mirror of
				https://github.com/MariaDB/server.git
				synced 2025-11-03 14:33:32 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			7253 lines
		
	
	
		
			241 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			7253 lines
		
	
	
		
			241 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* Copyright 2005-2008 MySQL AB, 2008 Sun Microsystems, Inc.
 | 
						|
 | 
						|
   This program is free software; you can redistribute it and/or modify
 | 
						|
   it under the terms of the GNU General Public License as published by
 | 
						|
   the Free Software Foundation; version 2 of the License.
 | 
						|
 | 
						|
   This program is distributed in the hope that it will be useful,
 | 
						|
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
   GNU General Public License for more details.
 | 
						|
 | 
						|
   You should have received a copy of the GNU General Public License
 | 
						|
   along with this program; if not, write to the Free Software
 | 
						|
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */
 | 
						|
 | 
						|
/*
 | 
						|
  This file is a container for general functionality related
 | 
						|
  to partitioning introduced in MySQL version 5.1. It contains functionality
 | 
						|
  used by all handlers that support partitioning, such as
 | 
						|
  the partitioning handler itself and the NDB handler.
 | 
						|
 | 
						|
  The first version was written by Mikael Ronstrom.
 | 
						|
 | 
						|
  This version supports RANGE partitioning, LIST partitioning, HASH
 | 
						|
  partitioning and composite partitioning (hereafter called subpartitioning)
 | 
						|
  where each RANGE/LIST partitioning is HASH partitioned. The hash function
 | 
						|
  can either be supplied by the user or by only a list of fields (also
 | 
						|
  called KEY partitioning), where the MySQL server will use an internal
 | 
						|
  hash function.
 | 
						|
  There are quite a few defaults that can be used as well.
 | 
						|
*/
 | 
						|
 | 
						|
/* Some general useful functions */
 | 
						|
 | 
						|
#define MYSQL_LEX 1
 | 
						|
#include "mysql_priv.h"
 | 
						|
#include <errno.h>
 | 
						|
#include <m_ctype.h>
 | 
						|
#include "my_md5.h"
 | 
						|
 | 
						|
#ifdef WITH_PARTITION_STORAGE_ENGINE
 | 
						|
#include "ha_partition.h"
 | 
						|
/*
 | 
						|
  Partition related functions declarations and some static constants;
 | 
						|
*/
 | 
						|
const LEX_STRING partition_keywords[]=
 | 
						|
{
 | 
						|
  { C_STRING_WITH_LEN("HASH") },
 | 
						|
  { C_STRING_WITH_LEN("RANGE") },
 | 
						|
  { C_STRING_WITH_LEN("LIST") }, 
 | 
						|
  { C_STRING_WITH_LEN("KEY") },
 | 
						|
  { C_STRING_WITH_LEN("MAXVALUE") },
 | 
						|
  { C_STRING_WITH_LEN("LINEAR ") }
 | 
						|
};
 | 
						|
static const char *part_str= "PARTITION";
 | 
						|
static const char *sub_str= "SUB";
 | 
						|
static const char *by_str= "BY";
 | 
						|
static const char *space_str= " ";
 | 
						|
static const char *equal_str= "=";
 | 
						|
static const char *end_paren_str= ")";
 | 
						|
static const char *begin_paren_str= "(";
 | 
						|
static const char *comma_str= ",";
 | 
						|
 | 
						|
static int get_part_id_charset_func_all(partition_info *part_info,
 | 
						|
                                        uint32 *part_id,
 | 
						|
                                        longlong *func_value);
 | 
						|
static int get_part_id_charset_func_part(partition_info *part_info,
 | 
						|
                                         uint32 *part_id,
 | 
						|
                                         longlong *func_value);
 | 
						|
static int get_part_id_charset_func_subpart(partition_info *part_info,
 | 
						|
                                            uint32 *part_id,
 | 
						|
                                            longlong *func_value);
 | 
						|
static int get_part_part_id_charset_func(partition_info *part_info,
 | 
						|
                                         uint32 *part_id,
 | 
						|
                                         longlong *func_value);
 | 
						|
static int get_subpart_id_charset_func(partition_info *part_info,
 | 
						|
                                       uint32 *part_id);
 | 
						|
int get_partition_id_list(partition_info *part_info,
 | 
						|
                          uint32 *part_id,
 | 
						|
                          longlong *func_value);
 | 
						|
int get_partition_id_range(partition_info *part_info,
 | 
						|
                           uint32 *part_id,
 | 
						|
                           longlong *func_value);
 | 
						|
int get_partition_id_hash_nosub(partition_info *part_info,
 | 
						|
                                uint32 *part_id,
 | 
						|
                                longlong *func_value);
 | 
						|
int get_partition_id_key_nosub(partition_info *part_info,
 | 
						|
                               uint32 *part_id,
 | 
						|
                               longlong *func_value);
 | 
						|
int get_partition_id_linear_hash_nosub(partition_info *part_info,
 | 
						|
                                       uint32 *part_id,
 | 
						|
                                       longlong *func_value);
 | 
						|
int get_partition_id_linear_key_nosub(partition_info *part_info,
 | 
						|
                                      uint32 *part_id,
 | 
						|
                                      longlong *func_value);
 | 
						|
int get_partition_id_range_sub_hash(partition_info *part_info,
 | 
						|
                                    uint32 *part_id,
 | 
						|
                                    longlong *func_value);
 | 
						|
int get_partition_id_range_sub_key(partition_info *part_info,
 | 
						|
                                   uint32 *part_id,
 | 
						|
                                   longlong *func_value);
 | 
						|
int get_partition_id_range_sub_linear_hash(partition_info *part_info,
 | 
						|
                                           uint32 *part_id,
 | 
						|
                                           longlong *func_value);
 | 
						|
int get_partition_id_range_sub_linear_key(partition_info *part_info,
 | 
						|
                                          uint32 *part_id,
 | 
						|
                                          longlong *func_value);
 | 
						|
int get_partition_id_list_sub_hash(partition_info *part_info,
 | 
						|
                                   uint32 *part_id,
 | 
						|
                                   longlong *func_value);
 | 
						|
int get_partition_id_list_sub_key(partition_info *part_info,
 | 
						|
                                  uint32 *part_id,
 | 
						|
                                  longlong *func_value);
 | 
						|
int get_partition_id_list_sub_linear_hash(partition_info *part_info,
 | 
						|
                                          uint32 *part_id,
 | 
						|
                                          longlong *func_value);
 | 
						|
int get_partition_id_list_sub_linear_key(partition_info *part_info,
 | 
						|
                                         uint32 *part_id,
 | 
						|
                                         longlong *func_value);
 | 
						|
int get_partition_id_hash_sub(partition_info *part_info,
 | 
						|
                              uint32 *part_id); 
 | 
						|
int get_partition_id_key_sub(partition_info *part_info,
 | 
						|
                             uint32 *part_id); 
 | 
						|
int get_partition_id_linear_hash_sub(partition_info *part_info,
 | 
						|
                                     uint32 *part_id); 
 | 
						|
int get_partition_id_linear_key_sub(partition_info *part_info,
 | 
						|
                                    uint32 *part_id); 
 | 
						|
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR*);
 | 
						|
static void set_up_range_analysis_info(partition_info *part_info);
 | 
						|
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR*);
 | 
						|
#endif
 | 
						|
 | 
						|
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter);
 | 
						|
uint32 get_next_partition_id_list(PARTITION_ITERATOR* part_iter);
 | 
						|
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
 | 
						|
                                           bool is_subpart,
 | 
						|
                                           uchar *min_value, uchar *max_value,
 | 
						|
                                           uint flags,
 | 
						|
                                           PARTITION_ITERATOR *part_iter);
 | 
						|
int get_part_iter_for_interval_via_walking(partition_info *part_info,
 | 
						|
                                           bool is_subpart,
 | 
						|
                                           uchar *min_value, uchar *max_value,
 | 
						|
                                           uint flags,
 | 
						|
                                           PARTITION_ITERATOR *part_iter);
 | 
						|
 | 
						|
#ifdef WITH_PARTITION_STORAGE_ENGINE
 | 
						|
/*
 | 
						|
  A support function to check if a name is in a list of strings
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    is_name_in_list()
 | 
						|
    name               String searched for
 | 
						|
    list_names         A list of names searched in
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE               String found
 | 
						|
    FALSE              String not found
 | 
						|
*/
 | 
						|
 | 
						|
bool is_name_in_list(char *name,
 | 
						|
                          List<char> list_names)
 | 
						|
{
 | 
						|
  List_iterator<char> names_it(list_names);
 | 
						|
  uint no_names= list_names.elements;
 | 
						|
  uint i= 0;
 | 
						|
 | 
						|
  do
 | 
						|
  {
 | 
						|
    char *list_name= names_it++;
 | 
						|
    if (!(my_strcasecmp(system_charset_info, name, list_name)))
 | 
						|
      return TRUE;
 | 
						|
  } while (++i < no_names);
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Set-up defaults for partitions. 
