 
						||
  check if a partition function has all its fields bound or not.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    check_part_func_bound()
 | 
						||
    ptr                     Array of fields NULL terminated (partition fields)
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                    All fields in partition function are set
 | 
						||
    FALSE                   Not all fields in partition function are set
 | 
						||
*/
 | 
						||
 | 
						||
static bool check_part_func_bound(Field **ptr)
 | 
						||
{
 | 
						||
  bool result= TRUE;
 | 
						||
  DBUG_ENTER("check_part_func_bound");
 | 
						||
 | 
						||
  for (; *ptr; ptr++)
 | 
						||
  {
 | 
						||
    if (!((*ptr)->flags & GET_FIXED_FIELDS_FLAG))
 | 
						||
    {
 | 
						||
      result= FALSE;
 | 
						||
      break;
 | 
						||
    }
 | 
						||
  }
 | 
						||
  DBUG_RETURN(result);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Get the id of the subpartitioning part by using the key buffer of the
 | 
						||
  index scan.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_sub_part_id_from_key()
 | 
						||
    table         The table object
 | 
						||
    buf           A buffer that can be used to evaluate the partition function
 | 
						||
    key_info      The index object
 | 
						||
    key_spec      A key_range containing key and key length
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    part_id       Subpartition id to use
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Use key buffer to set-up record in buf, move field pointers and
 | 
						||
    get the partition identity and restore field pointers afterwards.
 | 
						||
*/
 | 
						||
 | 
						||
static uint32 get_sub_part_id_from_key(const TABLE *table,byte *buf,
 | 
						||
                                       KEY *key_info,
 | 
						||
                                       const key_range *key_spec)
 | 
						||
{
 | 
						||
  byte *rec0= table->record[0];
 | 
						||
  partition_info *part_info= table->part_info;
 | 
						||
  uint32 part_id;
 | 
						||
  DBUG_ENTER("get_sub_part_id_from_key");
 | 
						||
 | 
						||
  key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
 | 
						||
  if (likely(rec0 == buf))
 | 
						||
    part_id= part_info->get_subpartition_id(part_info);
 | 
						||
  else
 | 
						||
  {
 | 
						||
    Field **part_field_array= part_info->subpart_field_array;
 | 
						||
    set_field_ptr(part_field_array, buf, rec0);
 | 
						||
    part_id= part_info->get_subpartition_id(part_info);
 | 
						||
    set_field_ptr(part_field_array, rec0, buf);
 | 
						||
  }
 | 
						||
  DBUG_RETURN(part_id);
 | 
						||
}
 | 
						||
 | 
						||
/*
 | 
						||
  Get the id of the partitioning part by using the key buffer of the
 | 
						||
  index scan.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_part_id_from_key()
 | 
						||
    table         The table object
 | 
						||
    buf           A buffer that can be used to evaluate the partition function
 | 
						||
    key_info      The index object
 | 
						||
    key_spec      A key_range containing key and key length
 | 
						||
    out:part_id   Partition to use
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    TRUE          Partition to use not found
 | 
						||
    FALSE         Ok, part_id indicates partition to use
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Use key buffer to set-up record in buf, move field pointers and
 | 
						||
    get the partition identity and restore field pointers afterwards.
 | 
						||
*/
 | 
						||
 | 
						||
bool get_part_id_from_key(const TABLE *table, byte *buf, KEY *key_info,
 | 
						||
                          const key_range *key_spec, uint32 *part_id)
 | 
						||
{
 | 
						||
  bool result;
 | 
						||
  byte *rec0= table->record[0];
 | 
						||
  partition_info *part_info= table->part_info;
 | 
						||
  longlong func_value;
 | 
						||
  DBUG_ENTER("get_part_id_from_key");
 | 
						||
 | 
						||
  key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
 | 
						||
  if (likely(rec0 == buf))
 | 
						||
    result= part_info->get_part_partition_id(part_info, part_id,
 | 
						||
                                             &func_value);
 | 
						||
  else
 | 
						||
  {
 | 
						||
    Field **part_field_array= part_info->part_field_array;
 | 
						||
    set_field_ptr(part_field_array, buf, rec0);
 | 
						||
    result= part_info->get_part_partition_id(part_info, part_id,
 | 
						||
                                             &func_value);
 | 
						||
    set_field_ptr(part_field_array, rec0, buf);
 | 
						||
  }
 | 
						||
  DBUG_RETURN(result);
 | 
						||
}
 | 
						||
 | 
						||
/*
 | 
						||
  Get the partitioning id of the full PF by using the key buffer of the
 | 
						||
  index scan.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_full_part_id_from_key()
 | 
						||
    table         The table object
 | 
						||
    buf           A buffer that is used to evaluate the partition function
 | 
						||
    key_info      The index object
 | 
						||
    key_spec      A key_range containing key and key length
 | 
						||
    out:part_spec A partition id containing start part and end part
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    part_spec
 | 
						||
    No partitions to scan is indicated by end_part > start_part when returning
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Use key buffer to set-up record in buf, move field pointers if needed and
 | 
						||
    get the partition identity and restore field pointers afterwards.
 | 
						||
*/
 | 
						||
 | 
						||
void get_full_part_id_from_key(const TABLE *table, byte *buf,
 | 
						||
                               KEY *key_info,
 | 
						||
                               const key_range *key_spec,
 | 
						||
                               part_id_range *part_spec)
 | 
						||
{
 | 
						||
  bool result;
 | 
						||
  partition_info *part_info= table->part_info;
 | 
						||
  byte *rec0= table->record[0];
 | 
						||
  longlong func_value;
 | 
						||
  DBUG_ENTER("get_full_part_id_from_key");
 | 
						||
 | 
						||
  key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
 | 
						||
  if (likely(rec0 == buf))
 | 
						||
    result= part_info->get_partition_id(part_info, &part_spec->start_part,
 | 
						||
                                        &func_value);
 | 
						||
  else
 | 
						||
  {
 | 
						||
    Field **part_field_array= part_info->full_part_field_array;
 | 
						||
    set_field_ptr(part_field_array, buf, rec0);
 | 
						||
    result= part_info->get_partition_id(part_info, &part_spec->start_part,
 | 
						||
                                        &func_value);
 | 
						||
    set_field_ptr(part_field_array, rec0, buf);
 | 
						||
  }
 | 
						||
  part_spec->end_part= part_spec->start_part;
 | 
						||
  if (unlikely(result))
 | 
						||
    part_spec->start_part++;
 | 
						||
  DBUG_VOID_RETURN;
 | 
						||
}
 | 
						||
 | 
						||
/*
 | 
						||
  Prune the set of partitions to use in query 
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    prune_partition_set()
 | 
						||
    table         The table object
 | 
						||
    out:part_spec Contains start part, end part 
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    This function is called to prune the range of partitions to scan by
 | 
						||
    checking the used_partitions bitmap.
 | 
						||
    If start_part > end_part at return it means no partition needs to be
 | 
						||
    scanned. If start_part == end_part it always means a single partition
 | 
						||
    needs to be scanned.
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    part_spec
 | 
						||
*/
 | 
						||
void prune_partition_set(const TABLE *table, part_id_range *part_spec)
 | 
						||
{
 | 
						||
  int last_partition= -1;
 | 
						||
  uint i;
 | 
						||
  partition_info *part_info= table->part_info;
 | 
						||
 | 
						||
  DBUG_ENTER("prune_partition_set");
 | 
						||
  for (i= part_spec->start_part; i <= part_spec->end_part; i++)
 | 
						||
  {
 | 
						||
    if (bitmap_is_set(&(part_info->used_partitions), i))
 | 
						||
    {
 | 
						||
      DBUG_PRINT("info", ("Partition %d is set", i));
 | 
						||
      if (last_partition == -1)
 | 
						||
        /* First partition found in set and pruned bitmap */
 | 
						||
        part_spec->start_part= i;
 | 
						||
      last_partition= i;
 | 
						||
    }
 | 
						||
  }
 | 
						||
  if (last_partition == -1)
 | 
						||
    /* No partition found in pruned bitmap */
 | 
						||
    part_spec->start_part= part_spec->end_part + 1;  
 | 
						||
  else //if (last_partition != -1)
 | 
						||
    part_spec->end_part= last_partition;
 | 
						||
 | 
						||
  DBUG_VOID_RETURN;
 | 
						||
}
 | 
						||
 | 
						||
/*
 | 
						||
  Get the set of partitions to use in query.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_partition_set()
 | 
						||
    table         The table object
 | 
						||
    buf           A buffer that can be used to evaluate the partition function
 | 
						||
    index         The index of the key used, if MAX_KEY no index used
 | 
						||
    key_spec      A key_range containing key and key length
 | 
						||
    out:part_spec Contains start part, end part and indicator if bitmap is
 | 
						||
                  used for which partitions to scan
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    This function is called to discover which partitions to use in an index
 | 
						||
    scan or a full table scan.
 | 
						||
    It returns a range of partitions to scan. If there are holes in this
 | 
						||
    range with partitions that are not needed to scan a bit array is used
 | 
						||
    to signal which partitions to use and which not to use.
 | 
						||
    If start_part > end_part at return it means no partition needs to be
 | 
						||
    scanned. If start_part == end_part it always means a single partition
 | 
						||
    needs to be scanned.
 | 
						||
 | 
						||
  RETURN VALUE
 | 
						||
    part_spec
 | 
						||
*/
 | 
						||
void get_partition_set(const TABLE *table, byte *buf, const uint index,
 | 
						||
                       const key_range *key_spec, part_id_range *part_spec)
 | 
						||
{
 | 
						||
  partition_info *part_info= table->part_info;
 | 
						||
  uint no_parts= get_tot_partitions(part_info);
 | 
						||
  uint i, part_id;
 | 
						||
  uint sub_part= no_parts;
 | 
						||
  uint32 part_part= no_parts;
 | 
						||
  KEY *key_info= NULL;
 | 
						||
  bool found_part_field= FALSE;
 | 
						||
  DBUG_ENTER("get_partition_set");
 | 
						||
 | 
						||
  part_spec->start_part= 0;
 | 
						||
  part_spec->end_part= no_parts - 1;
 | 
						||
  if ((index < MAX_KEY) && 
 | 
						||
       key_spec->flag == (uint)HA_READ_KEY_EXACT &&
 | 
						||
       part_info->some_fields_in_PF.is_set(index))
 | 
						||
  {
 | 
						||
    key_info= table->key_info+index;
 | 
						||
    /*
 | 
						||
      The index can potentially provide at least one PF-field (field in the
 | 
						||
      partition function). Thus it is interesting to continue our probe.
 | 
						||
    */
 | 
						||
    if (key_spec->length == key_info->key_length)
 | 
						||
    {
 | 
						||
      /*
 | 
						||
        The entire key is set so we can check whether we can immediately
 | 
						||
        derive either the complete PF or if we can derive either
 | 
						||
        the top PF or the subpartitioning PF. This can be established by
 | 
						||
        checking precalculated bits on each index.
 | 
						||
      */
 | 
						||
      if (part_info->all_fields_in_PF.is_set(index))
 | 
						||
      {
 | 
						||
        /*
 | 
						||
          We can derive the exact partition to use, no more than this one
 | 
						||
          is needed.
 | 
						||
        */
 | 
						||
        get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
 | 
						||
        /*
 | 
						||
          Check if range can be adjusted by looking in used_partitions
 | 
						||
        */
 | 
						||
        prune_partition_set(table, part_spec);
 | 
						||
        DBUG_VOID_RETURN;
 | 
						||
      }
 | 
						||
      else if (is_sub_partitioned(part_info))
 | 
						||
      {
 | 
						||
        if (part_info->all_fields_in_SPF.is_set(index))
 | 
						||
          sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec);
 | 
						||
        else if (part_info->all_fields_in_PPF.is_set(index))
 | 
						||
        {
 | 
						||
          if (get_part_id_from_key(table,buf,key_info,
 | 
						||
                                   key_spec,(uint32*)&part_part))
 | 
						||
          {
 | 
						||
            /*
 | 
						||
              The value of the RANGE or LIST partitioning was outside of
 | 
						||
              allowed values. Thus it is certain that the result of this
 | 
						||
              scan will be empty.
 | 
						||
            */
 | 
						||
            part_spec->start_part= no_parts;
 | 
						||
            DBUG_VOID_RETURN;
 | 
						||
          }
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
    else
 | 
						||
    {
 | 
						||
      /*
 | 
						||
        Set an indicator on all partition fields that are bound.
 | 
						||
        If at least one PF-field was bound it pays off to check whether
 | 
						||
        the PF or PPF or SPF has been bound.
 | 
						||
        (PF = Partition Function, SPF = Subpartition Function and
 | 
						||
         PPF = Partition Function part of subpartitioning)
 | 
						||
      */
 | 
						||
      if ((found_part_field= set_PF_fields_in_key(key_info,
 | 
						||
                                                  key_spec->length)))
 | 
						||
      {
 | 
						||
        if (check_part_func_bound(part_info->full_part_field_array))
 | 
						||
        {
 | 
						||
          /*
 | 
						||
            We were able to bind all fields in the partition function even
 | 
						||
            by using only a part of the key. Calculate the partition to use.
 | 
						||
          */
 | 
						||
          get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
 | 
						||
          clear_indicator_in_key_fields(key_info);
 | 
						||
          /*
 | 
						||
            Check if range can be adjusted by looking in used_partitions
 | 
						||
          */
 | 
						||
          prune_partition_set(table, part_spec);
 | 
						||
          DBUG_VOID_RETURN; 
 | 
						||
        }
 | 
						||
        else if (is_sub_partitioned(part_info))
 | 
						||
        {
 | 
						||
          if (check_part_func_bound(part_info->subpart_field_array))
 | 
						||
            sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec);
 | 
						||
          else if (check_part_func_bound(part_info->part_field_array))
 | 
						||
          {
 | 
						||
            if (get_part_id_from_key(table,buf,key_info,key_spec,&part_part))
 | 
						||
            {
 | 
						||
              part_spec->start_part= no_parts;
 | 
						||
              clear_indicator_in_key_fields(key_info);
 | 
						||
              DBUG_VOID_RETURN;
 | 
						||
            }
 | 
						||
          }
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
  {
 | 
						||
    /*
 | 
						||
      The next step is to analyse the table condition to see whether any
 | 
						||
      information about which partitions to scan can be derived from there.
 | 
						||
      Currently not implemented.
 | 
						||
    */
 | 
						||
  }
 | 
						||
  /*
 | 
						||
    If we come here we have found a range of sorts we have either discovered
 | 
						||
    nothing or we have discovered a range of partitions with possible holes
 | 
						||
    in it. We need a bitvector to further the work here.
 | 
						||
  */
 | 
						||
  if (!(part_part == no_parts && sub_part == no_parts))
 | 
						||
  {
 | 
						||
    /*
 | 
						||
      We can only arrive here if we are using subpartitioning.
 | 
						||
    */
 | 
						||
    if (part_part != no_parts)
 | 
						||
    {
 | 
						||
      /*
 | 
						||
        We know the top partition and need to scan all underlying
 | 
						||
        subpartitions. This is a range without holes.
 | 
						||
      */
 | 
						||
      DBUG_ASSERT(sub_part == no_parts);
 | 
						||
      part_spec->start_part= part_part * part_info->no_subparts;
 | 
						||
      part_spec->end_part= part_spec->start_part+part_info->no_subparts - 1;
 | 
						||
    }
 | 
						||
    else
 | 
						||
    {
 | 
						||
      DBUG_ASSERT(sub_part != no_parts);
 | 
						||
      part_spec->start_part= sub_part;
 | 
						||
      part_spec->end_part=sub_part+
 | 
						||
                           (part_info->no_subparts*(part_info->no_parts-1));
 | 
						||
      for (i= 0, part_id= sub_part; i < part_info->no_parts;
 | 
						||
           i++, part_id+= part_info->no_subparts)
 | 
						||
        ; //Set bit part_id in bit array
 | 
						||
    }
 | 
						||
  }
 | 
						||
  if (found_part_field)
 | 
						||
    clear_indicator_in_key_fields(key_info);
 | 
						||
  /*
 | 
						||
    Check if range can be adjusted by looking in used_partitions
 | 
						||
  */
 | 
						||
  prune_partition_set(table, part_spec);
 | 
						||
  DBUG_VOID_RETURN;
 | 
						||
}
 | 
						||
 | 
						||
/*
 | 
						||
   If the table is partitioned we will read the partition info into the
 | 
						||
   .frm file here.
 | 
						||
   -------------------------------
 | 
						||
   |  Fileinfo     64 bytes      |
 | 
						||
   -------------------------------
 | 
						||
   | Formnames     7 bytes       |
 | 
						||
   -------------------------------
 | 
						||
   | Not used    4021 bytes      |
 | 
						||
   -------------------------------
 | 
						||
   | Keyinfo + record            |
 | 
						||
   -------------------------------
 | 
						||
   | Padded to next multiple     |
 | 
						||
   | of IO_SIZE                  |
 | 
						||
   -------------------------------
 | 
						||
   | Forminfo     288 bytes      |
 | 
						||
   -------------------------------
 | 
						||
   | Screen buffer, to make      |
 | 
						||
   |<7C>field names readable        |
 | 
						||
   -------------------------------
 | 
						||
   | Packed field info           |
 | 
						||
   |<7C>17 + 1 + strlen(field_name) |
 | 
						||
   | + 1 end of file character   |
 | 
						||
   -------------------------------
 | 
						||
   | Partition info              |
 | 
						||
   -------------------------------
 | 
						||
   We provide the length of partition length in Fileinfo[55-58].
 | 
						||
 | 
						||
   Read the partition syntax from the frm file and parse it to get the
 | 
						||
   data structures of the partitioning.
 | 
						||
 | 
						||
   SYNOPSIS
 | 
						||
     mysql_unpack_partition()
 | 
						||
     thd                           Thread object
 | 
						||
     part_buf                      Partition info from frm file
 | 
						||
     part_info_len                 Length of partition syntax
 | 
						||
     table                         Table object of partitioned table
 | 
						||
     create_table_ind              Is it called from CREATE TABLE
 | 
						||
     default_db_type               What is the default engine of the table
 | 
						||
 | 
						||
   RETURN VALUE
 | 
						||
     TRUE                          Error
 | 
						||
     FALSE                         Sucess
 | 
						||
 | 
						||
   DESCRIPTION
 | 
						||
     Read the partition syntax from the current position in the frm file.
 | 
						||
     Initiate a LEX object, save the list of item tree objects to free after
 | 
						||
     the query is done. Set-up partition info object such that parser knows
 | 
						||
     it is called from internally. Call parser to create data structures
 | 
						||
     (best possible recreation of item trees and so forth since there is no
 | 
						||
     serialisation of these objects other than in parseable text format).
 | 
						||
     We need to save the text of the partition functions since it is not
 | 
						||
     possible to retrace this given an item tree.
 | 
						||
*/
 | 
						||
 | 
						||
bool mysql_unpack_partition(THD *thd, const uchar *part_buf,
 | 
						||
                            uint part_info_len,
 | 
						||
                            uchar *part_state, uint part_state_len,
 | 
						||
                            TABLE* table, bool is_create_table_ind,
 | 
						||
                            handlerton *default_db_type)
 | 
						||
{
 | 
						||
  Item *thd_free_list= thd->free_list;
 | 
						||
  bool result= TRUE;
 | 
						||
  partition_info *part_info;
 | 
						||
  LEX *old_lex= thd->lex;
 | 
						||
  LEX lex;
 | 
						||
  DBUG_ENTER("mysql_unpack_partition");
 | 
						||
 | 
						||
  thd->lex= &lex;
 | 
						||
  lex_start(thd, part_buf, part_info_len);
 | 
						||
  /*
 | 
						||
    We need to use the current SELECT_LEX since I need to keep the
 | 
						||
    Name_resolution_context object which is referenced from the
 | 
						||
    Item_field objects.
 | 
						||
    This is not a nice solution since if the parser uses current_select
 | 
						||
    for anything else it will corrupt the current LEX object.
 | 
						||
  */
 | 
						||
  thd->lex->current_select= old_lex->current_select; 
 | 
						||
  /*
 | 
						||
    All Items created is put into a free list on the THD object. This list
 | 
						||
    is used to free all Item objects after completing a query. We don't
 | 
						||
    want that to happen with the Item tree created as part of the partition
 | 
						||
    info. This should be attached to the table object and remain so until
 | 
						||
    the table object is released.
 | 
						||
    Thus we move away the current list temporarily and start a new list that
 | 
						||
    we then save in the partition info structure.
 | 
						||
  */
 | 
						||
  thd->free_list= NULL;
 | 
						||
  lex.part_info= new partition_info();/* Indicates yyparse from this place */
 | 
						||
  if (!lex.part_info)
 | 
						||
  {
 | 
						||
    mem_alloc_error(sizeof(partition_info));
 | 
						||
    goto end;
 | 
						||
  }
 | 
						||
  lex.part_info->part_state= part_state;
 | 
						||
  lex.part_info->part_state_len= part_state_len;
 | 
						||
  DBUG_PRINT("info", ("Parse: %s", part_buf));
 | 
						||
  if (yyparse((void*)thd) || thd->is_fatal_error)
 | 
						||
  {
 | 
						||
    free_items(thd->free_list);
 | 
						||
    goto end;
 | 
						||
  }
 | 
						||
  /*
 | 
						||
    The parsed syntax residing in the frm file can still contain defaults.
 | 
						||
    The reason is that the frm file is sometimes saved outside of this
 | 
						||
    MySQL Server and used in backup and restore of clusters or partitioned
 | 
						||
    tables. It is not certain that the restore will restore exactly the
 | 
						||
    same default partitioning.
 | 
						||
    
 | 
						||
    The easiest manner of handling this is to simply continue using the
 | 
						||
    part_info we already built up during mysql_create_table if we are
 | 
						||
    in the process of creating a table. If the table already exists we
 | 
						||
    need to discover the number of partitions for the default parts. Since
 | 
						||
    the handler object hasn't been created here yet we need to postpone this
 | 
						||
    to the fix_partition_func method.
 | 
						||
  */
 | 
						||
 | 
						||
  DBUG_PRINT("info", ("Successful parse"));
 | 
						||
  part_info= lex.part_info;
 | 
						||
  DBUG_PRINT("info", ("default engine = %d, default_db_type = %d",
 | 
						||
             ha_legacy_type(part_info->default_engine_type),
 | 
						||
             ha_legacy_type(default_db_type)));
 | 
						||
  if (is_create_table_ind)
 | 
						||
  {
 | 
						||
    if (old_lex->name)
 | 
						||
    {
 | 
						||
      /*
 | 
						||
        This code is executed when we do a CREATE TABLE t1 LIKE t2
 | 
						||
        old_lex->name contains the t2 and the table we are opening has 
 | 
						||
        name t1.
 | 
						||
      */
 | 
						||
      Table_ident *table_ident= (Table_ident *)old_lex->name;
 | 
						||
      char *src_db= table_ident->db.str ? table_ident->db.str : thd->db;
 | 
						||
      char *src_table= table_ident->table.str;
 | 
						||
      char buf[FN_REFLEN];
 | 
						||
      build_table_filename(buf, sizeof(buf), src_db, src_table, "");
 | 
						||
      if (partition_default_handling(table, part_info, buf))
 | 
						||
      {
 | 
						||
        result= TRUE;
 | 
						||
        goto end;
 | 
						||
      }
 | 
						||
    }
 | 
						||
    else
 | 
						||
      part_info= old_lex->part_info;
 | 
						||
  }
 | 
						||
  table->part_info= part_info;
 | 
						||
  table->file->set_part_info(part_info);
 | 
						||
  if (part_info->default_engine_type == NULL)
 | 
						||
  {
 | 
						||
    part_info->default_engine_type= default_db_type;
 | 
						||
  }
 | 
						||
  else
 | 
						||
  {
 | 
						||
    DBUG_ASSERT(part_info->default_engine_type == default_db_type);
 | 
						||
  }
 | 
						||
  part_info->item_free_list= thd->free_list;
 | 
						||
 | 
						||
  {
 | 
						||
  /*
 | 
						||
    This code part allocates memory for the serialised item information for
 | 
						||
    the partition functions. In most cases this is not needed but if the
 | 
						||
    table is used for SHOW CREATE TABLES or ALTER TABLE that modifies
 | 
						||
    partition information it is needed and the info is lost if we don't
 | 
						||
    save it here so unfortunately we have to do it here even if in most
 | 
						||
    cases it is not needed. This is a consequence of that item trees are
 | 
						||
    not serialisable.
 | 
						||
  */
 | 
						||
    uint part_func_len= part_info->part_func_len;
 | 
						||
    uint subpart_func_len= part_info->subpart_func_len; 
 | 
						||
    char *part_func_string= NULL;
 | 
						||
    char *subpart_func_string= NULL;
 | 
						||
    if ((part_func_len &&
 | 
						||
        !((part_func_string= thd->alloc(part_func_len)))) ||
 | 
						||
        (subpart_func_len &&
 | 
						||
        !((subpart_func_string= thd->alloc(subpart_func_len)))))
 | 
						||
    {
 | 
						||
      mem_alloc_error(part_func_len);
 | 
						||
      free_items(thd->free_list);
 | 
						||
      part_info->item_free_list= 0;
 | 
						||
      goto end;
 | 
						||
    }
 | 
						||
    if (part_func_len)
 | 
						||
      memcpy(part_func_string, part_info->part_func_string, part_func_len);
 | 
						||
    if (subpart_func_len)
 | 
						||
      memcpy(subpart_func_string, part_info->subpart_func_string,
 | 
						||
             subpart_func_len);
 | 
						||
    part_info->part_func_string= part_func_string;
 | 
						||
    part_info->subpart_func_string= subpart_func_string;
 | 
						||
  }
 | 
						||
 | 
						||
  result= FALSE;
 | 
						||
end:
 | 
						||
  thd->free_list= thd_free_list;
 | 
						||
  thd->lex= old_lex;
 | 
						||
  DBUG_RETURN(result);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  SYNOPSIS
 | 
						||
    fast_alter_partition_error_handler()
 | 
						||
    lpt                           Container for parameters
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    None
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Support routine to clean up after failures of on-line ALTER TABLE
 | 
						||
    for partition management.
 | 
						||
*/
 | 
						||
 | 
						||
static void fast_alter_partition_error_handler(ALTER_PARTITION_PARAM_TYPE *lpt)
 | 
						||
{
 | 
						||
  DBUG_ENTER("fast_alter_partition_error_handler");
 | 
						||
  /* TODO: WL 2826 Error handling */
 | 
						||
  DBUG_VOID_RETURN;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  SYNOPSIS
 | 
						||
    fast_end_partition()
 | 
						||
    thd                           Thread object
 | 
						||
    out:copied                    Number of records copied
 | 
						||
    out:deleted                   Number of records deleted
 | 
						||
    table_list                    Table list with the one table in it
 | 
						||
    empty                         Has nothing been done
 | 
						||
    lpt                           Struct to be used by error handler
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    FALSE                         Success
 | 
						||
    TRUE                          Failure
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Support routine to handle the successful cases for partition
 | 
						||
    management.
 | 
						||
*/
 | 
						||
 | 
						||
static int fast_end_partition(THD *thd, ulonglong copied,
 | 
						||
                              ulonglong deleted,
 | 
						||
                              TABLE_LIST *table_list, bool is_empty,
 | 
						||
                              ALTER_PARTITION_PARAM_TYPE *lpt,
 | 
						||
                              bool written_bin_log)
 | 
						||
{
 | 
						||
  int error;
 | 
						||
  DBUG_ENTER("fast_end_partition");
 | 
						||
 | 
						||
  thd->proc_info="end";
 | 
						||
  if (!is_empty)
 | 
						||
    query_cache_invalidate3(thd, table_list, 0);
 | 
						||
  error= ha_commit_stmt(thd);
 | 
						||
  if (ha_commit(thd))
 | 
						||
    error= 1;
 | 
						||
  if (!error || is_empty)
 | 
						||
  {
 | 
						||
    char tmp_name[80];
 | 
						||
    if ((!is_empty) && (!written_bin_log) &&
 | 
						||
        (!thd->lex->no_write_to_binlog))
 | 
						||
      write_bin_log(thd, FALSE, thd->query, thd->query_length);
 | 
						||
    close_thread_tables(thd);
 | 
						||
    my_snprintf(tmp_name, sizeof(tmp_name), ER(ER_INSERT_INFO),
 | 
						||
                (ulong) (copied + deleted),
 | 
						||
                (ulong) deleted,
 | 
						||
                (ulong) 0);
 | 
						||
    send_ok(thd,copied+deleted,0L,tmp_name);
 | 
						||
    DBUG_RETURN(FALSE);
 | 
						||
  }
 | 
						||
  fast_alter_partition_error_handler(lpt);
 | 
						||
  DBUG_RETURN(TRUE);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Check engine mix that it is correct
 | 
						||
  SYNOPSIS
 | 
						||
    check_engine_condition()
 | 
						||
    p_elem                   Partition element
 | 
						||
    default_engine           Have user specified engine on table level
 | 
						||
    inout::engine_type       Current engine used
 | 
						||
    inout::first             Is it first partition
 | 
						||
  RETURN VALUE
 | 
						||
    TRUE                     Failed check
 | 
						||
    FALSE                    Ok
 | 
						||
  DESCRIPTION
 | 
						||
    (specified partition handler ) specified table handler
 | 
						||
    (NDB, NDB) NDB           OK
 | 
						||
    (MYISAM, MYISAM) -       OK
 | 
						||
    (MYISAM, -)      -       NOT OK
 | 
						||
    (MYISAM, -)    MYISAM    OK
 | 
						||
    (- , MYISAM)   -         NOT OK
 | 
						||
    (- , -)        MYISAM    OK
 | 
						||
    (-,-)          -         OK
 | 
						||
    (NDB, MYISAM) *          NOT OK
 | 
						||
*/
 | 
						||
 | 
						||
static bool check_engine_condition(partition_element *p_elem,
 | 
						||
                                   bool default_engine,
 | 
						||
                                   handlerton **engine_type,
 | 
						||
                                   bool *first)
 | 
						||
{
 | 
						||
  if (*first && default_engine)
 | 
						||
    *engine_type= p_elem->engine_type;
 | 
						||
  *first= FALSE;
 | 
						||
  if ((!default_engine &&
 | 
						||
      (p_elem->engine_type != *engine_type &&
 | 
						||
       !p_elem->engine_type)) ||
 | 
						||
      (default_engine &&
 | 
						||
       p_elem->engine_type != *engine_type))
 | 
						||
    return TRUE;
 | 
						||
  else
 | 
						||
    return FALSE;
 | 
						||
}
 | 
						||
 | 
						||
/*
 | 
						||
  We need to check if engine used by all partitions can handle
 | 
						||
  partitioning natively.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    check_native_partitioned()
 | 
						||
    create_info            Create info in CREATE TABLE
 | 
						||
    out:ret_val            Return value
 | 
						||
    part_info              Partition info
 | 
						||
    thd                    Thread object
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
  Value returned in bool ret_value
 | 
						||
    TRUE                   Native partitioning supported by engine
 | 
						||
    FALSE                  Need to use partition handler
 | 
						||
 | 
						||
  Return value from function
 | 
						||
    TRUE                   Error
 | 
						||
    FALSE                  Success
 | 
						||
*/
 | 
						||
 | 
						||
static bool check_native_partitioned(HA_CREATE_INFO *create_info,bool *ret_val,
 | 
						||
                                     partition_info *part_info, THD *thd)
 | 
						||
{
 | 
						||
  List_iterator<partition_element> part_it(part_info->partitions);
 | 
						||
  bool first= TRUE;
 | 
						||
  bool default_engine;
 | 
						||
  handlerton *engine_type= create_info->db_type;
 | 
						||
  handlerton *old_engine_type= engine_type;
 | 
						||
  uint i= 0;
 | 
						||
  handler *file;
 | 
						||
  uint no_parts= part_info->partitions.elements;
 | 
						||
  DBUG_ENTER("check_native_partitioned");
 | 
						||
 | 
						||
  default_engine= (create_info->used_fields | HA_CREATE_USED_ENGINE) ?
 | 
						||
                   TRUE : FALSE;
 | 
						||
  DBUG_PRINT("info", ("engine_type = %u, default = %u",
 | 
						||
                       ha_legacy_type(engine_type),
 | 
						||
                       default_engine));
 | 
						||
  if (no_parts)
 | 
						||
  {
 | 
						||
    do
 | 
						||
    {
 | 
						||
      partition_element *part_elem= part_it++;
 | 
						||
      if (is_sub_partitioned(part_info) &&
 | 
						||
          part_elem->subpartitions.elements)
 | 
						||
      {
 | 
						||
        uint no_subparts= part_elem->subpartitions.elements;
 | 
						||
        uint j= 0;
 | 
						||
        List_iterator<partition_element> sub_it(part_elem->subpartitions);
 | 
						||
        do
 | 
						||
        {
 | 
						||
          partition_element *sub_elem= sub_it++;
 | 
						||
          if (check_engine_condition(sub_elem, default_engine,
 | 
						||
                                     &engine_type, &first))
 | 
						||
            goto error;
 | 
						||
        } while (++j < no_subparts);
 | 
						||
        /*
 | 
						||
          In case of subpartitioning and defaults we allow that only
 | 
						||
          subparts have specified engines, as long as the parts haven't
 | 
						||
          specified the wrong engine it's ok.
 | 
						||
        */
 | 
						||
        if (check_engine_condition(part_elem, FALSE,
 | 
						||
                                   &engine_type, &first))
 | 
						||
          goto error;
 | 
						||
      }
 | 
						||
      else if (check_engine_condition(part_elem, default_engine,
 | 
						||
                                      &engine_type, &first))
 | 
						||
        goto error;
 | 
						||
    } while (++i < no_parts);
 | 
						||
  }
 | 
						||
 | 
						||
  /*
 | 
						||
    All engines are of the same type. Check if this engine supports
 | 
						||
    native partitioning.
 | 
						||
  */
 | 
						||
 | 
						||
  if (!engine_type)
 | 
						||
    engine_type= old_engine_type;
 | 
						||
  DBUG_PRINT("info", ("engine_type = %s",
 | 
						||
              ha_resolve_storage_engine_name(engine_type)));
 | 
						||
  if (engine_type->partition_flags &&
 | 
						||
      (engine_type->partition_flags() & HA_CAN_PARTITION))
 | 
						||
  {
 | 
						||
    create_info->db_type= engine_type;
 | 
						||
    DBUG_PRINT("info", ("Changed to native partitioning"));
 | 
						||
    *ret_val= TRUE;
 | 
						||
  }
 | 
						||
  DBUG_RETURN(FALSE);
 | 
						||
error:
 | 
						||
  /*
 | 
						||
    Mixed engines not yet supported but when supported it will need
 | 
						||
    the partition handler
 | 
						||
  */
 | 
						||
  *ret_val= FALSE;
 | 
						||
  DBUG_RETURN(TRUE);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Prepare for ALTER TABLE of partition structure
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    prep_alter_part_table()
 | 
						||
    thd                        Thread object
 | 
						||
    table                      Table object
 | 
						||
    inout:alter_info           Alter information
 | 
						||
    inout:create_info          Create info for CREATE TABLE
 | 
						||
    old_db_type                Old engine type
 | 
						||
    out:partition_changed      Boolean indicating whether partition changed
 | 
						||
    out:fast_alter_partition   Boolean indicating whether fast partition
 | 
						||
                               change is requested
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    TRUE                       Error
 | 
						||
    FALSE                      Success
 | 
						||
    partition_changed
 | 
						||
    fast_alter_partition
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    This method handles all preparations for ALTER TABLE for partitioned
 | 
						||
    tables
 | 
						||
    We need to handle both partition management command such as Add Partition
 | 
						||
    and others here as well as an ALTER TABLE that completely changes the
 | 
						||
    partitioning and yet others that don't change anything at all. We start
 | 
						||
    by checking the partition management variants and then check the general
 | 
						||
    change patterns.
 | 
						||
*/
 | 
						||
 | 
						||
uint prep_alter_part_table(THD *thd, TABLE *table, ALTER_INFO *alter_info,
 | 
						||
                           HA_CREATE_INFO *create_info,
 | 
						||
                           handlerton *old_db_type,
 | 
						||
                           bool *partition_changed,
 | 
						||
                           uint *fast_alter_partition)
 | 
						||
{
 | 
						||
  DBUG_ENTER("prep_alter_part_table");
 | 
						||
 | 
						||
  if (alter_info->flags &
 | 
						||
      (ALTER_ADD_PARTITION | ALTER_DROP_PARTITION |
 | 
						||
       ALTER_COALESCE_PARTITION | ALTER_REORGANIZE_PARTITION |
 | 
						||
       ALTER_TABLE_REORG | ALTER_OPTIMIZE_PARTITION |
 | 
						||
       ALTER_CHECK_PARTITION | ALTER_ANALYZE_PARTITION |
 | 
						||
       ALTER_REPAIR_PARTITION | ALTER_REBUILD_PARTITION))
 | 
						||
  {
 | 
						||
    partition_info *tab_part_info= table->part_info;
 | 
						||
    if (!tab_part_info)
 | 
						||
    {
 | 
						||
      my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0));
 | 
						||
      DBUG_RETURN(TRUE);
 | 
						||
    }
 | 
						||
    /*
 | 
						||
      We are going to manipulate the partition info on the table object
 | 
						||
      so we need to ensure that the data structure of the table object
 | 
						||
      is freed by setting version to 0. table->s->version= 0 forces a
 | 
						||
      flush of the table object in close_thread_tables().
 | 
						||
    */
 | 
						||
    uint flags;
 | 
						||
    table->s->version= 0L;
 | 
						||
    if (alter_info->flags == ALTER_TABLE_REORG)
 | 
						||
    {
 | 
						||
      uint new_part_no, curr_part_no;
 | 
						||
      ulonglong max_rows= table->s->max_rows;
 | 
						||
      if (tab_part_info->part_type != HASH_PARTITION ||
 | 
						||
          tab_part_info->use_default_no_partitions)
 | 
						||
      {
 | 
						||
        my_error(ER_REORG_NO_PARAM_ERROR, MYF(0));
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
      new_part_no= table->file->get_default_no_partitions(max_rows);
 | 
						||
      curr_part_no= tab_part_info->no_parts;
 | 
						||
      if (new_part_no == curr_part_no)
 | 
						||
      {
 | 
						||
        /*
 | 
						||
          No change is needed, we will have the same number of partitions
 | 
						||
          after the change as before. Thus we can reply ok immediately
 | 
						||
          without any changes at all.
 | 
						||
        */
 | 
						||
        DBUG_RETURN(fast_end_partition(thd, ULL(0), ULL(0), NULL,
 | 
						||
                                       TRUE, NULL, FALSE));
 | 
						||
      }
 | 
						||
      else if (new_part_no > curr_part_no)
 | 
						||
      {
 | 
						||
        /*
 | 
						||
          We will add more partitions, we use the ADD PARTITION without
 | 
						||
          setting the flag for no default number of partitions
 | 
						||
        */
 | 
						||
        alter_info->flags|= ALTER_ADD_PARTITION;
 | 
						||
        thd->lex->part_info->no_parts= new_part_no - curr_part_no;
 | 
						||
      }
 | 
						||
      else
 | 
						||
      {
 | 
						||
        /*
 | 
						||
          We will remove hash partitions, we use the COALESCE PARTITION
 | 
						||
          without setting the flag for no default number of partitions
 | 
						||
        */
 | 
						||
        alter_info->flags|= ALTER_COALESCE_PARTITION;
 | 
						||
        alter_info->no_parts= curr_part_no - new_part_no;
 | 
						||
      }
 | 
						||
    }
 | 
						||
    if (table->s->db_type->alter_table_flags &&
 | 
						||
        (!(flags= table->s->db_type->alter_table_flags(alter_info->flags))))
 | 
						||
    {
 | 
						||
      my_error(ER_PARTITION_FUNCTION_FAILURE, MYF(0));
 | 
						||
      DBUG_RETURN(1);
 | 
						||
    }
 | 
						||
    *fast_alter_partition= flags ^ HA_PARTITION_FUNCTION_SUPPORTED;
 | 
						||
    if (alter_info->flags & ALTER_ADD_PARTITION)
 | 
						||
    {
 | 
						||
      /*
 | 
						||
        We start by moving the new partitions to the list of temporary
 | 
						||
        partitions. We will then check that the new partitions fit in the
 | 
						||
        partitioning scheme as currently set-up.
 | 
						||
        Partitions are always added at the end in ADD PARTITION.
 | 
						||
      */
 | 
						||
      partition_info *alt_part_info= thd->lex->part_info;
 | 
						||
      uint no_new_partitions= alt_part_info->no_parts;
 | 
						||
      uint no_orig_partitions= tab_part_info->no_parts;
 | 
						||
      uint check_total_partitions= no_new_partitions + no_orig_partitions;
 | 
						||
      uint new_total_partitions= check_total_partitions;
 | 
						||
      /*
 | 
						||
        We allow quite a lot of values to be supplied by defaults, however we
 | 
						||
        must know the number of new partitions in this case.
 | 
						||
      */
 | 
						||
      if (thd->lex->no_write_to_binlog &&
 | 
						||
          tab_part_info->part_type != HASH_PARTITION)
 | 
						||
      {
 | 
						||
        my_error(ER_NO_BINLOG_ERROR, MYF(0));
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      } 
 | 
						||
      if (no_new_partitions == 0)
 | 
						||
      {
 | 
						||
        my_error(ER_ADD_PARTITION_NO_NEW_PARTITION, MYF(0));
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
      if (is_sub_partitioned(tab_part_info))
 | 
						||
      {
 | 
						||
        if (alt_part_info->no_subparts == 0)
 | 
						||
          alt_part_info->no_subparts= tab_part_info->no_subparts;
 | 
						||
        else if (alt_part_info->no_subparts != tab_part_info->no_subparts)
 | 
						||
        {
 | 
						||
          my_error(ER_ADD_PARTITION_SUBPART_ERROR, MYF(0));
 | 
						||
          DBUG_RETURN(TRUE);
 | 
						||
        }
 | 
						||
        check_total_partitions= new_total_partitions*
 | 
						||
                                alt_part_info->no_subparts;
 | 
						||
      }
 | 
						||
      if (check_total_partitions > MAX_PARTITIONS)
 | 
						||
      {
 | 
						||
        my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
      alt_part_info->part_type= tab_part_info->part_type;
 | 
						||
      if (set_up_defaults_for_partitioning(alt_part_info,
 | 
						||
                                           table->file,
 | 
						||
                                           ULL(0),
 | 
						||
                                           tab_part_info->no_parts))
 | 
						||
      {
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
/*
 | 
						||
Handling of on-line cases:
 | 
						||
 | 
						||
ADD PARTITION for RANGE/LIST PARTITIONING:
 | 
						||
------------------------------------------
 | 
						||
For range and list partitions add partition is simply adding a
 | 
						||
new empty partition to the table. If the handler support this we
 | 
						||
will use the simple method of doing this. The figure below shows
 | 
						||
an example of this and the states involved in making this change.
 | 
						||
            