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    partition_default_handling()
 | 
						|
    table                         Table object
 | 
						|
    part_info                     Partition info to set up
 | 
						|
    is_create_table_ind           Is this part of a table creation
 | 
						|
    normalized_path               Normalized path name of table and database
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                          Error
 | 
						|
    FALSE                         Success
 | 
						|
*/
 | 
						|
 | 
						|
bool partition_default_handling(TABLE *table, partition_info *part_info,
 | 
						|
                                bool is_create_table_ind,
 | 
						|
                                const char *normalized_path)
 | 
						|
{
 | 
						|
  DBUG_ENTER("partition_default_handling");
 | 
						|
 | 
						|
  if (!is_create_table_ind)
 | 
						|
  {
 | 
						|
    if (part_info->use_default_no_partitions)
 | 
						|
    {
 | 
						|
      if (table->file->get_no_parts(normalized_path, &part_info->no_parts))
 | 
						|
      {
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else if (part_info->is_sub_partitioned() &&
 | 
						|
             part_info->use_default_no_subpartitions)
 | 
						|
    {
 | 
						|
      uint no_parts;
 | 
						|
      if (table->file->get_no_parts(normalized_path, &no_parts))
 | 
						|
      {
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      DBUG_ASSERT(part_info->no_parts > 0);
 | 
						|
      DBUG_ASSERT((no_parts % part_info->no_parts) == 0);
 | 
						|
      part_info->no_subparts= no_parts / part_info->no_parts;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  part_info->set_up_defaults_for_partitioning(table->file,
 | 
						|
                                              (ulonglong)0, (uint)0);
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Check that the reorganized table will not have duplicate partitions.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    check_reorganise_list()
 | 
						|
    new_part_info      New partition info
 | 
						|
    old_part_info      Old partition info
 | 
						|
    list_part_names    The list of partition names that will go away and
 | 
						|
                       can be reused in the new table.
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE               Inacceptable name conflict detected.
 | 
						|
    FALSE              New names are OK.
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Can handle that the 'new_part_info' and 'old_part_info' the same
 | 
						|
    in which case it checks that the list of names in the partitions
 | 
						|
    doesn't contain any duplicated names.
 | 
						|
*/
 | 
						|
 | 
						|
bool check_reorganise_list(partition_info *new_part_info,
 | 
						|
                           partition_info *old_part_info,
 | 
						|
                           List<char> list_part_names)
 | 
						|
{
 | 
						|
  uint new_count, old_count;
 | 
						|
  uint no_new_parts= new_part_info->partitions.elements;
 | 
						|
  uint no_old_parts= old_part_info->partitions.elements;
 | 
						|
  List_iterator<partition_element> new_parts_it(new_part_info->partitions);
 | 
						|
  bool same_part_info= (new_part_info == old_part_info);
 | 
						|
  DBUG_ENTER("check_reorganise_list");
 | 
						|
 | 
						|
  new_count= 0;
 | 
						|
  do
 | 
						|
  {
 | 
						|
    List_iterator<partition_element> old_parts_it(old_part_info->partitions);
 | 
						|
    char *new_name= (new_parts_it++)->partition_name;
 | 
						|
    new_count++;
 | 
						|
    old_count= 0;
 | 
						|
    do
 | 
						|
    {
 | 
						|
      char *old_name= (old_parts_it++)->partition_name;
 | 
						|
      old_count++;
 | 
						|
      if (same_part_info && old_count == new_count)
 | 
						|
        break;
 | 
						|
      if (!(my_strcasecmp(system_charset_info, old_name, new_name)))
 | 
						|
      {
 | 
						|
        if (!is_name_in_list(old_name, list_part_names))
 | 
						|
          DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
    } while (old_count < no_old_parts);
 | 
						|
  } while (new_count < no_new_parts);
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  A useful routine used by update_row for partition handlers to calculate
 | 
						|
  the partition ids of the old and the new record.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_part_for_update()
 | 
						|
    old_data                Buffer of old record
 | 
						|
    new_data                Buffer of new record
 | 
						|
    rec0                    Reference to table->record[0]
 | 
						|
    part_info               Reference to partition information
 | 
						|
    out:old_part_id         The returned partition id of old record 
 | 
						|
    out:new_part_id         The returned partition id of new record
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    0                       Success
 | 
						|
    > 0                     Error code
 | 
						|
*/
 | 
						|
 | 
						|
int get_parts_for_update(const uchar *old_data, uchar *new_data,
 | 
						|
                         const uchar *rec0, partition_info *part_info,
 | 
						|
                         uint32 *old_part_id, uint32 *new_part_id,
 | 
						|
                         longlong *new_func_value)
 | 
						|
{
 | 
						|
  Field **part_field_array= part_info->full_part_field_array;
 | 
						|
  int error;
 | 
						|
  longlong old_func_value;
 | 
						|
  DBUG_ENTER("get_parts_for_update");
 | 
						|
 | 
						|
  DBUG_ASSERT(new_data == rec0);
 | 
						|
  set_field_ptr(part_field_array, old_data, rec0);
 | 
						|
  error= part_info->get_partition_id(part_info, old_part_id,
 | 
						|
                                     &old_func_value);
 | 
						|
  set_field_ptr(part_field_array, rec0, old_data);
 | 
						|
  if (unlikely(error))                             // Should never happen
 | 
						|
  {
 | 
						|
    DBUG_ASSERT(0);
 | 
						|
    DBUG_RETURN(error);
 | 
						|
  }
 | 
						|
#ifdef NOT_NEEDED
 | 
						|
  if (new_data == rec0)
 | 
						|
#endif
 | 
						|
  {
 | 
						|
    if (unlikely(error= part_info->get_partition_id(part_info,
 | 
						|
                                                    new_part_id,
 | 
						|
                                                    new_func_value)))
 | 
						|
    {
 | 
						|
      DBUG_RETURN(error);
 | 
						|
    }
 | 
						|
  }
 | 
						|
#ifdef NOT_NEEDED
 | 
						|
  else
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      This branch should never execute but it is written anyways for
 | 
						|
      future use. It will be tested by ensuring that the above
 | 
						|
      condition is false in one test situation before pushing the code.
 | 
						|
    */
 | 
						|
    set_field_ptr(part_field_array, new_data, rec0);
 | 
						|
    error= part_info->get_partition_id(part_info, new_part_id,
 | 
						|
                                       new_func_value);
 | 
						|
    set_field_ptr(part_field_array, rec0, new_data);
 | 
						|
    if (unlikely(error))
 | 
						|
    {
 | 
						|
      DBUG_RETURN(error);
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  A useful routine used by delete_row for partition handlers to calculate
 | 
						|
  the partition id.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_part_for_delete()
 | 
						|
    buf                     Buffer of old record
 | 
						|
    rec0                    Reference to table->record[0]
 | 
						|
    part_info               Reference to partition information
 | 
						|
    out:part_id             The returned partition id to delete from
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    0                       Success
 | 
						|
    > 0                     Error code
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Dependent on whether buf is not record[0] we need to prepare the
 | 
						|
    fields. Then we call the function pointer get_partition_id to
 | 
						|
    calculate the partition id.