 | 
						||
Existing partitions                                     New added partitions
 | 
						||
------       ------        ------        ------      |  ------    ------
 | 
						||
|    |       |    |        |    |        |    |      |  |    |    |    |
 | 
						||
| p0 |       | p1 |        | p2 |        | p3 |      |  | p4 |    | p5 |
 | 
						||
------       ------        ------        ------      |  ------    ------
 | 
						||
PART_NORMAL  PART_NORMAL   PART_NORMAL   PART_NORMAL    PART_TO_BE_ADDED*2
 | 
						||
PART_NORMAL  PART_NORMAL   PART_NORMAL   PART_NORMAL    PART_IS_ADDED*2
 | 
						||
 | 
						||
The first line is the states before adding the new partitions and the 
 | 
						||
second line is after the new partitions are added. All the partitions are
 | 
						||
in the partitions list, no partitions are placed in the temp_partitions
 | 
						||
list.
 | 
						||
 | 
						||
ADD PARTITION for HASH PARTITIONING
 | 
						||
-----------------------------------
 | 
						||
This little figure tries to show the various partitions involved when
 | 
						||
adding two new partitions to a linear hash based partitioned table with
 | 
						||
four partitions to start with, which lists are used and the states they
 | 
						||
pass through. Adding partitions to a normal hash based is similar except
 | 
						||
that it is always all the existing partitions that are reorganised not
 | 
						||
only a subset of them.
 | 
						||
 | 
						||
Existing partitions                                     New added partitions
 | 
						||
------       ------        ------        ------      |  ------    ------
 | 
						||
|    |       |    |        |    |        |    |      |  |    |    |    |
 | 
						||
| p0 |       | p1 |        | p2 |        | p3 |      |  | p4 |    | p5 |
 | 
						||
------       ------        ------        ------      |  ------    ------
 | 
						||
PART_CHANGED PART_CHANGED  PART_NORMAL   PART_NORMAL    PART_TO_BE_ADDED
 | 
						||
PART_IS_CHANGED*2          PART_NORMAL   PART_NORMAL    PART_IS_ADDED
 | 
						||
PART_NORMAL  PART_NORMAL   PART_NORMAL   PART_NORMAL    PART_IS_ADDED
 | 
						||
 | 
						||
Reorganised existing partitions
 | 
						||
------      ------
 | 
						||
|    |      |    |
 | 
						||
| p0'|      | p1'|
 | 
						||
------      ------
 | 
						||
 | 
						||
p0 - p5 will be in the partitions list of partitions.
 | 
						||
p0' and p1' will actually not exist as separate objects, there presence can
 | 
						||
be deduced from the state of the partition and also the names of those
 | 
						||
partitions can be deduced this way.
 | 
						||
 | 
						||
After adding the partitions and copying the partition data to p0', p1',
 | 
						||
p4 and p5 from p0 and p1 the states change to adapt for the new situation
 | 
						||
where p0 and p1 is dropped and replaced by p0' and p1' and the new p4 and
 | 
						||
p5 are in the table again.
 | 
						||
 | 
						||
The first line above shows the states of the partitions before we start
 | 
						||
adding and copying partitions, the second after completing the adding
 | 
						||
and copying and finally the third line after also dropping the partitions
 | 
						||
that are reorganised.
 | 
						||
*/
 | 
						||
      if (*fast_alter_partition &&
 | 
						||
          tab_part_info->part_type == HASH_PARTITION)
 | 
						||
      {
 | 
						||
        uint part_no= 0, start_part= 1, start_sec_part= 1;
 | 
						||
        uint end_part= 0, end_sec_part= 0;
 | 
						||
        uint upper_2n= tab_part_info->linear_hash_mask + 1;
 | 
						||
        uint lower_2n= upper_2n >> 1;
 | 
						||
        bool all_parts= TRUE;
 | 
						||
        if (tab_part_info->linear_hash_ind &&
 | 
						||
            no_new_partitions < upper_2n)
 | 
						||
        {
 | 
						||
          /*
 | 
						||
            An analysis of which parts needs reorganisation shows that it is
 | 
						||
            divided into two intervals. The first interval is those parts
 | 
						||
            that are reorganised up until upper_2n - 1. From upper_2n and
 | 
						||
            onwards it starts again from partition 0 and goes on until
 | 
						||
            it reaches p(upper_2n - 1). If the last new partition reaches
 | 
						||
            beyond upper_2n - 1 then the first interval will end with
 | 
						||
            p(lower_2n - 1) and start with p(no_orig_partitions - lower_2n).
 | 
						||
            If lower_2n partitions are added then p0 to p(lower_2n - 1) will
 | 
						||
            be reorganised which means that the two interval becomes one
 | 
						||
            interval at this point. Thus only when adding less than
 | 
						||
            lower_2n partitions and going beyond a total of upper_2n we
 | 
						||
            actually get two intervals.
 | 
						||
 | 
						||
            To exemplify this assume we have 6 partitions to start with and
 | 
						||
            add 1, 2, 3, 5, 6, 7, 8, 9 partitions.
 | 
						||
            The first to add after p5 is p6 = 110 in bit numbers. Thus we
 | 
						||
            can see that 10 = p2 will be partition to reorganise if only one
 | 
						||
            partition.
 | 
						||
            If 2 partitions are added we reorganise [p2, p3]. Those two
 | 
						||
            cases are covered by the second if part below.
 | 
						||
            If 3 partitions are added we reorganise [p2, p3] U [p0,p0]. This
 | 
						||
            part is covered by the else part below.
 | 
						||
            If 5 partitions are added we get [p2,p3] U [p0, p2] = [p0, p3].
 | 
						||
            This is covered by the first if part where we need the max check
 | 
						||
            to here use lower_2n - 1.
 | 
						||
            If 7 partitions are added we get [p2,p3] U [p0, p4] = [p0, p4].
 | 
						||
            This is covered by the first if part but here we use the first
 | 
						||
            calculated end_part.
 | 
						||
            Finally with 9 new partitions we would also reorganise p6 if we
 | 
						||
            used the method below but we cannot reorganise more partitions
 | 
						||
            than what we had from the start and thus we simply set all_parts
 | 
						||
            to TRUE. In this case we don't get into this if-part at all.
 | 
						||
          */
 | 
						||
          all_parts= FALSE;
 | 
						||
          if (no_new_partitions >= lower_2n)
 | 
						||
          {
 | 
						||
            /*
 | 
						||
              In this case there is only one interval since the two intervals
 | 
						||
              overlap and this starts from zero to last_part_no - upper_2n
 | 
						||
            */
 | 
						||
            start_part= 0;
 | 
						||
            end_part= new_total_partitions - (upper_2n + 1);
 | 
						||
            end_part= max(lower_2n - 1, end_part);
 | 
						||
          }
 | 
						||
          else if (new_total_partitions <= upper_2n)
 | 
						||
          {
 | 
						||
            /*
 | 
						||
              Also in this case there is only one interval since we are not
 | 
						||
              going over a 2**n boundary
 | 
						||
            */
 | 
						||
            start_part= no_orig_partitions - lower_2n;
 | 
						||
            end_part= start_part + (no_new_partitions - 1);
 | 
						||
          }
 | 
						||
          else
 | 
						||
          {
 | 
						||
            /* We have two non-overlapping intervals since we are not
 | 
						||
               passing a 2**n border and we have not at least lower_2n
 | 
						||
               new parts that would ensure that the intervals become
 | 
						||
               overlapping.
 | 
						||
            */
 | 
						||
            start_part= no_orig_partitions - lower_2n;
 | 
						||
            end_part= upper_2n - 1;
 | 
						||
            start_sec_part= 0;
 | 
						||
            end_sec_part= new_total_partitions - (upper_2n + 1);
 | 
						||
          }
 | 
						||
        }
 | 
						||
        List_iterator<partition_element> tab_it(tab_part_info->partitions);
 | 
						||
        part_no= 0;
 | 
						||
        do
 | 
						||
        {
 | 
						||
          partition_element *p_elem= tab_it++;
 | 
						||
          if (all_parts ||
 | 
						||
              (part_no >= start_part && part_no <= end_part) ||
 | 
						||
              (part_no >= start_sec_part && part_no <= end_sec_part))
 | 
						||
          {
 | 
						||
            p_elem->part_state= PART_CHANGED;
 | 
						||
          }
 | 
						||
        } while (++part_no < no_orig_partitions);
 | 
						||
      }
 | 
						||
      /*
 | 
						||
        Need to concatenate the lists here to make it possible to check the
 | 
						||
        partition info for correctness using check_partition_info.
 | 
						||
        For on-line add partition we set the state of this partition to
 | 
						||
        PART_TO_BE_ADDED to ensure that it is known that it is not yet
 | 
						||
        usable (becomes usable when partition is created and the switch of
 | 
						||
        partition configuration is made.
 | 
						||
      */
 | 
						||
      {
 | 
						||
        List_iterator<partition_element> alt_it(alt_part_info->partitions);
 | 
						||
        uint part_count= 0;
 | 
						||
        do
 | 
						||
        {
 | 
						||
          partition_element *part_elem= alt_it++;
 | 
						||
          if (*fast_alter_partition)
 | 
						||
            part_elem->part_state= PART_TO_BE_ADDED;
 | 
						||
          if (tab_part_info->partitions.push_back(part_elem))
 | 
						||
          {
 | 
						||
            mem_alloc_error(1);
 | 
						||
            DBUG_RETURN(TRUE);
 | 
						||
          }
 | 
						||
        } while (++part_count < no_new_partitions);
 | 
						||
        tab_part_info->no_parts+= no_new_partitions;
 | 
						||
      }
 | 
						||
      /*
 | 
						||
        If we specify partitions explicitly we don't use defaults anymore.
 | 
						||
        Using ADD PARTITION also means that we don't have the default number
 | 
						||
        of partitions anymore. We use this code also for Table reorganisations
 | 
						||
        and here we don't set any default flags to FALSE.
 | 
						||
      */
 | 
						||
      if (!(alter_info->flags & ALTER_TABLE_REORG))
 | 
						||
      {
 | 
						||
        if (!alt_part_info->use_default_partitions)
 | 
						||
        {
 | 
						||
          DBUG_PRINT("info", ("part_info= %x", tab_part_info));
 | 
						||
          tab_part_info->use_default_partitions= FALSE;
 | 
						||
        }
 | 
						||
        tab_part_info->use_default_no_partitions= FALSE;
 | 
						||
      }
 | 
						||
    }
 | 
						||
    else if (alter_info->flags == ALTER_DROP_PARTITION)
 | 
						||
    {
 | 
						||
      /*
 | 
						||
        Drop a partition from a range partition and list partitioning is
 | 
						||
        always safe and can be made more or less immediate. It is necessary
 | 
						||
        however to ensure that the partition to be removed is safely removed
 | 
						||
        and that REPAIR TABLE can remove the partition if for some reason the
 | 
						||
        command to drop the partition failed in the middle.
 | 
						||
      */
 | 
						||
      uint part_count= 0;
 | 
						||
      uint no_parts_dropped= alter_info->partition_names.elements;
 | 
						||
      uint no_parts_found= 0;
 | 
						||
      List_iterator<partition_element> part_it(tab_part_info->partitions);
 | 
						||
      if (!(tab_part_info->part_type == RANGE_PARTITION ||
 | 
						||
            tab_part_info->part_type == LIST_PARTITION))
 | 
						||
      {
 | 
						||
        my_error(ER_ONLY_ON_RANGE_LIST_PARTITION, MYF(0), "DROP");
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
      if (no_parts_dropped >= tab_part_info->no_parts)
 | 
						||
      {
 | 
						||
        my_error(ER_DROP_LAST_PARTITION, MYF(0));
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
      do
 | 
						||
      {
 | 
						||
        partition_element *part_elem= part_it++;
 | 
						||
        if (is_name_in_list(part_elem->partition_name,
 | 
						||
                            alter_info->partition_names))
 | 
						||
        {
 | 
						||
          /*
 | 
						||
            Set state to indicate that the partition is to be dropped.
 | 
						||
          */
 | 
						||
          no_parts_found++;
 | 
						||
          part_elem->part_state= PART_TO_BE_DROPPED;
 | 
						||
        }
 | 
						||
      } while (++part_count < tab_part_info->no_parts);
 | 
						||
      if (no_parts_found != no_parts_dropped)
 | 
						||
      {
 | 
						||
        my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "DROP");
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
      if (table->file->is_fk_defined_on_table_or_index(MAX_KEY))
 | 
						||
      {
 | 
						||
        my_error(ER_ROW_IS_REFERENCED, MYF(0));
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
    }
 | 
						||
    else if ((alter_info->flags & ALTER_OPTIMIZE_PARTITION) ||
 | 
						||
             (alter_info->flags & ALTER_ANALYZE_PARTITION) ||
 | 
						||
             (alter_info->flags & ALTER_CHECK_PARTITION) ||
 | 
						||
             (alter_info->flags & ALTER_REPAIR_PARTITION) ||
 | 
						||
             (alter_info->flags & ALTER_REBUILD_PARTITION))
 | 
						||
    {
 | 
						||
      uint no_parts_opt= alter_info->partition_names.elements;
 | 
						||
      uint part_count= 0;
 | 
						||
      uint no_parts_found= 0;
 | 
						||
      List_iterator<partition_element> part_it(tab_part_info->partitions);
 | 
						||
 | 
						||
      do
 | 
						||
      {
 | 
						||
        partition_element *part_elem= part_it++;
 | 
						||
        if ((alter_info->flags & ALTER_ALL_PARTITION) ||
 | 
						||
            (is_name_in_list(part_elem->partition_name,
 | 
						||
                             alter_info->partition_names)))
 | 
						||
        {
 | 
						||
          /*
 | 
						||
            Mark the partition as a partition to be "changed" by
 | 
						||
            analyzing/optimizing/rebuilding/checking/repairing
 | 
						||
          */
 | 
						||
          no_parts_found++;
 | 
						||
          part_elem->part_state= PART_CHANGED;
 | 
						||
        }
 | 
						||
      } while (++part_count < tab_part_info->no_parts);
 | 
						||
      if (no_parts_found != no_parts_opt &&
 | 
						||
          (!(alter_info->flags & ALTER_ALL_PARTITION)))
 | 
						||
      {
 | 
						||
        const char *ptr;
 | 
						||
        if (alter_info->flags & ALTER_OPTIMIZE_PARTITION)
 | 
						||
          ptr= "OPTIMIZE";
 | 
						||
        else if (alter_info->flags & ALTER_ANALYZE_PARTITION)
 | 
						||
          ptr= "ANALYZE";
 | 
						||
        else if (alter_info->flags & ALTER_CHECK_PARTITION)
 | 
						||
          ptr= "CHECK";
 | 
						||
        else if (alter_info->flags & ALTER_REPAIR_PARTITION)
 | 
						||
          ptr= "REPAIR";
 | 
						||
        else
 | 
						||
          ptr= "REBUILD";
 | 
						||
        my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), ptr);
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
    }
 | 
						||
    else if (alter_info->flags & ALTER_COALESCE_PARTITION)
 | 
						||
    {
 | 
						||
      uint no_parts_coalesced= alter_info->no_parts;
 | 
						||
      uint no_parts_remain= tab_part_info->no_parts - no_parts_coalesced;
 | 
						||
      List_iterator<partition_element> part_it(tab_part_info->partitions);
 | 
						||
      if (tab_part_info->part_type != HASH_PARTITION)
 | 
						||
      {
 | 
						||
        my_error(ER_COALESCE_ONLY_ON_HASH_PARTITION, MYF(0));
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
      if (no_parts_coalesced == 0)
 | 
						||
      {
 | 
						||
        my_error(ER_COALESCE_PARTITION_NO_PARTITION, MYF(0));
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
      if (no_parts_coalesced >= tab_part_info->no_parts)
 | 
						||
      {
 | 
						||
        my_error(ER_DROP_LAST_PARTITION, MYF(0));
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
/*
 | 
						||
Online handling:
 | 
						||
COALESCE PARTITION:
 | 
						||
-------------------
 | 
						||
The figure below shows the manner in which partitions are handled when
 | 
						||
performing an on-line coalesce partition and which states they go through
 | 
						||
at start, after adding and copying partitions and finally after dropping
 | 
						||
the partitions to drop. The figure shows an example using four partitions
 | 
						||
to start with, using linear hash and coalescing one partition (always the
 | 
						||
last partition).
 | 
						||
 | 
						||
Using linear hash then all remaining partitions will have a new reorganised
 | 
						||
part.
 | 
						||
 | 
						||
Existing partitions                     Coalesced partition 
 | 
						||
------       ------              ------   |      ------
 | 
						||
|    |       |    |              |    |   |      |    |
 | 
						||
| p0 |       | p1 |              | p2 |   |      | p3 |
 | 
						||
------       ------              ------   |      ------
 | 
						||
PART_NORMAL  PART_CHANGED        PART_NORMAL     PART_REORGED_DROPPED
 | 
						||
PART_NORMAL  PART_IS_CHANGED     PART_NORMAL     PART_TO_BE_DROPPED
 | 
						||
PART_NORMAL  PART_NORMAL         PART_NORMAL     PART_IS_DROPPED
 | 
						||
 | 
						||
Reorganised existing partitions
 | 
						||
            ------
 | 
						||
            |    |
 | 
						||
            | p1'|
 | 
						||
            ------
 | 
						||
 | 
						||
p0 - p3 is in the partitions list.
 | 
						||
The p1' partition will actually not be in any list it is deduced from the
 | 
						||
state of p1.
 | 
						||
*/
 | 
						||
      {
 | 
						||
        uint part_count= 0, start_part= 1, start_sec_part= 1;
 | 
						||
        uint end_part= 0, end_sec_part= 0;
 | 
						||
        bool all_parts= TRUE;
 | 
						||
        if (*fast_alter_partition &&
 | 
						||
            tab_part_info->linear_hash_ind)
 | 
						||
        {
 | 
						||
          uint upper_2n= tab_part_info->linear_hash_mask + 1;
 | 
						||
          uint lower_2n= upper_2n >> 1;
 | 
						||
          all_parts= FALSE;
 | 
						||
          if (no_parts_coalesced >= lower_2n)
 | 
						||
          {
 | 
						||
            all_parts= TRUE;
 | 
						||
          }
 | 
						||
          else if (no_parts_remain >= lower_2n)
 | 
						||
          {
 | 
						||
            end_part= tab_part_info->no_parts - (lower_2n + 1);
 | 
						||
            start_part= no_parts_remain - lower_2n;
 | 
						||
          }
 | 
						||
          else
 | 
						||
          {
 | 
						||
            start_part= 0;
 | 
						||
            end_part= tab_part_info->no_parts - (lower_2n + 1);
 | 
						||
            end_sec_part= (lower_2n >> 1) - 1;
 | 
						||
            start_sec_part= end_sec_part - (lower_2n - (no_parts_remain + 1));
 | 
						||
          }
 | 
						||
        }
 | 
						||
        do
 | 
						||
        {
 | 
						||
          partition_element *p_elem= part_it++;
 | 
						||
          if (*fast_alter_partition &&
 | 
						||
              (all_parts ||
 | 
						||
              (part_count >= start_part && part_count <= end_part) ||
 | 
						||
              (part_count >= start_sec_part && part_count <= end_sec_part)))
 | 
						||
            p_elem->part_state= PART_CHANGED;
 | 
						||
          if (++part_count > no_parts_remain)
 | 
						||
          {
 | 
						||
            if (*fast_alter_partition)
 | 
						||
              p_elem->part_state= PART_REORGED_DROPPED;
 | 
						||
            else
 | 
						||
              part_it.remove();
 | 
						||
          }
 | 
						||
        } while (part_count < tab_part_info->no_parts);
 | 
						||
        tab_part_info->no_parts= no_parts_remain;
 | 
						||
      }
 | 
						||
      if (!(alter_info->flags & ALTER_TABLE_REORG))
 | 
						||
        tab_part_info->use_default_no_partitions= FALSE;
 | 
						||
    }
 | 
						||
    else if (alter_info->flags == ALTER_REORGANIZE_PARTITION)
 | 
						||
    {
 | 
						||
      /*
 | 
						||
        Reorganise partitions takes a number of partitions that are next
 | 
						||
        to each other (at least for RANGE PARTITIONS) and then uses those
 | 
						||
        to create a set of new partitions. So data is copied from those
 | 
						||
        partitions into the new set of partitions. Those new partitions
 | 
						||
        can have more values in the LIST value specifications or less both
 | 
						||
        are allowed. The ranges can be different but since they are 
 | 
						||
        changing a set of consecutive partitions they must cover the same
 | 
						||
        range as those changed from.
 | 
						||
        This command can be used on RANGE and LIST partitions.
 | 
						||
      */
 | 
						||
      uint no_parts_reorged= alter_info->partition_names.elements;
 | 
						||
      uint no_parts_new= thd->lex->part_info->partitions.elements;
 | 
						||
      partition_info *alt_part_info= thd->lex->part_info;
 | 
						||
      uint check_total_partitions;
 | 
						||
      if (no_parts_reorged > tab_part_info->no_parts)
 | 
						||
      {
 | 
						||
        my_error(ER_REORG_PARTITION_NOT_EXIST, MYF(0));
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
      if (!(tab_part_info->part_type == RANGE_PARTITION ||
 | 
						||
            tab_part_info->part_type == LIST_PARTITION) &&
 | 
						||
           (no_parts_new != no_parts_reorged))
 | 
						||
      {
 | 
						||
        my_error(ER_REORG_HASH_ONLY_ON_SAME_NO, MYF(0));
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
      check_total_partitions= tab_part_info->no_parts + no_parts_new;
 | 
						||
      check_total_partitions-= no_parts_reorged;
 | 
						||
      if (check_total_partitions > MAX_PARTITIONS)
 | 
						||
      {
 | 
						||
        my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
/*
 | 
						||
Online handling:
 | 
						||
REORGANIZE PARTITION:
 | 
						||
---------------------
 | 
						||
The figure exemplifies the handling of partitions, their state changes and
 | 
						||
how they are organised. It exemplifies four partitions where two of the
 | 
						||
partitions are reorganised (p1 and p2) into two new partitions (p4 and p5).
 | 
						||
The reason of this change could be to change range limits, change list
 | 
						||
values or for hash partitions simply reorganise the partition which could
 | 
						||
also involve moving them to new disks or new node groups (MySQL Cluster).
 | 
						||
 | 
						||
Existing partitions                                  
 | 
						||
------       ------        ------        ------
 | 
						||
|    |       |    |        |    |        |    |
 | 
						||
| p0 |       | p1 |        | p2 |        | p3 |
 | 
						||
------       ------        ------        ------
 | 
						||
PART_NORMAL  PART_TO_BE_REORGED          PART_NORMAL
 | 
						||
PART_NORMAL  PART_TO_BE_DROPPED          PART_NORMAL
 | 
						||
PART_NORMAL  PART_IS_DROPPED             PART_NORMAL
 | 
						||
 | 
						||
Reorganised new partitions (replacing p1 and p2)
 | 
						||
------      ------
 | 
						||
|    |      |    |
 | 
						||
| p4 |      | p5 |
 | 
						||
------      ------
 | 
						||
PART_TO_BE_ADDED
 | 
						||
PART_IS_ADDED
 | 
						||
PART_IS_ADDED
 | 
						||
 | 
						||
All unchanged partitions and the new partitions are in the partitions list
 | 
						||
in the order they will have when the change is completed. The reorganised
 | 
						||
partitions are placed in the temp_partitions list. PART_IS_ADDED is only a
 | 
						||
temporary state not written in the frm file. It is used to ensure we write
 | 
						||
the generated partition syntax in a correct manner.
 | 
						||
*/
 | 
						||
      {
 | 
						||
        List_iterator<partition_element> tab_it(tab_part_info->partitions);
 | 
						||
        uint part_count= 0;
 | 
						||
        bool found_first= FALSE;
 | 
						||
        bool found_last= FALSE;
 | 
						||
        bool is_last_partition_reorged;
 | 
						||
        uint drop_count= 0;
 | 
						||
        longlong tab_max_range= 0, alt_max_range= 0;
 | 
						||
        do
 | 
						||
        {
 | 
						||
          partition_element *part_elem= tab_it++;
 | 
						||
          is_last_partition_reorged= FALSE;
 | 
						||
          if (is_name_in_list(part_elem->partition_name,
 | 
						||
                              alter_info->partition_names))
 | 
						||
          {
 | 
						||
            is_last_partition_reorged= TRUE;
 | 
						||
            drop_count++;
 | 
						||
            tab_max_range= part_elem->range_value;
 | 
						||
            if (*fast_alter_partition &&
 | 
						||
                tab_part_info->temp_partitions.push_back(part_elem))
 | 
						||
            {
 | 
						||
              mem_alloc_error(1);
 | 
						||
              DBUG_RETURN(TRUE);
 | 
						||
            }
 | 
						||
            if (*fast_alter_partition)
 | 
						||
              part_elem->part_state= PART_TO_BE_REORGED;
 | 
						||
            if (!found_first)
 | 
						||
            {
 | 
						||
              uint alt_part_count= 0;
 | 
						||
              found_first= TRUE;
 | 
						||
              List_iterator<partition_element>
 | 
						||
                                 alt_it(alt_part_info->partitions);
 | 
						||
              do
 | 
						||
              {
 | 
						||
                partition_element *alt_part_elem= alt_it++;
 | 
						||
                alt_max_range= alt_part_elem->range_value;
 | 
						||
                if (*fast_alter_partition)
 | 
						||
                  alt_part_elem->part_state= PART_TO_BE_ADDED;
 | 
						||
                if (alt_part_count == 0)
 | 
						||
                  tab_it.replace(alt_part_elem);
 | 
						||
                else
 | 
						||
                  tab_it.after(alt_part_elem);
 | 
						||
              } while (++alt_part_count < no_parts_new);
 | 
						||
            }
 | 
						||
            else if (found_last)
 | 
						||
            {
 | 
						||
              my_error(ER_CONSECUTIVE_REORG_PARTITIONS, MYF(0));
 | 
						||
              DBUG_RETURN(TRUE);
 | 
						||
            }
 | 
						||
            else
 | 
						||
              tab_it.remove();
 | 
						||
          }
 | 
						||
          else
 | 
						||
          {
 | 
						||
            if (found_first)
 | 
						||
              found_last= TRUE;
 | 
						||
          }
 | 
						||
        } while (++part_count < tab_part_info->no_parts);
 | 
						||
        if (drop_count != no_parts_reorged)
 | 
						||
        {
 | 
						||
          my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "REORGANIZE");
 | 
						||
          DBUG_RETURN(TRUE);
 | 
						||
        }
 | 
						||
        if (tab_part_info->part_type == RANGE_PARTITION &&
 | 
						||
            ((is_last_partition_reorged &&
 | 
						||
               alt_max_range < tab_max_range) ||
 | 
						||
              (!is_last_partition_reorged &&
 | 
						||
               alt_max_range != tab_max_range)))
 | 
						||
        {
 | 
						||
          /*
 | 
						||
            For range partitioning the total resulting range before and
 | 
						||
            after the change must be the same except in one case. This is
 | 
						||
            when the last partition is reorganised, in this case it is
 | 
						||
            acceptable to increase the total range.
 | 
						||
            The reason is that it is not allowed to have "holes" in the
 | 
						||
            middle of the ranges and thus we should not allow to reorganise
 | 
						||
            to create "holes". Also we should not allow using REORGANIZE
 | 
						||
            to drop data.
 | 
						||
          */
 | 
						||
          my_error(ER_REORG_OUTSIDE_RANGE, MYF(0));
 | 
						||
          DBUG_RETURN(TRUE);
 | 
						||
        }
 | 
						||
        tab_part_info->no_parts= check_total_partitions;
 | 
						||
      }
 | 
						||
    }
 | 
						||
    else
 | 
						||
    {
 | 
						||
      DBUG_ASSERT(FALSE);
 | 
						||
    }
 | 
						||
    *partition_changed= TRUE;
 | 
						||
    create_info->db_type= &partition_hton;
 | 
						||
    thd->lex->part_info= tab_part_info;
 | 
						||
    if (alter_info->flags == ALTER_ADD_PARTITION ||
 | 
						||
        alter_info->flags == ALTER_REORGANIZE_PARTITION)
 | 
						||
    {
 | 
						||
      if (check_partition_info(tab_part_info, (handlerton**)NULL,
 | 
						||
                               table->file, ULL(0)))
 | 
						||
      {
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
  else
 | 
						||
  {
 | 
						||
    /*
 | 
						||
     When thd->lex->part_info has a reference to a partition_info the
 | 
						||
     ALTER TABLE contained a definition of a partitioning.
 | 
						||
 | 
						||
     Case I:
 | 
						||
       If there was a partition before and there is a new one defined.
 | 
						||
       We use the new partitioning. The new partitioning is already
 | 
						||
       defined in the correct variable so no work is needed to
 | 
						||
       accomplish this.
 | 
						||
       We do however need to update partition_changed to ensure that not
 | 
						||
       only the frm file is changed in the ALTER TABLE command.
 | 
						||
 | 
						||
     Case IIa:
 | 
						||
       There was a partitioning before and there is no new one defined.
 | 
						||
       Also the user has not specified an explicit engine to use.
 | 
						||
 | 
						||
       We use the old partitioning also for the new table. We do this
 | 
						||
       by assigning the partition_info from the table loaded in
 | 
						||
       open_ltable to the partition_info struct used by mysql_create_table
 | 
						||
       later in this method.
 | 
						||
 | 
						||
     Case IIb:
 | 
						||
       There was a partitioning before and there is no new one defined.
 | 
						||
       The user has specified an explicit engine to use.
 | 
						||
 | 
						||
       Since the user has specified an explicit engine to use we override
 | 
						||
       the old partitioning info and create a new table using the specified
 | 
						||
       engine. This is the reason for the extra check if old and new engine
 | 
						||
       is equal.
 | 
						||
       In this case the partition also is changed.
 | 
						||
 | 
						||
     Case III:
 | 
						||
       There was no partitioning before altering the table, there is
 | 
						||
       partitioning defined in the altered table. Use the new partitioning.
 | 
						||
       No work needed since the partitioning info is already in the
 | 
						||
       correct variable.
 | 
						||
 | 
						||
       In this case we discover one case where the new partitioning is using
 | 
						||
       the same partition function as the default (PARTITION BY KEY or
 | 
						||
       PARTITION BY LINEAR KEY with the list of fields equal to the primary
 | 
						||
       key fields OR PARTITION BY [LINEAR] KEY() for tables without primary
 | 
						||
       key)
 | 
						||
       Also here partition has changed and thus a new table must be
 | 
						||
       created.
 | 
						||
 | 
						||
     Case IV:
 | 
						||
       There was no partitioning before and no partitioning defined.
 | 
						||
       Obviously no work needed.
 | 
						||
    */
 | 
						||
    if (table->part_info)
 | 
						||
    {
 | 
						||
      if (!thd->lex->part_info &&
 | 
						||
          create_info->db_type == old_db_type)
 | 
						||
        thd->lex->part_info= table->part_info;
 | 
						||
    }
 | 
						||
    if (thd->lex->part_info)
 | 
						||
    {
 | 
						||
      /*
 | 
						||
        Need to cater for engine types that can handle partition without
 | 
						||
        using the partition handler.
 | 
						||
      */
 | 
						||
      if (thd->lex->part_info != table->part_info)
 | 
						||
        *partition_changed= TRUE;
 | 
						||
      if (create_info->db_type == &partition_hton)
 | 
						||
      {
 | 
						||
        if (table->part_info)
 | 
						||
        {
 | 
						||
          thd->lex->part_info->default_engine_type=
 | 
						||
                               table->part_info->default_engine_type;
 | 
						||
        }
 | 
						||
        else
 | 
						||
        {
 | 
						||
          thd->lex->part_info->default_engine_type= 
 | 
						||
                           ha_checktype(thd, DB_TYPE_DEFAULT, FALSE, FALSE);
 | 
						||
        }
 | 
						||
      }
 | 
						||
      else
 | 
						||
      {
 | 
						||
        bool is_native_partitioned= FALSE;
 | 
						||
        partition_info *part_info= thd->lex->part_info;
 | 
						||
        part_info->default_engine_type= create_info->db_type;
 | 
						||
        if (check_native_partitioned(create_info, &is_native_partitioned,
 | 
						||
                                     part_info, thd))
 | 
						||
        {
 | 
						||
          DBUG_RETURN(TRUE);
 | 
						||
        }
 | 
						||
        if (!is_native_partitioned)
 | 
						||
        {
 | 
						||
          DBUG_ASSERT(create_info->db_type != &default_hton);
 | 
						||
          create_info->db_type= &partition_hton;
 | 
						||
        }
 | 
						||
      }
 | 
						||
      DBUG_PRINT("info", ("default_db_type = %s",
 | 
						||
                 thd->lex->part_info->default_engine_type->name));
 | 
						||
    }
 | 
						||
  }
 | 
						||
  DBUG_RETURN(FALSE);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Change partitions, used to implement ALTER TABLE ADD/REORGANIZE/COALESCE
 | 
						||
  partitions. This method is used to implement both single-phase and multi-
 | 
						||
  phase implementations of ADD/REORGANIZE/COALESCE partitions.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    mysql_change_partitions()
 | 
						||
    lpt                        Struct containing parameters
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    TRUE                          Failure
 | 
						||
    FALSE                         Success
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Request handler to add partitions as set in states of the partition
 | 
						||
 | 
						||
    Elements of the lpt parameters used:
 | 
						||
    create_info                Create information used to create partitions
 | 
						||
    db                         Database name
 | 
						||
    table_name                 Table name
 | 
						||
    copied                     Output parameter where number of copied
 | 
						||
                               records are added
 | 
						||
    deleted                    Output parameter where number of deleted
 | 
						||
                               records are added
 | 
						||
*/
 | 
						||
 | 
						||
static bool mysql_change_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
 | 
						||
{
 | 
						||
  char path[FN_REFLEN+1];
 | 
						||
  DBUG_ENTER("mysql_change_partitions");
 | 
						||
 | 
						||
  build_table_filename(path, sizeof(path), lpt->db, lpt->table_name, "");
 | 
						||
  DBUG_RETURN(lpt->table->file->change_partitions(lpt->create_info, path,
 | 
						||
                                                  &lpt->copied,
 | 
						||
                                                  &lpt->deleted,
 | 
						||
                                                  lpt->pack_frm_data,
 | 
						||
                                                  lpt->pack_frm_len));
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Rename partitions in an ALTER TABLE of partitions
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    mysql_rename_partitions()
 | 
						||
    lpt                        Struct containing parameters
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    TRUE                          Failure
 | 
						||
    FALSE                         Success
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Request handler to rename partitions as set in states of the partition
 | 
						||
 | 
						||
    Parameters used:
 | 
						||
    db                         Database name
 | 
						||
    table_name                 Table name
 | 
						||
*/
 | 
						||
 | 
						||
static bool mysql_rename_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
 | 
						||
{
 | 
						||
  char path[FN_REFLEN+1];
 | 
						||
  DBUG_ENTER("mysql_rename_partitions");
 | 
						||
 | 
						||
  build_table_filename(path, sizeof(path), lpt->db, lpt->table_name, "");
 | 
						||
  DBUG_RETURN(lpt->table->file->rename_partitions(path));
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Drop partitions in an ALTER TABLE of partitions
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    mysql_drop_partitions()
 | 
						||
    lpt                        Struct containing parameters
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    TRUE                          Failure
 | 
						||
    FALSE                         Success
 | 
						||
  DESCRIPTION
 | 
						||
    Drop the partitions marked with PART_TO_BE_DROPPED state and remove
 | 
						||
    those partitions from the list.
 | 
						||
 | 
						||
    Parameters used:
 | 
						||
    table                       Table object
 | 
						||
    db                          Database name
 | 
						||
    table_name                  Table name
 | 
						||
*/
 | 
						||
 | 
						||
static bool mysql_drop_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
 | 
						||
{
 | 
						||
  char path[FN_REFLEN+1];
 | 
						||
  partition_info *part_info= lpt->table->part_info;
 | 
						||
  List_iterator<partition_element> part_it(part_info->partitions);
 | 
						||
  uint i= 0;
 | 
						||
  uint remove_count= 0;
 | 
						||
  DBUG_ENTER("mysql_drop_partitions");
 | 
						||
 | 
						||
  build_table_filename(path, sizeof(path), lpt->db, lpt->table_name, "");
 | 
						||
  if (lpt->table->file->drop_partitions(path))
 | 
						||
  {
 | 
						||
    DBUG_RETURN(TRUE);
 | 
						||
  }
 | 
						||
  do
 | 
						||
  {
 | 
						||
    partition_element *part_elem= part_it++;
 | 
						||
    if (part_elem->part_state == PART_IS_DROPPED)
 | 
						||
    {
 | 
						||
      part_it.remove();
 | 
						||
      remove_count++;
 | 
						||
    }
 | 
						||
  } while (++i < part_info->no_parts);
 | 
						||
  part_info->no_parts-= remove_count;
 | 
						||
  DBUG_RETURN(FALSE);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Actually perform the change requested by ALTER TABLE of partitions
 | 
						||
  previously prepared.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    fast_alter_partition_table()
 | 
						||
    thd                           Thread object
 | 
						||
    table                         Table object
 | 
						||
    alter_info                    ALTER TABLE info
 | 
						||
    create_info                   Create info for CREATE TABLE
 | 
						||
    table_list                    List of the table involved
 | 
						||
    create_list                   The fields in the resulting table
 | 
						||
    key_list                      The keys in the resulting table
 | 
						||
    db                            Database name of new table
 | 
						||
    table_name                    Table name of new table
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    TRUE                          Error
 | 
						||
    FALSE                         Success
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Perform all ALTER TABLE operations for partitioned tables that can be
 | 
						||
    performed fast without a full copy of the original table.
 | 
						||
*/
 | 
						||
 | 
						||
uint fast_alter_partition_table(THD *thd, TABLE *table,
 | 
						||
                                ALTER_INFO *alter_info,
 | 
						||
                                HA_CREATE_INFO *create_info,
 | 
						||
                                TABLE_LIST *table_list,
 | 
						||
                                List<create_field> *create_list,
 | 
						||
                                List<Key> *key_list, const char *db,
 | 
						||
                                const char *table_name,
 | 
						||
                                uint fast_alter_partition)
 | 
						||
{
 | 
						||
  /* Set-up struct used to write frm files */
 | 
						||
  ulonglong copied= 0;
 | 
						||
  ulonglong deleted= 0;
 | 
						||
  partition_info *part_info= table->part_info;
 | 
						||
  ALTER_PARTITION_PARAM_TYPE lpt_obj;
 | 
						||
  ALTER_PARTITION_PARAM_TYPE *lpt= &lpt_obj;
 | 
						||
  bool written_bin_log= TRUE;
 | 
						||
  DBUG_ENTER("fast_alter_partition_table");
 | 
						||
 | 
						||
  lpt->thd= thd;
 | 
						||
  lpt->create_info= create_info;
 | 
						||
  lpt->create_list= create_list;
 | 
						||
  lpt->key_list= key_list;
 | 
						||
  lpt->db_options= create_info->table_options;
 | 
						||
  if (create_info->row_type == ROW_TYPE_DYNAMIC)
 | 
						||
    lpt->db_options|= HA_OPTION_PACK_RECORD;
 | 
						||
  lpt->table= table;
 | 
						||
  lpt->key_info_buffer= 0;
 | 
						||
  lpt->key_count= 0;
 | 
						||
  lpt->db= db;
 | 
						||
  lpt->table_name= table_name;
 | 
						||
  lpt->copied= 0;
 | 
						||
  lpt->deleted= 0;
 | 
						||
  lpt->pack_frm_data= NULL;
 | 
						||
  lpt->pack_frm_len= 0;
 | 
						||
  thd->lex->part_info= part_info;
 | 
						||
 | 
						||
  if (alter_info->flags & ALTER_OPTIMIZE_PARTITION ||
 | 
						||
      alter_info->flags & ALTER_ANALYZE_PARTITION ||
 | 
						||
      alter_info->flags & ALTER_CHECK_PARTITION ||
 | 
						||
      alter_info->flags & ALTER_REPAIR_PARTITION)
 | 
						||
  {
 | 
						||
    /*
 | 
						||
      In this case the user has specified that he wants a set of partitions
 | 
						||
      to be optimised and the partition engine can handle optimising
 | 
						||
      partitions natively without requiring a full rebuild of the
 | 
						||
      partitions.
 | 
						||
 | 
						||
      In this case it is enough to call optimise_partitions, there is no
 | 
						||
      need to change frm files or anything else.
 | 
						||
    */
 | 
						||
    written_bin_log= FALSE;
 | 
						||
    if (((alter_info->flags & ALTER_OPTIMIZE_PARTITION) &&
 | 
						||
         (table->file->optimize_partitions(thd))) ||
 | 
						||
        ((alter_info->flags & ALTER_ANALYZE_PARTITION) &&
 | 
						||
         (table->file->analyze_partitions(thd))) ||
 | 
						||
        ((alter_info->flags & ALTER_CHECK_PARTITION) &&
 | 
						||
         (table->file->check_partitions(thd))) ||
 | 
						||
        ((alter_info->flags & ALTER_REPAIR_PARTITION) &&
 | 
						||
         (table->file->repair_partitions(thd))))
 | 
						||
    {
 | 
						||
      fast_alter_partition_error_handler(lpt);
 | 
						||
      DBUG_RETURN(TRUE);
 | 
						||
    }
 | 
						||
  }
 | 
						||
  else if (fast_alter_partition & HA_PARTITION_ONE_PHASE)
 | 
						||
  {
 | 
						||
    /*
 | 
						||
      In the case where the engine supports one phase online partition
 | 
						||
      changes it is not necessary to have any exclusive locks. The
 | 
						||
      correctness is upheld instead by transactions being aborted if they
 | 
						||
      access the table after its partition definition has changed (if they
 | 
						||
      are still using the old partition definition).
 | 
						||
 | 
						||
      The handler is in this case responsible to ensure that all users
 | 
						||
      start using the new frm file after it has changed. To implement
 | 
						||
      one phase it is necessary for the handler to have the master copy
 | 
						||
      of the frm file and use discovery mechanisms to renew it. Thus
 | 
						||
      write frm will write the frm, pack the new frm and finally
 | 
						||
      the frm is deleted and the discovery mechanisms will either restore
 | 
						||
      back to the old or installing the new after the change is activated.
 | 
						||
 | 
						||
      Thus all open tables will be discovered that they are old, if not
 | 
						||
      earlier as soon as they try an operation using the old table. One
 | 
						||
      should ensure that this is checked already when opening a table,
 | 
						||
      even if it is found in the cache of open tables.
 | 
						||
 | 
						||
      change_partitions will perform all operations and it is the duty of
 | 
						||
      the handler to ensure that the frm files in the system gets updated
 | 
						||
      in synch with the changes made and if an error occurs that a proper
 | 
						||
      error handling is done.
 | 
						||
 | 
						||
      If the MySQL Server crashes at this moment but the handler succeeds
 | 
						||
      in performing the change then the binlog is not written for the
 | 
						||
      change. There is no way to solve this as long as the binlog is not
 | 
						||
      transactional and even then it is hard to solve it completely.
 | 
						||
 