 | 
						|
*/
 | 
						|
 | 
						|
int get_part_for_delete(const uchar *buf, const uchar *rec0,
 | 
						|
                        partition_info *part_info, uint32 *part_id)
 | 
						|
{
 | 
						|
  int error;
 | 
						|
  longlong func_value;
 | 
						|
  DBUG_ENTER("get_part_for_delete");
 | 
						|
 | 
						|
  if (likely(buf == rec0))
 | 
						|
  {
 | 
						|
    if (unlikely((error= part_info->get_partition_id(part_info, part_id,
 | 
						|
                                                     &func_value))))
 | 
						|
    {
 | 
						|
      DBUG_RETURN(error);
 | 
						|
    }
 | 
						|
    DBUG_PRINT("info", ("Delete from partition %d", *part_id));
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    Field **part_field_array= part_info->full_part_field_array;
 | 
						|
    set_field_ptr(part_field_array, buf, rec0);
 | 
						|
    error= part_info->get_partition_id(part_info, part_id, &func_value);
 | 
						|
    set_field_ptr(part_field_array, rec0, buf);
 | 
						|
    if (unlikely(error))
 | 
						|
    {
 | 
						|
      DBUG_RETURN(error);
 | 
						|
    }
 | 
						|
    DBUG_PRINT("info", ("Delete from partition %d (path2)", *part_id));
 | 
						|
  }
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  This method is used to set-up both partition and subpartitioning
 | 
						|
  field array and used for all types of partitioning.
 | 
						|
  It is part of the logic around fix_partition_func.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    set_up_field_array()
 | 
						|
    table                TABLE object for which partition fields are set-up
 | 
						|
    sub_part             Is the table subpartitioned as well
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    TRUE                 Error, some field didn't meet requirements
 | 
						|
    FALSE                Ok, partition field array set-up
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
 | 
						|
    A great number of functions below here is part of the fix_partition_func
 | 
						|
    method. It is used to set up the partition structures for execution from
 | 
						|
    openfrm. It is called at the end of the openfrm when the table struct has
 | 
						|
    been set-up apart from the partition information.
 | 
						|
    It involves:
 | 
						|
    1) Setting arrays of fields for the partition functions.
 | 
						|
    2) Setting up binary search array for LIST partitioning
 | 
						|
    3) Setting up array for binary search for RANGE partitioning
 | 
						|
    4) Setting up key_map's to assist in quick evaluation whether one
 | 
						|
       can deduce anything from a given index of what partition to use
 | 
						|
    5) Checking whether a set of partitions can be derived from a range on
 | 
						|
       a field in the partition function.
 | 
						|
    As part of doing this there is also a great number of error controls.
 | 
						|
    This is actually the place where most of the things are checked for
 | 
						|
    partition information when creating a table.
 | 
						|
    Things that are checked includes
 | 
						|
    1) All fields of partition function in Primary keys and unique indexes
 | 
						|
       (if not supported)
 | 
						|
 | 
						|
 | 
						|
    Create an array of partition fields (NULL terminated). Before this method
 | 
						|
    is called fix_fields or find_table_in_sef has been called to set
 | 
						|
    GET_FIXED_FIELDS_FLAG on all fields that are part of the partition
 | 
						|
    function.
 | 
						|
*/
 | 
						|
 | 
						|
static bool set_up_field_array(TABLE *table,
 | 
						|
                              bool is_sub_part)
 | 
						|
{
 | 
						|
  Field **ptr, *field, **field_array;
 | 
						|
  uint no_fields= 0;
 | 
						|
  uint size_field_array;
 | 
						|
  uint i= 0;
 | 
						|
  partition_info *part_info= table->part_info;
 | 
						|
  int result= FALSE;
 | 
						|
  DBUG_ENTER("set_up_field_array");
 | 
						|
 | 
						|
  ptr= table->field;
 | 
						|
  while ((field= *(ptr++))) 
 | 
						|
  {
 | 
						|
    if (field->flags & GET_FIXED_FIELDS_FLAG)
 | 
						|
      no_fields++;
 | 
						|
  }
 | 
						|
  if (no_fields == 0)
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      We are using hidden key as partitioning field
 | 
						|
    */
 | 
						|
    DBUG_ASSERT(!is_sub_part);
 | 
						|
    DBUG_RETURN(result);
 | 
						|
  }
 | 
						|
  size_field_array= (no_fields+1)*sizeof(Field*);
 | 
						|
  field_array= (Field**)sql_alloc(size_field_array);
 | 
						|
  if (unlikely(!field_array))
 | 
						|
  {
 | 
						|
    mem_alloc_error(size_field_array);
 | 
						|
    result= TRUE;
 | 
						|
  }
 | 
						|
  ptr= table->field;
 | 
						|
  while ((field= *(ptr++))) 
 | 
						|
  {
 | 
						|
    if (field->flags & GET_FIXED_FIELDS_FLAG)
 | 
						|
    {
 | 
						|
      field->flags&= ~GET_FIXED_FIELDS_FLAG;
 | 
						|
      field->flags|= FIELD_IN_PART_FUNC_FLAG;
 | 
						|
      if (likely(!result))
 | 
						|
      {
 | 
						|
        field_array[i++]= field;
 | 
						|
 | 
						|
        /*
 | 
						|
          We check that the fields are proper. It is required for each
 | 
						|
          field in a partition function to:
 | 
						|
          1) Not be a BLOB of any type
 | 
						|
            A BLOB takes too long time to evaluate so we don't want it for
 | 
						|
            performance reasons.
 | 
						|
        */
 | 
						|
 | 
						|
        if (unlikely(field->flags & BLOB_FLAG))
 | 
						|
        {
 | 
						|
          my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0));
 | 
						|
          result= TRUE;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  field_array[no_fields]= 0;
 | 
						|
  if (!is_sub_part)
 | 
						|
  {
 | 
						|
    part_info->part_field_array= field_array;
 | 
						|
    part_info->no_part_fields= no_fields;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    part_info->subpart_field_array= field_array;
 | 
						|
    part_info->no_subpart_fields= no_fields;
 | 
						|
  }
 | 
						|
  DBUG_RETURN(result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Create a field array including all fields of both the partitioning and the
 | 
						|
  subpartitioning functions.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    create_full_part_field_array()
 | 
						|
    thd                  Thread handle
 | 
						|
    table                TABLE object for which partition fields are set-up
 | 
						|
    part_info            Reference to partitioning data structure
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    TRUE                 Memory allocation of field array failed
 | 
						|
    FALSE                Ok
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    If there is no subpartitioning then the same array is used as for the
 | 
						|
    partitioning. Otherwise a new array is built up using the flag
 | 
						|
    FIELD_IN_PART_FUNC in the field object.
 | 
						|
    This function is called from fix_partition_func
 | 
						|
*/
 | 
						|
 | 
						|
static bool create_full_part_field_array(THD *thd, TABLE *table,
 | 
						|
                                         partition_info *part_info)
 | 
						|
{
 | 
						|
  bool result= FALSE;
 | 
						|
  Field **ptr;
 | 
						|
  my_bitmap_map *bitmap_buf;
 | 
						|
  DBUG_ENTER("create_full_part_field_array");
 | 
						|
 | 
						|
  if (!part_info->is_sub_partitioned())
 | 
						|
  {
 | 
						|
    part_info->full_part_field_array= part_info->part_field_array;
 | 
						|
    part_info->no_full_part_fields= part_info->no_part_fields;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    Field *field, **field_array;
 | 
						|
    uint no_part_fields=0, size_field_array;
 | 
						|
    ptr= table->field;
 | 
						|
    while ((field= *(ptr++)))
 | 
						|
    {
 | 
						|
      if (field->flags & FIELD_IN_PART_FUNC_FLAG)
 | 
						|
        no_part_fields++;
 | 
						|
    }
 | 
						|
    size_field_array= (no_part_fields+1)*sizeof(Field*);
 | 
						|
    field_array= (Field**)sql_alloc(size_field_array);
 | 
						|
    if (unlikely(!field_array))
 | 
						|
    {
 | 
						|
      mem_alloc_error(size_field_array);
 | 
						|
      result= TRUE;
 | 
						|
      goto end;
 | 
						|
    }
 | 
						|
    no_part_fields= 0;
 | 
						|
    ptr= table->field;
 | 
						|
    while ((field= *(ptr++)))
 | 
						|
    {
 | 
						|
      if (field->flags & FIELD_IN_PART_FUNC_FLAG)
 | 
						|
        field_array[no_part_fields++]= field;
 | 
						|
    }
 | 
						|
    field_array[no_part_fields]=0;
 | 
						|
    part_info->full_part_field_array= field_array;
 | 
						|
    part_info->no_full_part_fields= no_part_fields;
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
    Initialize the set of all fields used in partition and subpartition
 | 
						|
    expression. Required for testing of partition fields in write_set
 | 
						|
    when updating. We need to set all bits in read_set because the row
 | 
						|
    may need to be inserted in a different [sub]partition.