 | 
						||
      The first approach here was to downgrade locks. Now a different approach
 | 
						||
      is decided upon. The idea is that the handler will have access to the
 | 
						||
      ALTER_INFO when store_lock arrives with TL_WRITE_ALLOW_READ. So if the
 | 
						||
      handler knows that this functionality can be handled with a lower lock
 | 
						||
      level it will set the lock level to TL_WRITE_ALLOW_WRITE immediately.
 | 
						||
      Thus the need to downgrade the lock disappears.
 | 
						||
      1) Write the new frm, pack it and then delete it
 | 
						||
      2) Perform the change within the handler
 | 
						||
    */
 | 
						||
    if ((mysql_write_frm(lpt, WFRM_INITIAL_WRITE | WFRM_PACK_FRM)) ||
 | 
						||
        (mysql_change_partitions(lpt)))
 | 
						||
    {
 | 
						||
      fast_alter_partition_error_handler(lpt);
 | 
						||
      DBUG_RETURN(TRUE);
 | 
						||
    }
 | 
						||
  }
 | 
						||
  else if (alter_info->flags == ALTER_DROP_PARTITION)
 | 
						||
  {
 | 
						||
    /*
 | 
						||
      Now after all checks and setting state on dropped partitions we can
 | 
						||
      start the actual dropping of the partitions.
 | 
						||
 | 
						||
      Drop partition is actually two things happening. The first is that
 | 
						||
      a lot of records are deleted. The second is that the behaviour of
 | 
						||
      subsequent updates and writes and deletes will change. The delete
 | 
						||
      part can be handled without any particular high lock level by
 | 
						||
      transactional engines whereas non-transactional engines need to
 | 
						||
      ensure that this change is done with an exclusive lock on the table.
 | 
						||
      The second part, the change of partitioning does however require
 | 
						||
      an exclusive lock to install the new partitioning as one atomic
 | 
						||
      operation. If this is not the case, it is possible for two
 | 
						||
      transactions to see the change in a different order than their
 | 
						||
      serialisation order. Thus we need an exclusive lock for both
 | 
						||
      transactional and non-transactional engines.
 | 
						||
 | 
						||
      For LIST partitions it could be possible to avoid the exclusive lock
 | 
						||
      (and for RANGE partitions if they didn't rearrange range definitions
 | 
						||
      after a DROP PARTITION) if one ensured that failed accesses to the
 | 
						||
      dropped partitions was aborted for sure (thus only possible for
 | 
						||
      transactional engines).
 | 
						||
      