 | 
						|
  */
 | 
						|
  if (!(bitmap_buf= (my_bitmap_map*)
 | 
						|
        thd->alloc(bitmap_buffer_size(table->s->fields))))
 | 
						|
  {
 | 
						|
    mem_alloc_error(bitmap_buffer_size(table->s->fields));
 | 
						|
    result= TRUE;
 | 
						|
    goto end;
 | 
						|
  }
 | 
						|
  if (bitmap_init(&part_info->full_part_field_set, bitmap_buf,
 | 
						|
                  table->s->fields, FALSE))
 | 
						|
  {
 | 
						|
    mem_alloc_error(table->s->fields);
 | 
						|
    result= TRUE;
 | 
						|
    goto end;
 | 
						|
  }
 | 
						|
  /*
 | 
						|
    full_part_field_array may be NULL if storage engine supports native
 | 
						|
    partitioning.
 | 
						|
  */
 | 
						|
  if ((ptr= part_info->full_part_field_array))
 | 
						|
    for (; *ptr; ptr++)
 | 
						|
      bitmap_set_bit(&part_info->full_part_field_set, (*ptr)->field_index);
 | 
						|
 | 
						|
end:
 | 
						|
  DBUG_RETURN(result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 | 
						|
  Clear flag GET_FIXED_FIELDS_FLAG in all fields of a key previously set by
 | 
						|
  set_indicator_in_key_fields (always used in pairs).
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    clear_indicator_in_key_fields()
 | 
						|
    key_info                  Reference to find the key fields
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    NONE
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    These support routines is used to set/reset an indicator of all fields
 | 
						|
    in a certain key. It is used in conjunction with another support routine
 | 
						|
    that traverse all fields in the PF to find if all or some fields in the
 | 
						|
    PF is part of the key. This is used to check primary keys and unique
 | 
						|
    keys involve all fields in PF (unless supported) and to derive the
 | 
						|
    key_map's used to quickly decide whether the index can be used to
 | 
						|
    derive which partitions are needed to scan.
 | 
						|
*/
 | 
						|
 | 
						|
static void clear_indicator_in_key_fields(KEY *key_info)
 | 
						|
{
 | 
						|
  KEY_PART_INFO *key_part;
 | 
						|
  uint key_parts= key_info->key_parts, i;
 | 
						|
  for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
 | 
						|
    key_part->field->flags&= (~GET_FIXED_FIELDS_FLAG);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Set flag GET_FIXED_FIELDS_FLAG in all fields of a key.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    set_indicator_in_key_fields
 | 
						|
    key_info                  Reference to find the key fields
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    NONE
 | 
						|
*/
 | 
						|
 | 
						|
static void set_indicator_in_key_fields(KEY *key_info)
 | 
						|
{
 | 
						|
  KEY_PART_INFO *key_part;
 | 
						|
  uint key_parts= key_info->key_parts, i;
 | 
						|
  for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
 | 
						|
    key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Check if all or some fields in partition field array is part of a key
 | 
						|
  previously used to tag key fields.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    check_fields_in_PF()
 | 
						|
    ptr                  Partition field array
 | 
						|
    out:all_fields       Is all fields of partition field array used in key
 | 
						|
    out:some_fields      Is some fields of partition field array used in key
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    all_fields, some_fields
 | 
						|
*/
 | 
						|
 | 
						|
static void check_fields_in_PF(Field **ptr, bool *all_fields,
 | 
						|
                               bool *some_fields)
 | 
						|
{
 | 
						|
  DBUG_ENTER("check_fields_in_PF");
 | 
						|
 | 
						|
  *all_fields= TRUE;
 | 
						|
  *some_fields= FALSE;
 | 
						|
  if ((!ptr) || !(*ptr))
 | 
						|
  {
 | 
						|
    *all_fields= FALSE;
 | 
						|
    DBUG_VOID_RETURN;
 | 
						|
  }
 | 
						|
  do
 | 
						|
  {
 | 
						|
  /* Check if the field of the PF is part of the current key investigated */
 | 
						|
    if ((*ptr)->flags & GET_FIXED_FIELDS_FLAG)
 | 
						|
      *some_fields= TRUE; 
 | 
						|
    else
 | 
						|
      *all_fields= FALSE;
 | 
						|
  } while (*(++ptr));
 | 
						|
  DBUG_VOID_RETURN;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Clear flag GET_FIXED_FIELDS_FLAG in all fields of the table.
 | 
						|
  This routine is used for error handling purposes.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    clear_field_flag()
 | 
						|
    table                TABLE object for which partition fields are set-up
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    NONE
 | 
						|
*/
 | 
						|
 | 
						|
static void clear_field_flag(TABLE *table)
 | 
						|
{
 | 
						|
  Field **ptr;
 | 
						|
  DBUG_ENTER("clear_field_flag");
 | 
						|
 | 
						|
  for (ptr= table->field; *ptr; ptr++)
 | 
						|
    (*ptr)->flags&= (~GET_FIXED_FIELDS_FLAG);
 | 
						|
  DBUG_VOID_RETURN;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  find_field_in_table_sef finds the field given its name. All fields get
 | 
						|
  GET_FIXED_FIELDS_FLAG set.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    handle_list_of_fields()
 | 
						|
    it                   A list of field names for the partition function
 | 
						|
    table                TABLE object for which partition fields are set-up
 | 
						|
    part_info            Reference to partitioning data structure
 | 
						|
    sub_part             Is the table subpartitioned as well
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    TRUE                 Fields in list of fields not part of table
 | 
						|
    FALSE                All fields ok and array created
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    This routine sets-up the partition field array for KEY partitioning, it
 | 
						|
    also verifies that all fields in the list of fields is actually a part of
 | 
						|
    the table.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
static bool handle_list_of_fields(List_iterator<char> it,
 | 
						|
                                  TABLE *table,
 | 
						|
                                  partition_info *part_info,
 | 
						|
                                  bool is_sub_part)
 | 
						|
{
 | 
						|
  Field *field;
 | 
						|
  bool result;
 | 
						|
  char *field_name;
 | 
						|
  bool is_list_empty= TRUE;
 | 
						|
  DBUG_ENTER("handle_list_of_fields");
 | 
						|
 | 
						|
  while ((field_name= it++))
 | 
						|
  {
 | 
						|
    is_list_empty= FALSE;
 | 
						|
    field= find_field_in_table_sef(table, field_name);
 | 
						|
    if (likely(field != 0))
 | 
						|
      field->flags|= GET_FIXED_FIELDS_FLAG;
 | 
						|
    else
 | 
						|
    {
 | 
						|
      my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
 | 
						|
      clear_field_flag(table);
 | 
						|
      result= TRUE;
 | 
						|
      goto end;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (is_list_empty)
 | 
						|
  {
 | 
						|
    uint primary_key= table->s->primary_key;
 | 
						|
    if (primary_key != MAX_KEY)
 | 
						|
    {
 | 
						|
      uint no_key_parts= table->key_info[primary_key].key_parts, i;
 | 
						|
      /*
 | 
						|
        In the case of an empty list we use primary key as partition key.
 | 
						|
      */
 | 
						|
      for (i= 0; i < no_key_parts; i++)
 | 
						|
      {
 | 
						|
        Field *field= table->key_info[primary_key].key_part[i].field;
 | 
						|
        field->flags|= GET_FIXED_FIELDS_FLAG;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      if (table->s->db_type()->partition_flags &&
 | 
						|
          (table->s->db_type()->partition_flags() & HA_USE_AUTO_PARTITION) &&
 | 
						|
          (table->s->db_type()->partition_flags() & HA_CAN_PARTITION))
 | 
						|
      {
 | 
						|
        /*
 | 
						|
          This engine can handle automatic partitioning and there is no
 | 
						|
          primary key. In this case we rely on that the engine handles
 | 
						|
          partitioning based on a hidden key. Thus we allocate no
 | 
						|
          array for partitioning fields.