 | 
						||
      1) Lock the table in TL_WRITE_ONLY to ensure all other accesses to
 | 
						||
         the table have completed
 | 
						||
      2) Write the new frm file where the partitions have changed but are
 | 
						||
         still remaining with the state PART_TO_BE_DROPPED
 | 
						||
      3) Write the bin log
 | 
						||
      4) Prepare MyISAM handlers for drop of partitions
 | 
						||
      5) Ensure that any users that has opened the table but not yet
 | 
						||
         reached the abort lock do that before downgrading the lock.
 | 
						||
      6) Drop the partitions
 | 
						||
      7) Write the frm file that the partition has been dropped
 | 
						||
      8) Wait until all accesses using the old frm file has completed
 | 
						||
      9) Complete query
 | 
						||
    */
 | 
						||
    if ((abort_and_upgrade_lock(lpt)) ||
 | 
						||
        (mysql_write_frm(lpt, WFRM_INITIAL_WRITE)) ||
 | 
						||
        ((!thd->lex->no_write_to_binlog) &&
 | 
						||
         (write_bin_log(thd, FALSE,
 | 
						||
                       thd->query, thd->query_length), FALSE)) ||
 | 
						||
        (table->file->extra(HA_EXTRA_PREPARE_FOR_DELETE)) ||
 | 
						||
        (close_open_tables_and_downgrade(lpt), FALSE) || 
 | 
						||
        (mysql_drop_partitions(lpt)) ||
 | 
						||
        (mysql_write_frm(lpt, WFRM_CREATE_HANDLER_FILES)) ||
 | 
						||
        (mysql_wait_completed_table(lpt, table), FALSE))
 | 
						||
    {
 | 
						||
      fast_alter_partition_error_handler(lpt);
 | 
						||
      DBUG_RETURN(TRUE);
 | 
						||
    }
 | 
						||
  }
 | 
						||
  else if ((alter_info->flags & ALTER_ADD_PARTITION) &&
 | 
						||
           (part_info->part_type == RANGE_PARTITION ||
 | 
						||
            part_info->part_type == LIST_PARTITION))
 | 
						||
  {
 | 
						||
    /*
 | 
						||
      ADD RANGE/LIST PARTITIONS
 | 
						||
      In this case there are no tuples removed and no tuples are added.
 | 
						||
      Thus the operation is merely adding a new partition. Thus it is
 | 
						||
      necessary to perform the change as an atomic operation. Otherwise
 | 
						||
      someone reading without seeing the new partition could potentially
 | 
						||
      miss updates made by a transaction serialised before it that are
 | 
						||
      inserted into the new partition.
 | 
						||
 | 
						||
      1) Write the new frm file where state of added partitions is
 | 
						||
         changed to PART_TO_BE_ADDED
 | 
						||
      2) Add the new partitions
 | 
						||
      3) Lock all partitions in TL_WRITE_ONLY to ensure that no users
 | 
						||
         are still using the old partitioning scheme. Wait until all
 | 
						||
         ongoing users have completed before progressing.
 | 
						||
      4) Write a new frm file of the table where the partitions are added
 | 
						||
         to the table.
 | 
						||
      5) Write binlog
 | 
						||
      6) Wait until all accesses using the old frm file has completed
 | 
						||
      7) Complete query
 | 
						||
    */
 | 
						||
    if ((mysql_write_frm(lpt, WFRM_INITIAL_WRITE)) ||
 | 
						||
        (mysql_change_partitions(lpt)) ||
 | 
						||
        (abort_and_upgrade_lock(lpt)) ||
 | 
						||
        (mysql_write_frm(lpt, WFRM_CREATE_HANDLER_FILES)) ||
 | 
						||
        ((!thd->lex->no_write_to_binlog) &&
 | 
						||
         (write_bin_log(thd, FALSE,
 | 
						||
                        thd->query, thd->query_length), FALSE)) ||
 | 
						||
        (close_open_tables_and_downgrade(lpt), FALSE))
 | 
						||
    {
 | 
						||
      fast_alter_partition_error_handler(lpt);
 | 
						||
      DBUG_RETURN(TRUE);
 | 
						||
    }
 | 
						||
  }
 | 
						||
  else
 | 
						||
  {
 | 
						||
    /*
 | 
						||
      ADD HASH PARTITION/
 | 
						||
      COALESCE PARTITION/
 | 
						||
      REBUILD PARTITION/
 | 
						||
      REORGANIZE PARTITION
 | 
						||
 