 | 
						|
        */
 | 
						|
        DBUG_RETURN(FALSE);
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  result= set_up_field_array(table, is_sub_part);
 | 
						|
end:
 | 
						|
  DBUG_RETURN(result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Support function to check if all VALUES * (expression) is of the
 | 
						|
  right sign (no signed constants when unsigned partition function)
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    check_signed_flag()
 | 
						|
    part_info                Partition info object
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    0                        No errors due to sign errors
 | 
						|
    >0                       Sign error
 | 
						|
*/
 | 
						|
 | 
						|
int check_signed_flag(partition_info *part_info)
 | 
						|
{
 | 
						|
  int error= 0;
 | 
						|
  uint i= 0;
 | 
						|
  if (part_info->part_type != HASH_PARTITION &&
 | 
						|
      part_info->part_expr->unsigned_flag)
 | 
						|
  {
 | 
						|
    List_iterator<partition_element> part_it(part_info->partitions);
 | 
						|
    do
 | 
						|
    {
 | 
						|
      partition_element *part_elem= part_it++;
 | 
						|
 | 
						|
      if (part_elem->signed_flag)
 | 
						|
      {
 | 
						|
        my_error(ER_PARTITION_CONST_DOMAIN_ERROR, MYF(0));
 | 
						|
        error= ER_PARTITION_CONST_DOMAIN_ERROR;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } while (++i < part_info->no_parts);
 | 
						|
  }
 | 
						|
  return error;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  The function uses a new feature in fix_fields where the flag 
 | 
						|
  GET_FIXED_FIELDS_FLAG is set for all fields in the item tree.
 | 
						|
  This field must always be reset before returning from the function
 | 
						|
  since it is used for other purposes as well.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    fix_fields_part_func()
 | 
						|
    thd                  The thread object
 | 
						|
    func_expr            The item tree reference of the partition function
 | 
						|
    table                The table object
 | 
						|
    part_info            Reference to partitioning data structure
 | 
						|
    is_sub_part          Is the table subpartitioned as well
 | 
						|
    is_field_to_be_setup Flag if we are to set-up field arrays
 | 
						|
    is_create_table_ind  Indicator of whether openfrm was called as part of
 | 
						|
                         CREATE or ALTER TABLE
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    TRUE                 An error occurred, something was wrong with the
 | 
						|
                         partition function.
 | 
						|
    FALSE                Ok, a partition field array was created
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    This function is used to build an array of partition fields for the
 | 
						|
    partitioning function and subpartitioning function. The partitioning
 | 
						|
    function is an item tree that must reference at least one field in the
 | 
						|
    table. This is checked first in the parser that the function doesn't
 | 
						|
    contain non-cacheable parts (like a random function) and by checking
 | 
						|
    here that the function isn't a constant function.
 | 
						|
 | 
						|
    Calculate the number of fields in the partition function.
 | 
						|
    Use it allocate memory for array of Field pointers.
 | 
						|
    Initialise array of field pointers. Use information set when
 | 
						|
    calling fix_fields and reset it immediately after.
 | 
						|
    The get_fields_in_item_tree activates setting of bit in flags
 | 
						|
    on the field object.
 | 
						|
*/
 | 
						|
 | 
						|
static bool fix_fields_part_func(THD *thd, Item* func_expr, TABLE *table,
 | 
						|
                          bool is_sub_part, bool is_field_to_be_setup,
 | 
						|
                          bool is_create_table_ind)
 | 
						|
{
 | 
						|
  partition_info *part_info= table->part_info;
 | 
						|
  uint dir_length, home_dir_length;
 | 
						|
  bool result= TRUE;
 | 
						|
  TABLE_LIST tables;
 | 
						|
  TABLE_LIST *save_table_list, *save_first_table, *save_last_table;
 | 
						|
  int error;
 | 
						|
  Name_resolution_context *context;
 | 
						|
  const char *save_where;
 | 
						|
  char* db_name;
 | 
						|
  char db_name_string[FN_REFLEN];
 | 
						|
  bool save_use_only_table_context;
 | 
						|
  uint8 saved_full_group_by_flag;
 | 
						|
  nesting_map saved_allow_sum_func;
 | 
						|
  DBUG_ENTER("fix_fields_part_func");
 | 
						|
 | 
						|
  if (part_info->fixed)
 | 
						|
  {
 | 
						|
    if (!(is_sub_part || (error= check_signed_flag(part_info))))
 | 
						|
      result= FALSE;
 | 
						|
    goto end;
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
    Set-up the TABLE_LIST object to be a list with a single table
 | 
						|
    Set the object to zero to create NULL pointers and set alias
 | 
						|
    and real name to table name and get database name from file name.
 | 
						|
    TODO: Consider generalizing or refactoring Lex::add_table_to_list() so
 | 
						|
    it can be used in all places where we create TABLE_LIST objects.
 | 
						|
    Also consider creating appropriate constructors for TABLE_LIST.
 | 
						|
  */
 | 
						|
 | 
						|
  bzero((void*)&tables, sizeof(TABLE_LIST));
 | 
						|
  tables.alias= tables.table_name= (char*) table->s->table_name.str;
 | 
						|
  tables.table= table;
 | 
						|
  tables.next_local= 0;
 | 
						|
  tables.next_name_resolution_table= 0;
 | 
						|
  /*
 | 
						|
    Cache the table in Item_fields. All the tables can be cached except
 | 
						|
    the trigger pseudo table.
 | 
						|
  */
 | 
						|
  tables.cacheable_table= TRUE;
 | 
						|
  context= thd->lex->current_context();
 | 
						|
  tables.select_lex= context->select_lex;
 | 
						|
  strmov(db_name_string, table->s->normalized_path.str);
 | 
						|
  dir_length= dirname_length(db_name_string);
 | 
						|
  db_name_string[dir_length - 1]= 0;
 | 
						|
  home_dir_length= dirname_length(db_name_string);
 | 
						|
  db_name= &db_name_string[home_dir_length];
 | 
						|
  tables.db= db_name;
 | 
						|
 | 
						|
  table->map= 1; //To ensure correct calculation of const item
 | 
						|
  table->get_fields_in_item_tree= TRUE;
 | 
						|
  save_table_list= context->table_list;
 | 
						|
  save_first_table= context->first_name_resolution_table;
 | 
						|
  save_last_table= context->last_name_resolution_table;
 | 
						|
  context->table_list= &tables;
 | 
						|
  context->first_name_resolution_table= &tables;
 | 
						|
  context->last_name_resolution_table= NULL;
 | 
						|
  func_expr->walk(&Item::change_context_processor, 0, (uchar*) context);
 | 
						|
  save_where= thd->where;
 | 
						|
  thd->where= "partition function";
 | 
						|
  /*
 | 
						|
    In execution we must avoid the use of thd->change_item_tree since
 | 
						|
    we might release memory before statement is completed. We do this
 | 
						|
    by temporarily setting the stmt_arena->mem_root to be the mem_root
 | 
						|
    of the table object, this also ensures that any memory allocated
 | 
						|
    during fix_fields will not be released at end of execution of this
 | 
						|
    statement. Thus the item tree will remain valid also in subsequent
 | 
						|
    executions of this table object. We do however not at the moment
 | 
						|
    support allocations during execution of val_int so any item class
 | 
						|
    that does this during val_int must be disallowed as partition
 | 
						|
    function.
 | 
						|
    SEE Bug #21658
 | 
						|
  */
 | 
						|
  /*
 | 
						|
    This is a tricky call to prepare for since it can have a large number
 | 
						|
    of interesting side effects, both desirable and undesirable.
 | 
						|
  */
 | 
						|
 | 
						|
  save_use_only_table_context= thd->lex->use_only_table_context;
 | 
						|
  thd->lex->use_only_table_context= TRUE;
 | 
						|
  thd->lex->current_select->cur_pos_in_select_list= UNDEF_POS;
 | 
						|
  saved_full_group_by_flag= thd->lex->current_select->full_group_by_flag;
 | 
						|
  saved_allow_sum_func= thd->lex->allow_sum_func;
 | 
						|
  thd->lex->allow_sum_func= 0;
 | 
						|
  
 | 
						|
  error= func_expr->fix_fields(thd, (Item**)&func_expr);
 | 
						|
 | 
						|
  /*
 | 
						|
    Restore full_group_by_flag and allow_sum_func,
 | 
						|
    fix_fields should not affect mysql_select later, see Bug#46923.