 | 
						||
      In this case all records are still around after the change although
 | 
						||
      possibly organised into new partitions, thus by ensuring that all
 | 
						||
      updates go to both the old and the new partitioning scheme we can
 | 
						||
      actually perform this operation lock-free. The only exception to
 | 
						||
      this is when REORGANIZE PARTITION adds/drops ranges. In this case
 | 
						||
      there needs to be an exclusive lock during the time when the range
 | 
						||
      changes occur.
 | 
						||
      This is only possible if the handler can ensure double-write for a
 | 
						||
      period. The double write will ensure that it doesn't matter where the
 | 
						||
      data is read from since both places are updated for writes. If such
 | 
						||
      double writing is not performed then it is necessary to perform the
 | 
						||
      change with the usual exclusive lock. With double writes it is even
 | 
						||
      possible to perform writes in parallel with the reorganisation of
 | 
						||
      partitions.
 | 
						||
 | 
						||
      Without double write procedure we get the following procedure.
 | 
						||
      The only difference with using double write is that we can downgrade
 | 
						||
      the lock to TL_WRITE_ALLOW_WRITE. Double write in this case only
 | 
						||
      double writes from old to new. If we had double writing in both
 | 
						||
      directions we could perform the change completely without exclusive
 | 
						||
      lock for HASH partitions.
 | 
						||
      Handlers that perform double writing during the copy phase can actually
 | 
						||
      use a lower lock level. This can be handled inside store_lock in the
 | 
						||
      respective handler.
 | 
						||
 | 
						||
      1) Write the new frm file where state of added partitions is
 | 
						||
         changed to PART_TO_BE_ADDED and the reorganised partitions
 | 
						||
         are set in state PART_TO_BE_REORGED.
 | 
						||
      2) Add the new partitions
 | 
						||
         Copy from the reorganised partitions to the new partitions
 | 
						||
      3) Lock all partitions in TL_WRITE_ONLY to ensure that no users
 | 
						||
         are still using the old partitioning scheme. Wait until all
 | 
						||
         ongoing users have completed before progressing.
 | 
						||
      4) Prepare MyISAM handlers for rename and delete of partitions
 | 
						||
      5) Write a new frm file of the table where the partitions are
 | 
						||
         reorganised.
 | 
						||
      6) Rename the reorged partitions such that they are no longer
 | 
						||
         used and rename those added to their real new names.
 | 
						||
      7) Write bin log
 | 
						||
      8) Wait until all accesses using the old frm file has completed
 | 
						||
      9) Drop the reorganised partitions
 | 
						||
      10)Write a new frm file of the table where the partitions are
 | 
						||
         reorganised.
 | 
						||
      11)Wait until all accesses using the old frm file has completed
 | 
						||
      12)Complete query
 | 
						||
    */
 | 
						||
 | 
						||
    if ((mysql_write_frm(lpt, WFRM_INITIAL_WRITE)) ||
 | 
						||
        (mysql_change_partitions(lpt)) ||
 | 
						||
        (abort_and_upgrade_lock(lpt)) ||
 | 
						||
        (mysql_write_frm(lpt, WFRM_CREATE_HANDLER_FILES)) ||
 | 
						||
        (table->file->extra(HA_EXTRA_PREPARE_FOR_DELETE)) ||
 | 
						||
        (mysql_rename_partitions(lpt)) ||
 | 
						||
        ((!thd->lex->no_write_to_binlog) &&
 | 
						||
         (write_bin_log(thd, FALSE,
 | 
						||
                        thd->query, thd->query_length), FALSE)) ||
 | 
						||
        (close_open_tables_and_downgrade(lpt), FALSE) ||
 | 
						||
        (mysql_drop_partitions(lpt)) ||
 | 
						||
        (mysql_write_frm(lpt, 0UL)) ||
 | 
						||
        (mysql_wait_completed_table(lpt, table), FALSE))
 | 
						||
    {
 | 
						||
        fast_alter_partition_error_handler(lpt);
 | 
						||
        DBUG_RETURN(TRUE);
 | 
						||
    }
 | 
						||
  }
 | 
						||
  /*
 | 
						||
    A final step is to write the query to the binlog and send ok to the
 | 
						||
    user
 | 
						||
  */
 | 
						||
  DBUG_RETURN(fast_end_partition(thd, lpt->copied, lpt->deleted,
 | 
						||
                                 table_list, FALSE, lpt,
 | 
						||
                                 written_bin_log));
 | 
						||
}
 | 
						||
#endif
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Prepare for calling val_int on partition function by setting fields to
 | 
						||
  point to the record where the values of the PF-fields are stored.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    set_field_ptr()
 | 
						||
    ptr                 Array of fields to change ptr
 | 
						||
    new_buf             New record pointer
 | 
						||
    old_buf             Old record pointer
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Set ptr in field objects of field array to refer to new_buf record
 | 
						||
    instead of previously old_buf. Used before calling val_int and after
 | 
						||
    it is used to restore pointers to table->record[0].
 | 
						||
    This routine is placed outside of partition code since it can be useful
 | 
						||
    also for other programs.
 | 
						||
*/
 | 
						||
 | 
						||
void set_field_ptr(Field **ptr, const byte *new_buf,
 | 
						||
                   const byte *old_buf)
 | 
						||
{
 | 
						||
  my_ptrdiff_t diff= (new_buf - old_buf);
 | 
						||
  DBUG_ENTER("set_field_ptr");
 | 
						||
 | 
						||
  do
 | 
						||
  {
 | 
						||
    (*ptr)->move_field_offset(diff);
 | 
						||
  } while (*(++ptr));
 | 
						||
  DBUG_VOID_RETURN;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Prepare for calling val_int on partition function by setting fields to
 | 
						||
  point to the record where the values of the PF-fields are stored.
 | 
						||
  This variant works on a key_part reference.
 | 
						||
  It is not required that all fields are NOT NULL fields.
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    set_key_field_ptr()
 | 
						||
    key_info            key info with a set of fields to change ptr
 | 
						||
    new_buf             New record pointer
 | 
						||
    old_buf             Old record pointer
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Set ptr in field objects of field array to refer to new_buf record
 | 
						||
    instead of previously old_buf. Used before calling val_int and after
 | 
						||
    it is used to restore pointers to table->record[0].
 | 
						||
    This routine is placed outside of partition code since it can be useful
 | 
						||
    also for other programs.
 | 
						||
*/
 | 
						||
 | 
						||
void set_key_field_ptr(KEY *key_info, const byte *new_buf,
 | 
						||
                       const byte *old_buf)
 | 
						||
{
 | 
						||
  KEY_PART_INFO *key_part= key_info->key_part;
 | 
						||
  uint key_parts= key_info->key_parts;
 | 
						||
  uint i= 0;
 | 
						||
  my_ptrdiff_t diff= (new_buf - old_buf);
 | 
						||
  DBUG_ENTER("set_key_field_ptr");
 | 
						||
 | 
						||
  do
 | 
						||
  {
 | 
						||
    key_part->field->move_field_offset(diff);
 | 
						||
    key_part++;
 | 
						||
  } while (++i < key_parts);
 | 
						||
  DBUG_VOID_RETURN;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  SYNOPSIS
 | 
						||
    mem_alloc_error()
 | 
						||
    size                Size of memory attempted to allocate
 | 
						||
    None
 | 
						||
 | 
						||
  RETURN VALUES
 | 
						||
    None
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    A routine to use for all the many places in the code where memory
 | 
						||
    allocation error can happen, a tremendous amount of them, needs
 | 
						||
    simple routine that signals this error.
 | 
						||
*/
 | 
						||
 | 
						||
void mem_alloc_error(size_t size)
 | 
						||
{
 | 
						||
  my_error(ER_OUTOFMEMORY, MYF(0), size);
 | 
						||
}
 | 
						||
 | 
						||
#ifdef WITH_PARTITION_STORAGE_ENGINE
 | 
						||
/*
 | 
						||
  Return comma-separated list of used partitions in the provided given string
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    make_used_partitions_str()
 | 
						||
      part_info  IN  Partitioning info
 | 
						||
      parts_str  OUT The string to fill
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Generate a list of used partitions (from bits in part_info->used_partitions
 | 
						||
    bitmap), asd store it into the provided String object.
 | 
						||
    