 | 
						|
  */
 | 
						|
  thd->lex->current_select->full_group_by_flag= saved_full_group_by_flag;
 | 
						|
  thd->lex->allow_sum_func= saved_allow_sum_func;
 | 
						|
 | 
						|
  thd->lex->use_only_table_context= save_use_only_table_context;
 | 
						|
 | 
						|
  context->table_list= save_table_list;
 | 
						|
  context->first_name_resolution_table= save_first_table;
 | 
						|
  context->last_name_resolution_table= save_last_table;
 | 
						|
  if (unlikely(error))
 | 
						|
  {
 | 
						|
    DBUG_PRINT("info", ("Field in partition function not part of table"));
 | 
						|
    if (is_field_to_be_setup)
 | 
						|
      clear_field_flag(table);
 | 
						|
    goto end;
 | 
						|
  }
 | 
						|
  thd->where= save_where;
 | 
						|
  if (unlikely(func_expr->const_item()))
 | 
						|
  {
 | 
						|
    my_error(ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0));
 | 
						|
    clear_field_flag(table);
 | 
						|
    goto end;
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
    We don't allow creating partitions with timezone-dependent expressions as
 | 
						|
    a (sub)partitioning function, but we want to allow such expressions when
 | 
						|
    opening existing tables for easier maintenance. This exception should be
 | 
						|
    deprecated at some point in future so that we always throw an error.
 | 
						|
  */
 | 
						|
  if (func_expr->walk(&Item::is_timezone_dependent_processor,
 | 
						|
                      0, NULL))
 | 
						|
  {
 | 
						|
    if (is_create_table_ind)
 | 
						|
    {
 | 
						|
      my_error(ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0));
 | 
						|
      goto end;
 | 
						|
    }
 | 
						|
    else
 | 
						|
      push_warning(thd, MYSQL_ERROR::WARN_LEVEL_WARN,
 | 
						|
                   ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR,
 | 
						|
                   ER(ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR));
 | 
						|
  }
 | 
						|
 | 
						|
  if ((!is_sub_part) && (error= check_signed_flag(part_info)))
 | 
						|
    goto end;
 | 
						|
  result= FALSE;
 | 
						|
  if (is_field_to_be_setup)
 | 
						|
    result= set_up_field_array(table, is_sub_part);
 | 
						|
  if (!is_sub_part)
 | 
						|
    part_info->fixed= TRUE;
 | 
						|
end:
 | 
						|
  table->get_fields_in_item_tree= FALSE;
 | 
						|
  table->map= 0; //Restore old value
 | 
						|
  DBUG_RETURN(result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Check that the primary key contains all partition fields if defined
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    check_primary_key()
 | 
						|
    table                TABLE object for which partition fields are set-up
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                 Not all fields in partitioning function was part
 | 
						|
                         of primary key
 | 
						|
    FALSE                Ok, all fields of partitioning function were part
 | 
						|
                         of primary key
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    This function verifies that if there is a primary key that it contains
 | 
						|
    all the fields of the partition function.
 | 
						|
    This is a temporary limitation that will hopefully be removed after a
 | 
						|
    while.
 | 
						|
*/
 | 
						|
 | 
						|
static bool check_primary_key(TABLE *table)
 | 
						|
{
 | 
						|
  uint primary_key= table->s->primary_key;
 | 
						|
  bool all_fields, some_fields;
 | 
						|
  bool result= FALSE;
 | 
						|
  DBUG_ENTER("check_primary_key");
 | 
						|
 | 
						|
  if (primary_key < MAX_KEY)
 | 
						|
  {
 | 
						|
    set_indicator_in_key_fields(table->key_info+primary_key);
 | 
						|
    check_fields_in_PF(table->part_info->full_part_field_array,
 | 
						|
                        &all_fields, &some_fields);
 | 
						|
    clear_indicator_in_key_fields(table->key_info+primary_key);
 | 
						|
    if (unlikely(!all_fields))
 | 
						|
    {
 | 
						|
      my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"PRIMARY KEY");
 | 
						|
      result= TRUE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_RETURN(result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Check that unique keys contains all partition fields
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    check_unique_keys()
 | 
						|
    table                TABLE object for which partition fields are set-up
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                 Not all fields in partitioning function was part
 | 
						|
                         of all unique keys
 | 
						|
    FALSE                Ok, all fields of partitioning function were part
 | 
						|
                         of unique keys
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    This function verifies that if there is a unique index that it contains
 | 
						|
    all the fields of the partition function.
 | 
						|
    This is a temporary limitation that will hopefully be removed after a
 | 
						|
    while.
 | 
						|
*/
 | 
						|
 | 
						|
static bool check_unique_keys(TABLE *table)
 | 
						|
{
 | 
						|
  bool all_fields, some_fields;
 | 
						|
  bool result= FALSE;
 | 
						|
  uint keys= table->s->keys;
 | 
						|
  uint i;
 | 
						|
  DBUG_ENTER("check_unique_keys");
 | 
						|
 | 
						|
  for (i= 0; i < keys; i++)
 | 
						|
  {
 | 
						|
    if (table->key_info[i].flags & HA_NOSAME) //Unique index
 | 
						|
    {
 | 
						|
      set_indicator_in_key_fields(table->key_info+i);
 | 
						|
      check_fields_in_PF(table->part_info->full_part_field_array,
 | 
						|
                         &all_fields, &some_fields);
 | 
						|
      clear_indicator_in_key_fields(table->key_info+i);
 | 
						|
      if (unlikely(!all_fields))
 | 
						|
      {
 | 
						|
        my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"UNIQUE INDEX");
 | 
						|
        result= TRUE;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_RETURN(result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  An important optimisation is whether a range on a field can select a subset
 | 
						|
  of the partitions.
 | 
						|
  A prerequisite for this to happen is that the PF is a growing function OR
 | 
						|
  a shrinking function.
 | 
						|
  This can never happen for a multi-dimensional PF. Thus this can only happen
 | 
						|
  with PF with at most one field involved in the PF.
 | 
						|
  The idea is that if the function is a growing function and you know that
 | 
						|
  the field of the PF is 4 <= A <= 6 then we can convert this to a range
 | 
						|
  in the PF instead by setting the range to PF(4) <= PF(A) <= PF(6). In the
 | 
						|
  case of RANGE PARTITIONING and LIST PARTITIONING this can be used to
 | 
						|
  calculate a set of partitions rather than scanning all of them.
 | 
						|
  Thus the following prerequisites are there to check if sets of partitions
 | 
						|
  can be found.
 | 
						|
  1) Only possible for RANGE and LIST partitioning (not for subpartitioning)
 | 
						|
  2) Only possible if PF only contains 1 field
 | 
						|
  3) Possible if PF is a growing function of the field
 | 
						|
  4) Possible if PF is a shrinking function of the field
 | 
						|
  OBSERVATION:
 | 
						|
  1) IF f1(A) is a growing function AND f2(A) is a growing function THEN
 | 
						|
     f1(A) + f2(A) is a growing function
 | 
						|
     f1(A) * f2(A) is a growing function if f1(A) >= 0 and f2(A) >= 0
 | 
						|
  2) IF f1(A) is a growing function and f2(A) is a shrinking function THEN
 | 
						|
     f1(A) / f2(A) is a growing function if f1(A) >= 0 and f2(A) > 0
 | 
						|
  3) IF A is a growing function then a function f(A) that removes the
 | 
						|
     least significant portion of A is a growing function
 | 
						|
     E.g. DATE(datetime) is a growing function
 | 
						|
     MONTH(datetime) is not a growing/shrinking function
 | 
						|
  4) IF f1(A) is a growing function and f2(A) is a growing function THEN
 | 
						|
     f1(f2(A)) and f2(f1(A)) are also growing functions
 | 
						|
  5) IF f1(A) is a shrinking function and f2(A) is a growing function THEN
 | 
						|
     f1(f2(A)) is a shrinking function and f2(f1(A)) is a shrinking function
 | 
						|
  6) f1(A) = A is a growing function
 | 
						|
  7) f1(A) = A*a + b (where a and b are constants) is a growing function
 | 
						|
 | 
						|
  By analysing the item tree of the PF we can use these deducements and
 | 
						|
  derive whether the PF is a growing function or a shrinking function or
 | 
						|
  neither of it.