 | 
						||
  NOTE
 | 
						||
    The produced string must not be longer then MAX_PARTITIONS * (1 + FN_LEN).
 | 
						||
*/
 | 
						||
 | 
						||
void make_used_partitions_str(partition_info *part_info, String *parts_str)
 | 
						||
{
 | 
						||
  parts_str->length(0);
 | 
						||
  partition_element *pe;
 | 
						||
  uint partition_id= 0;
 | 
						||
  List_iterator<partition_element> it(part_info->partitions);
 | 
						||
  
 | 
						||
  if (is_sub_partitioned(part_info))
 | 
						||
  {
 | 
						||
    partition_element *head_pe;
 | 
						||
    while ((head_pe= it++))
 | 
						||
    {
 | 
						||
      List_iterator<partition_element> it2(head_pe->subpartitions);
 | 
						||
      while ((pe= it2++))
 | 
						||
      {
 | 
						||
        if (bitmap_is_set(&part_info->used_partitions, partition_id))
 | 
						||
        {
 | 
						||
          if (parts_str->length())
 | 
						||
            parts_str->append(',');
 | 
						||
          parts_str->append(head_pe->partition_name,
 | 
						||
                           strlen(head_pe->partition_name),
 | 
						||
                           system_charset_info);
 | 
						||
          parts_str->append('_');
 | 
						||
          parts_str->append(pe->partition_name,
 | 
						||
                           strlen(pe->partition_name),
 | 
						||
                           system_charset_info);
 | 
						||
        }
 | 
						||
        partition_id++;
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
  else
 | 
						||
  {
 | 
						||
    while ((pe= it++))
 | 
						||
    {
 | 
						||
      if (bitmap_is_set(&part_info->used_partitions, partition_id))
 | 
						||
      {
 | 
						||
        if (parts_str->length())
 | 
						||
          parts_str->append(',');
 | 
						||
        parts_str->append(pe->partition_name, strlen(pe->partition_name),
 | 
						||
                         system_charset_info);
 | 
						||
      }
 | 
						||
      partition_id++;
 | 
						||
    }
 | 
						||
  }
 | 
						||
}
 | 
						||
#endif
 | 
						||
 | 
						||
/****************************************************************************
 | 
						||
 * Partition interval analysis support
 | 
						||
 ***************************************************************************/
 | 
						||
 | 
						||
/*
 | 
						||
  Setup partition_info::* members related to partitioning range analysis
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    set_up_partition_func_pointers()
 | 
						||
      part_info  Partitioning info structure
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Assuming that passed partition_info structure already has correct values
 | 
						||
    for members that specify [sub]partitioning type, table fields, and
 | 
						||
    functions, set up partition_info::* members that are related to
 | 
						||
    Partitioning Interval Analysis (see get_partitions_in_range_iter for its
 | 
						||
    definition)
 | 
						||
 | 
						||
  IMPLEMENTATION
 | 
						||
    There are two available interval analyzer functions:
 | 
						||
    (1) get_part_iter_for_interval_via_mapping 
 | 
						||
    (2) get_part_iter_for_interval_via_walking
 | 
						||
 | 
						||
    They both have limited applicability:
 | 
						||
    (1) is applicable for "PARTITION BY <RANGE|LIST>(func(t.field))", where
 | 
						||
    func is a monotonic function.
 | 
						||
    
 | 
						||
    (2) is applicable for 
 | 
						||
      "[SUB]PARTITION BY <any-partitioning-type>(any_func(t.integer_field))"
 | 
						||
      
 | 
						||
    If both are applicable, (1) is preferred over (2).
 | 
						||
    
 | 
						||
    This function sets part_info::get_part_iter_for_interval according to
 | 
						||
    this criteria, and also sets some auxilary fields that the function
 | 
						||
    uses.
 | 
						||
*/
 | 
						||
#ifdef WITH_PARTITION_STORAGE_ENGINE
 | 
						||
static void set_up_range_analysis_info(partition_info *part_info)
 | 
						||
{
 | 
						||
  enum_monotonicity_info minfo;
 | 
						||
 | 
						||
  /* Set the catch-all default */
 | 
						||
  part_info->get_part_iter_for_interval= NULL;
 | 
						||
  part_info->get_subpart_iter_for_interval= NULL;
 | 
						||
 | 
						||
  /* 
 | 
						||
    Check if get_part_iter_for_interval_via_mapping() can be used for 
 | 
						||
    partitioning
 | 
						||
  */
 | 
						||
  switch (part_info->part_type) {
 | 
						||
  case RANGE_PARTITION:
 | 
						||
  case LIST_PARTITION:
 | 
						||
    minfo= part_info->part_expr->get_monotonicity_info();
 | 
						||
    if (minfo != NON_MONOTONIC)
 | 
						||
    {
 | 
						||
      part_info->range_analysis_include_bounds=
 | 
						||
        test(minfo == MONOTONIC_INCREASING);
 | 
						||
      part_info->get_part_iter_for_interval=
 | 
						||
        get_part_iter_for_interval_via_mapping;
 | 
						||
      goto setup_subparts;
 | 
						||
    }
 | 
						||
  default:
 | 
						||
    ;
 | 
						||
  }
 | 
						||
   
 | 
						||
  /*
 | 
						||
    Check get_part_iter_for_interval_via_walking() can be used for
 | 
						||
    partitioning
 | 
						||
  */
 | 
						||
  if (part_info->no_part_fields == 1)
 | 
						||
  {
 | 
						||
    Field *field= part_info->part_field_array[0];
 | 
						||
    switch (field->type()) {
 | 
						||
    case MYSQL_TYPE_TINY:
 | 
						||
    case MYSQL_TYPE_SHORT:
 | 
						||
    case MYSQL_TYPE_LONG:
 | 
						||
    case MYSQL_TYPE_LONGLONG:
 | 
						||
      part_info->get_part_iter_for_interval=
 | 
						||
        get_part_iter_for_interval_via_walking;
 | 
						||
      break;
 | 
						||
    default:
 | 
						||
      ;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
setup_subparts:
 | 
						||
  /*
 | 
						||
    Check get_part_iter_for_interval_via_walking() can be used for
 | 
						||
    subpartitioning
 | 
						||
  */
 | 
						||
  if (part_info->no_subpart_fields == 1)
 | 
						||
  {
 | 
						||
    Field *field= part_info->subpart_field_array[0];
 | 
						||
    switch (field->type()) {
 | 
						||
    case MYSQL_TYPE_TINY:
 | 
						||
    case MYSQL_TYPE_SHORT:
 | 
						||
    case MYSQL_TYPE_LONG:
 | 
						||
    case MYSQL_TYPE_LONGLONG:
 | 
						||
      part_info->get_subpart_iter_for_interval=
 | 
						||
        get_part_iter_for_interval_via_walking;
 | 
						||
      break;
 | 
						||
    default:
 | 
						||
      ;
 | 
						||
    }
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
 | 
						||
                                    bool include_endpoint);
 | 
						||
 | 
						||
/*
 | 
						||
  Partitioning Interval Analysis: Initialize the iterator for "mapping" case
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_part_iter_for_interval_via_mapping()
 | 
						||
      part_info   Partition info
 | 
						||
      is_subpart  TRUE  - act for subpartitioning
 | 
						||
                  FALSE - act for partitioning
 | 
						||
      min_value   minimum field value, in opt_range key format.
 | 
						||
      max_value   minimum field value, in opt_range key format.
 | 
						||
      flags       Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
 | 
						||
                  NO_MAX_RANGE.
 | 
						||
      part_iter   Iterator structure to be initialized
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Initialize partition set iterator to walk over the interval in
 | 
						||
    ordered-array-of-partitions (for RANGE partitioning) or 
 | 
						||
    ordered-array-of-list-constants (for LIST partitioning) space.
 | 
						||
 | 
						||
  IMPLEMENTATION
 | 
						||
    This function is used when partitioning is done by
 | 
						||
    <RANGE|LIST>(ascending_func(t.field)), and we can map an interval in
 | 
						||
    t.field space into a sub-array of partition_info::range_int_array or
 | 
						||
    partition_info::list_array (see get_partition_id_range_for_endpoint,
 | 
						||
    get_list_array_idx_for_endpoint for details).
 | 
						||
    