 | 
						|
 | 
						|
  If the PF is range capable then a flag is set on the table object
 | 
						|
  indicating this to notify that we can use also ranges on the field
 | 
						|
  of the PF to deduce a set of partitions if the fields of the PF were
 | 
						|
  not all fully bound.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    check_range_capable_PF()
 | 
						|
    table                TABLE object for which partition fields are set-up
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Support for this is not implemented yet.
 | 
						|
*/
 | 
						|
 | 
						|
void check_range_capable_PF(TABLE *table)
 | 
						|
{
 | 
						|
  DBUG_ENTER("check_range_capable_PF");
 | 
						|
 | 
						|
  DBUG_VOID_RETURN;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Set up partition bitmap
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    set_up_partition_bitmap()
 | 
						|
    thd                  Thread object
 | 
						|
    part_info            Reference to partitioning data structure
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    TRUE                 Memory allocation failure
 | 
						|
    FALSE                Success
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Allocate memory for bitmap of the partitioned table
 | 
						|
    and initialise it.
 | 
						|
*/
 | 
						|
 | 
						|
static bool set_up_partition_bitmap(THD *thd, partition_info *part_info)
 | 
						|
{
 | 
						|
  uint32 *bitmap_buf;
 | 
						|
  uint bitmap_bits= part_info->no_subparts? 
 | 
						|
                     (part_info->no_subparts* part_info->no_parts):
 | 
						|
                      part_info->no_parts;
 | 
						|
  uint bitmap_bytes= bitmap_buffer_size(bitmap_bits);
 | 
						|
  DBUG_ENTER("set_up_partition_bitmap");
 | 
						|
 | 
						|
  if (!(bitmap_buf= (uint32*)thd->alloc(bitmap_bytes)))
 | 
						|
  {
 | 
						|
    mem_alloc_error(bitmap_bytes);
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
  }
 | 
						|
  bitmap_init(&part_info->used_partitions, bitmap_buf, bitmap_bytes*8, FALSE);
 | 
						|
  bitmap_set_all(&part_info->used_partitions);
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Set up partition key maps
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    set_up_partition_key_maps()
 | 
						|
    table                TABLE object for which partition fields are set-up
 | 
						|
    part_info            Reference to partitioning data structure
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    None
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    This function sets up a couple of key maps to be able to quickly check
 | 
						|
    if an index ever can be used to deduce the partition fields or even
 | 
						|
    a part of the fields of the  partition function.
 | 
						|
    We set up the following key_map's.
 | 
						|
    PF = Partition Function
 | 
						|
    1) All fields of the PF is set even by equal on the first fields in the
 | 
						|
       key
 | 
						|
    2) All fields of the PF is set if all fields of the key is set
 | 
						|
    3) At least one field in the PF is set if all fields is set
 | 
						|
    4) At least one field in the PF is part of the key
 | 
						|
*/
 | 
						|
 | 
						|
static void set_up_partition_key_maps(TABLE *table,
 | 
						|
                                      partition_info *part_info)
 | 
						|
{
 | 
						|
  uint keys= table->s->keys;
 | 
						|
  uint i;
 | 
						|
  bool all_fields, some_fields;
 | 
						|
  DBUG_ENTER("set_up_partition_key_maps");
 | 
						|
 | 
						|
  part_info->all_fields_in_PF.clear_all();
 | 
						|
  part_info->all_fields_in_PPF.clear_all();
 | 
						|
  part_info->all_fields_in_SPF.clear_all();
 | 
						|
  part_info->some_fields_in_PF.clear_all();
 | 
						|
  for (i= 0; i < keys; i++)
 | 
						|
  {
 | 
						|
    set_indicator_in_key_fields(table->key_info+i);
 | 
						|
    check_fields_in_PF(part_info->full_part_field_array,
 | 
						|
                       &all_fields, &some_fields);
 | 
						|
    if (all_fields)
 | 
						|
      part_info->all_fields_in_PF.set_bit(i);
 | 
						|
    if (some_fields)
 | 
						|
      part_info->some_fields_in_PF.set_bit(i);
 | 
						|
    if (part_info->is_sub_partitioned())
 | 
						|
    {
 | 
						|
      check_fields_in_PF(part_info->part_field_array,
 | 
						|
                         &all_fields, &some_fields);
 | 
						|
      if (all_fields)
 | 
						|
        part_info->all_fields_in_PPF.set_bit(i);
 | 
						|
      check_fields_in_PF(part_info->subpart_field_array,
 | 
						|
                         &all_fields, &some_fields);
 | 
						|
      if (all_fields)
 | 
						|
        part_info->all_fields_in_SPF.set_bit(i);
 | 
						|
    }
 | 
						|
    clear_indicator_in_key_fields(table->key_info+i);
 | 
						|
  }
 | 
						|
  DBUG_VOID_RETURN;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Set up function pointers for partition function
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    set_up_partition_func_pointers()
 | 
						|
    part_info            Reference to partitioning data structure
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    NONE
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Set-up all function pointers for calculation of partition id,
 | 
						|
    subpartition id and the upper part in subpartitioning. This is to speed up
 | 
						|
    execution of get_partition_id which is executed once every record to be
 | 
						|
    written and deleted and twice for updates.
 | 
						|
*/
 | 
						|
 | 
						|
static void set_up_partition_func_pointers(partition_info *part_info)
 | 
						|
{
 | 
						|
  DBUG_ENTER("set_up_partition_func_pointers");
 | 
						|
 | 
						|
  if (part_info->is_sub_partitioned())
 | 
						|
  {
 | 
						|
    if (part_info->part_type == RANGE_PARTITION)
 | 
						|
    {
 | 
						|
      part_info->get_part_partition_id= get_partition_id_range;
 | 
						|
      if (part_info->list_of_subpart_fields)
 | 
						|
      {
 | 
						|
        if (part_info->linear_hash_ind)
 | 
						|
        {
 | 
						|
          part_info->get_partition_id= get_partition_id_range_sub_linear_key;
 | 
						|
          part_info->get_subpartition_id= get_partition_id_linear_key_sub;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          part_info->get_partition_id= get_partition_id_range_sub_key;
 | 
						|
          part_info->get_subpartition_id= get_partition_id_key_sub;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        if (part_info->linear_hash_ind)
 | 
						|
        {
 | 
						|
          part_info->get_partition_id= get_partition_id_range_sub_linear_hash;
 | 
						|
          part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          part_info->get_partition_id= get_partition_id_range_sub_hash;
 | 
						|
          part_info->get_subpartition_id= get_partition_id_hash_sub;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else /* LIST Partitioning */
 | 
						|
    {
 | 
						|
      part_info->get_part_partition_id= get_partition_id_list;
 | 
						|
      if (part_info->list_of_subpart_fields)
 | 
						|
      {
 | 
						|
        if (part_info->linear_hash_ind)
 | 
						|
        {
 | 
						|
          part_info->get_partition_id= get_partition_id_list_sub_linear_key;
 | 
						|
          part_info->get_subpartition_id= get_partition_id_linear_key_sub;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          part_info->get_partition_id= get_partition_id_list_sub_key;
 | 
						|
          part_info->get_subpartition_id= get_partition_id_key_sub;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        if (part_info->linear_hash_ind)
 | 
						|
        {
 | 
						|
          part_info->get_partition_id= get_partition_id_list_sub_linear_hash;
 | 
						|
          part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          part_info->get_partition_id= get_partition_id_list_sub_hash;
 | 
						|
          part_info->get_subpartition_id= get_partition_id_hash_sub;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else /* No subpartitioning */
 | 
						|
  {
 | 
						|
    part_info->get_part_partition_id= NULL;
 | 
						|
    part_info->get_subpartition_id= NULL;
 | 
						|
    if (part_info->part_type == RANGE_PARTITION)
 | 
						|
      part_info->get_partition_id= get_partition_id_range;
 | 
						|
    else if (part_info->part_type == LIST_PARTITION)
 | 
						|
      part_info->get_partition_id= get_partition_id_list;
 | 
						|
    else /* HASH partitioning */
 | 
						|
    {
 | 
						|
      if (part_info->list_of_part_fields)
 | 
						|
      {
 | 
						|
        if (part_info->linear_hash_ind)
 | 
						|
          part_info->get_partition_id= get_partition_id_linear_key_nosub;