 | 
						||
    The function performs this interval mapping, and sets the iterator to
 | 
						||
    traverse the sub-array and return appropriate partitions.
 | 
						||
    
 | 
						||
  RETURN
 | 
						||
    0 - No matching partitions (iterator not initialized)
 | 
						||
    1 - Ok, iterator intialized for traversal of matching partitions.
 | 
						||
   -1 - All partitions would match (iterator not initialized)
 | 
						||
*/
 | 
						||
 | 
						||
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
 | 
						||
                                           bool is_subpart,
 | 
						||
                                           char *min_value, char *max_value,
 | 
						||
                                           uint flags,
 | 
						||
                                           PARTITION_ITERATOR *part_iter)
 | 
						||
{
 | 
						||
  DBUG_ASSERT(!is_subpart);
 | 
						||
  Field *field= part_info->part_field_array[0];
 | 
						||
  uint32             max_endpoint_val;
 | 
						||
  get_endpoint_func  get_endpoint;
 | 
						||
  uint field_len= field->pack_length_in_rec();
 | 
						||
 | 
						||
  if (part_info->part_type == RANGE_PARTITION)
 | 
						||
  {
 | 
						||
    get_endpoint=        get_partition_id_range_for_endpoint;
 | 
						||
    max_endpoint_val=    part_info->no_parts;
 | 
						||
    part_iter->get_next= get_next_partition_id_range;
 | 
						||
  }
 | 
						||
  else if (part_info->part_type == LIST_PARTITION)
 | 
						||
  {
 | 
						||
    get_endpoint=        get_list_array_idx_for_endpoint;
 | 
						||
    max_endpoint_val=    part_info->no_list_values;
 | 
						||
    part_iter->get_next= get_next_partition_id_list;
 | 
						||
    part_iter->part_info= part_info;
 | 
						||
  }
 | 
						||
  else
 | 
						||
    DBUG_ASSERT(0);
 | 
						||
 | 
						||
  /* Find minimum */
 | 
						||
  if (flags & NO_MIN_RANGE)
 | 
						||
    part_iter->part_nums.start= 0;
 | 
						||
  else
 | 
						||
  {
 | 
						||
    /*
 | 
						||
      Store the interval edge in the record buffer, and call the
 | 
						||
      function that maps the edge in table-field space to an edge
 | 
						||
      in ordered-set-of-partitions (for RANGE partitioning) or 
 | 
						||
      index-in-ordered-array-of-list-constants (for LIST) space.
 | 
						||
    */
 | 
						||
    store_key_image_to_rec(field, min_value, field_len);
 | 
						||
    bool include_endp= part_info->range_analysis_include_bounds ||
 | 
						||
                       !test(flags & NEAR_MIN);
 | 
						||
    part_iter->part_nums.start= get_endpoint(part_info, 1, include_endp);
 | 
						||
    if (part_iter->part_nums.start == max_endpoint_val)
 | 
						||
      return 0; /* No partitions */
 | 
						||
  }
 | 
						||
 | 
						||
  /* Find maximum, do the same as above but for right interval bound */
 | 
						||
  if (flags & NO_MAX_RANGE)
 | 
						||
    part_iter->part_nums.end= max_endpoint_val;
 | 
						||
  else
 | 
						||
  {
 | 
						||
    store_key_image_to_rec(field, max_value, field_len);
 | 
						||
    bool include_endp= part_info->range_analysis_include_bounds ||
 | 
						||
                       !test(flags & NEAR_MAX);
 | 
						||
    part_iter->part_nums.end= get_endpoint(part_info, 0, include_endp);
 | 
						||
    if (part_iter->part_nums.start== part_iter->part_nums.end)
 | 
						||
      return 0; /* No partitions */
 | 
						||
  }
 | 
						||
  return 1; /* Ok, iterator initialized */
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/* See get_part_iter_for_interval_via_walking for definition of what this is */
 | 
						||
#define MAX_RANGE_TO_WALK 10
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  Partitioning Interval Analysis: Initialize iterator to walk field interval
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_part_iter_for_interval_via_walking()
 | 
						||
      part_info   Partition info
 | 
						||
      is_subpart  TRUE  - act for subpartitioning
 | 
						||
                  FALSE - act for partitioning
 | 
						||
      min_value   minimum field value, in opt_range key format.
 | 
						||
      max_value   minimum field value, in opt_range key format.
 | 
						||
      flags       Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
 | 
						||
                  NO_MAX_RANGE.
 | 
						||
      part_iter   Iterator structure to be initialized
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    Initialize partition set iterator to walk over interval in integer field
 | 
						||
    space. That is, for "const1 <=? t.field <=? const2" interval, initialize 
 | 
						||
    the iterator to return a set of [sub]partitions obtained with the
 | 
						||
    following procedure:
 | 
						||
      get partition id for t.field = const1,   return it
 | 
						||
      get partition id for t.field = const1+1, return it
 | 
						||
       ...                 t.field = const1+2, ...
 | 
						||
       ...                           ...       ...
 | 
						||
       ...                 t.field = const2    ...
 | 
						||
 | 
						||
  IMPLEMENTATION
 | 
						||
    See get_partitions_in_range_iter for general description of interval
 | 
						||
    analysis. We support walking over the following intervals: 
 | 
						||
      "t.field IS NULL" 
 | 
						||
      "c1 <=? t.field <=? c2", where c1 and c2 are finite. 
 | 
						||
    Intervals with +inf/-inf, and [NULL, c1] interval can be processed but
 | 
						||
    that is more tricky and I don't have time to do it right now.
 | 
						||
 | 
						||
    Additionally we have these requirements:
 | 
						||
    * number of values in the interval must be less then number of
 | 
						||
      [sub]partitions, and 
 | 
						||
    * Number of values in the interval must be less then MAX_RANGE_TO_WALK.
 | 
						||
    
 | 
						||
    The rationale behind these requirements is that if they are not met
 | 
						||
    we're likely to hit most of the partitions and traversing the interval
 | 
						||
    will only add overhead. So it's better return "all partitions used" in
 | 
						||
    that case.
 | 
						||
 | 
						||
  RETURN
 | 
						||
    0 - No matching partitions, iterator not initialized
 | 
						||
    1 - Some partitions would match, iterator intialized for traversing them
 | 
						||
   -1 - All partitions would match, iterator not initialized
 | 
						||
*/
 | 
						||
 | 
						||
int get_part_iter_for_interval_via_walking(partition_info *part_info,
 | 
						||
                                           bool is_subpart,
 | 
						||
                                           char *min_value, char *max_value,
 | 
						||
                                           uint flags,
 | 
						||
                                           PARTITION_ITERATOR *part_iter)
 | 
						||
{
 | 
						||
  Field *field;
 | 
						||
  uint total_parts;
 | 
						||
  partition_iter_func get_next_func;
 | 
						||
  if (is_subpart)
 | 
						||
  {
 | 
						||
    field= part_info->subpart_field_array[0];
 | 
						||
    total_parts= part_info->no_subparts;
 | 
						||
    get_next_func=  get_next_subpartition_via_walking;
 | 
						||
  }
 | 
						||
  else
 | 
						||
  {
 | 
						||
    field= part_info->part_field_array[0];
 | 
						||
    total_parts= part_info->no_parts;
 | 
						||
    get_next_func=  get_next_partition_via_walking;
 | 
						||
  }
 | 
						||
 | 
						||
  /* Handle the "t.field IS NULL" interval, it is a special case */
 | 
						||
  if (field->real_maybe_null() && !(flags & (NO_MIN_RANGE | NO_MAX_RANGE)) &&
 | 
						||
      *min_value && *max_value)
 | 
						||
  {
 | 
						||
    /* 
 | 
						||
      We don't have a part_iter->get_next() function that would find which
 | 
						||
      partition "t.field IS NULL" belongs to, so find partition that contains 
 | 
						||
      NULL right here, and return an iterator over singleton set.
 | 
						||
    */
 | 
						||
    uint32 part_id;
 | 
						||
    field->set_null();
 | 
						||
    if (is_subpart)
 | 
						||
    {
 | 
						||
      part_id= part_info->get_subpartition_id(part_info);
 | 
						||
      init_single_partition_iterator(part_id, part_iter);
 | 
						||
      return 1; /* Ok, iterator initialized */
 | 
						||
    }
 | 
						||
    else
 | 
						||
    {
 | 
						||
      longlong dummy;
 | 
						||
      if (!part_info->get_partition_id(part_info, &part_id, &dummy))
 | 
						||
      {
 | 
						||
        init_single_partition_iterator(part_id, part_iter);
 | 
						||
        return 1; /* Ok, iterator initialized */
 | 
						||
      }
 | 
						||
    }
 | 
						||
    return 0; /* No partitions match */
 | 
						||
  }
 | 
						||
 | 
						||
  if (flags & (NO_MIN_RANGE | NO_MAX_RANGE))
 | 
						||
    return -1; /* Can't handle this interval, have to use all partitions */
 | 
						||
  
 | 
						||
  /* Get integers for left and right interval bound */
 | 
						||
  longlong a, b;
 | 
						||
  uint len= field->pack_length_in_rec();
 | 
						||
  store_key_image_to_rec(field, min_value, len);
 | 
						||
  a= field->val_int();
 | 
						||
  
 | 
						||
  store_key_image_to_rec(field, max_value, len);
 | 
						||
  b= field->val_int();
 | 
						||
 | 
						||
  a += test(flags & NEAR_MIN);
 | 
						||
  b += test(!(flags & NEAR_MAX));
 | 
						||
  uint n_values= b - a;
 | 
						||
  
 | 
						||
  if (n_values > total_parts || n_values > MAX_RANGE_TO_WALK)
 | 
						||
    return -1;
 | 
						||
 | 
						||
  part_iter->field_vals.start= a;
 | 
						||
  part_iter->field_vals.end=   b;
 | 
						||
  part_iter->part_info= part_info;
 | 
						||
  part_iter->get_next=  get_next_func;
 | 
						||
  return 1;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  PARTITION_ITERATOR::get_next implementation: enumerate partitions in range
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_next_partition_id_list()
 | 
						||
      part_iter  Partition set iterator structure
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    This is implementation of PARTITION_ITERATOR::get_next() that returns
 | 
						||
    [sub]partition ids in [min_partition_id, max_partition_id] range.
 | 
						||
 | 
						||
  RETURN
 | 
						||
    partition id
 | 
						||
    NOT_A_PARTITION_ID if there are no more partitions
 | 
						||
*/
 | 
						||
 | 
						||
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter)
 | 
						||
{
 | 
						||
  if (part_iter->part_nums.start== part_iter->part_nums.end)
 | 
						||
    return NOT_A_PARTITION_ID;
 | 
						||
  else
 | 
						||
    return part_iter->part_nums.start++;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  PARTITION_ITERATOR::get_next implementation for LIST partitioning
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_next_partition_id_list()
 | 
						||
      part_iter  Partition set iterator structure
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    This implementation of PARTITION_ITERATOR::get_next() is special for 
 | 
						||
    LIST partitioning: it enumerates partition ids in 
 | 
						||
    part_info->list_array[i] where i runs over [min_idx, max_idx] interval.
 | 
						||
 | 
						||
  RETURN 
 | 
						||
    partition id
 | 
						||
    NOT_A_PARTITION_ID if there are no more partitions
 | 
						||
*/
 | 
						||
 | 
						||
uint32 get_next_partition_id_list(PARTITION_ITERATOR *part_iter)
 | 
						||
{
 | 
						||
  if (part_iter->part_nums.start == part_iter->part_nums.end)
 | 
						||
    return NOT_A_PARTITION_ID;
 | 
						||
  else
 | 
						||
    return part_iter->part_info->list_array[part_iter->
 | 
						||
                                            part_nums.start++].partition_id;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
  PARTITION_ITERATOR::get_next implementation: walk over field-space interval
 | 
						||
 | 
						||
  SYNOPSIS
 | 
						||
    get_next_partition_via_walking()
 | 
						||
      part_iter  Partitioning iterator
 | 
						||
 | 
						||
  DESCRIPTION
 | 
						||
    This implementation of PARTITION_ITERATOR::get_next() returns ids of
 | 
						||
    partitions that contain records with partitioning field value within
 | 
						||
    [start_val, end_val] interval.
 | 
						||
 | 
						||
  RETURN 
 | 
						||
    partition id
 | 
						||
    NOT_A_PARTITION_ID if there are no more partitioning.
 | 
						||
*/
 | 
						||
 | 
						||
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR *part_iter)
 | 
						||
{
 | 
						||
  uint32 part_id;
 | 
						||
  Field *field= part_iter->part_info->part_field_array[0];
 | 
						||
  while (part_iter->field_vals.start != part_iter->field_vals.end)
 | 
						||
  {
 | 
						||
    field->store(part_iter->field_vals.start, FALSE);
 | 
						||
    part_iter->field_vals.start++;
 | 
						||
    longlong dummy;
 | 
						||
    if (is_sub_partitioned(part_iter->part_info) &&
 | 
						||
        !part_iter->part_info->get_part_partition_id(part_iter->part_info,
 | 
						||
                                                     &part_id, &dummy) ||
 | 
						||
        !part_iter->part_info->get_partition_id(part_iter->part_info,
 | 
						||
                                                &part_id, &dummy))
 | 
						||
      return part_id;
 | 
						||
  }
 | 
						||
  return NOT_A_PARTITION_ID;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/* Same as get_next_partition_via_walking, but for subpartitions */
 | 
						||
 | 
						||
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR *part_iter)
 | 
						||
{
 | 
						||
  uint32 part_id;
 | 
						||
  Field *field= part_iter->part_info->subpart_field_array[0];
 | 
						||
  if (part_iter->field_vals.start == part_iter->field_vals.end)
 | 
						||
    return NOT_A_PARTITION_ID;
 | 
						||
  field->store(part_iter->field_vals.start, FALSE);
 | 
						||
  part_iter->field_vals.start++;
 | 
						||
  return part_iter->part_info->get_subpartition_id(part_iter->part_info);
 | 
						||
}
 | 
						||
#endif
 | 
						||
 |