 | 
						|
        else
 | 
						|
          part_info->get_partition_id= get_partition_id_key_nosub;
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        if (part_info->linear_hash_ind)
 | 
						|
          part_info->get_partition_id= get_partition_id_linear_hash_nosub;
 | 
						|
        else
 | 
						|
          part_info->get_partition_id= get_partition_id_hash_nosub;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (part_info->full_part_charset_field_array)
 | 
						|
  {
 | 
						|
    DBUG_ASSERT(part_info->get_partition_id);
 | 
						|
    part_info->get_partition_id_charset= part_info->get_partition_id;
 | 
						|
    if (part_info->part_charset_field_array &&
 | 
						|
        part_info->subpart_charset_field_array)
 | 
						|
      part_info->get_partition_id= get_part_id_charset_func_all;
 | 
						|
    else if (part_info->part_charset_field_array)
 | 
						|
      part_info->get_partition_id= get_part_id_charset_func_part;
 | 
						|
    else
 | 
						|
      part_info->get_partition_id= get_part_id_charset_func_subpart;
 | 
						|
  }
 | 
						|
  if (part_info->part_charset_field_array &&
 | 
						|
      part_info->is_sub_partitioned())
 | 
						|
  {
 | 
						|
    DBUG_ASSERT(part_info->get_part_partition_id);
 | 
						|
    part_info->get_part_partition_id_charset=
 | 
						|
          part_info->get_part_partition_id;
 | 
						|
    part_info->get_part_partition_id= get_part_part_id_charset_func;
 | 
						|
  }
 | 
						|
  if (part_info->subpart_charset_field_array)
 | 
						|
  {
 | 
						|
    DBUG_ASSERT(part_info->get_subpartition_id);
 | 
						|
    part_info->get_subpartition_id_charset=
 | 
						|
          part_info->get_subpartition_id;
 | 
						|
    part_info->get_subpartition_id= get_subpart_id_charset_func;
 | 
						|
  }
 | 
						|
  DBUG_VOID_RETURN;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  For linear hashing we need a mask which is on the form 2**n - 1 where
 | 
						|
  2**n >= no_parts. Thus if no_parts is 6 then mask is 2**3 - 1 = 8 - 1 = 7.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    set_linear_hash_mask()
 | 
						|
    part_info            Reference to partitioning data structure
 | 
						|
    no_parts             Number of parts in linear hash partitioning
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    NONE
 | 
						|
*/
 | 
						|
 | 
						|
void set_linear_hash_mask(partition_info *part_info, uint no_parts)
 | 
						|
{
 | 
						|
  uint mask;
 | 
						|
 | 
						|
  for (mask= 1; mask < no_parts; mask<<=1)
 | 
						|
    ;
 | 
						|
  part_info->linear_hash_mask= mask - 1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  This function calculates the partition id provided the result of the hash
 | 
						|
  function using linear hashing parameters, mask and number of partitions.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_part_id_from_linear_hash()
 | 
						|
    hash_value          Hash value calculated by HASH function or KEY function
 | 
						|
    mask                Mask calculated previously by set_linear_hash_mask
 | 
						|
    no_parts            Number of partitions in HASH partitioned part
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    part_id             The calculated partition identity (starting at 0)
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    The partition is calculated according to the theory of linear hashing.
 | 
						|
    See e.g. Linear hashing: a new tool for file and table addressing,
 | 
						|
    Reprinted from VLDB-80 in Readings Database Systems, 2nd ed, M. Stonebraker
 | 
						|
    (ed.), Morgan Kaufmann 1994.
 | 
						|
*/
 | 
						|
 | 
						|
static uint32 get_part_id_from_linear_hash(longlong hash_value, uint mask,
 | 
						|
                                           uint no_parts)
 | 
						|
{
 | 
						|
  uint32 part_id= (uint32)(hash_value & mask);
 | 
						|
 | 
						|
  if (part_id >= no_parts)
 | 
						|
  {
 | 
						|
    uint new_mask= ((mask + 1) >> 1) - 1;
 | 
						|
    part_id= (uint32)(hash_value & new_mask);
 | 
						|
  }
 | 
						|
  return part_id;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Check if a particular field is in need of character set
 | 
						|
  handling for partition functions.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    field_is_partition_charset()
 | 
						|
    field                         The field to check
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    FALSE                        Not in need of character set handling
 | 
						|
    TRUE                         In need of character set handling
 | 
						|
*/
 | 
						|
 | 
						|
bool field_is_partition_charset(Field *field)
 | 
						|
{
 | 
						|
  if (!(field->type() == MYSQL_TYPE_STRING) &&
 | 
						|
      !(field->type() == MYSQL_TYPE_VARCHAR))
 | 
						|
    return FALSE;
 | 
						|
  {
 | 
						|
    CHARSET_INFO *cs= ((Field_str*)field)->charset();
 | 
						|
    if (!(field->type() == MYSQL_TYPE_STRING) ||
 | 
						|
        !(cs->state & MY_CS_BINSORT))
 | 
						|
      return TRUE;
 | 
						|
    return FALSE;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Check that partition function doesn't contain any forbidden
 | 
						|
  character sets and collations.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    check_part_func_fields()
 | 
						|
    ptr                                 Array of Field pointers
 | 
						|
    ok_with_charsets                    Will we report allowed charset
 | 
						|
                                        fields as ok
 | 
						|
  RETURN VALUES
 | 
						|
    FALSE                               Success
 | 
						|
    TRUE                                Error
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    We will check in this routine that the fields of the partition functions
 | 
						|
    do not contain unallowed parts. It can also be used to check if there
 | 
						|
    are fields that require special care by calling my_strnxfrm before
 | 
						|
    calling the functions to calculate partition id.
 | 
						|
*/
 | 
						|
 | 
						|
bool check_part_func_fields(Field **ptr, bool ok_with_charsets)
 | 
						|
{
 | 
						|
  Field *field;
 | 
						|
  DBUG_ENTER("check_part_func_fields");
 | 
						|
 | 
						|
  while ((field= *(ptr++)))
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      For CHAR/VARCHAR fields we need to take special precautions.
 | 
						|
      Binary collation with CHAR is automatically supported. Other
 | 
						|
      types need some kind of standardisation function handling
 | 
						|
    */
 | 
						|
    if (field_is_partition_charset(field))
 | 
						|
    {
 | 
						|
      CHARSET_INFO *cs= ((Field_str*)field)->charset();
 | 
						|
      if (!ok_with_charsets ||
 | 
						|
          cs->mbmaxlen > 1 ||
 | 
						|
          cs->strxfrm_multiply > 1)
 | 
						|
      {
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  fix partition functions
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    fix_partition_func()
 | 
						|
    thd                  The thread object
 | 
						|
    table                TABLE object for which partition fields are set-up
 | 
						|
    is_create_table_ind  Indicator of whether openfrm was called as part of
 | 
						|
                         CREATE or ALTER TABLE
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    TRUE                 Error
 | 
						|
    FALSE                Success
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    The name parameter contains the full table name and is used to get the
 | 
						|
    database name of the table which is used to set-up a correct
 | 
						|
    TABLE_LIST object for use in fix_fields.
 | 
						|
 | 
						|
NOTES
 | 
						|
    This function is called as part of opening the table by opening the .frm
 | 
						|
    file. It is a part of CREATE TABLE to do this so it is quite permissible
 | 
						|
    that errors due to erroneus syntax isn't found until we come here.
 | 
						|
    If the user has used a non-existing field in the table is one such example
 | 
						|
    of an error that is not discovered until here.
 | 
						|
*/
 | 
						|
 | 
						|
bool fix_partition_func(THD *thd, TABLE *table,
 | 
						|
                        bool is_create_table_ind)
 | 
						|
{
 | 
						|
  bool result= TRUE;
 | 
						|
  partition_info *part_info= table->part_info;
 | 
						|
  enum_mark_columns save_mark_used_columns= thd->mark_used_columns;
 | 
						|
  DBUG_ENTER("fix_partition_func");
 | 
						|
 | 
						|
  if (part_info->fixed)
 | 
						|
  {
 | 
						|
    DBUG_RETURN(FALSE);
 | 
						|
  }
 | 
						|
  thd->mark_used_columns= MARK_COLUMNS_NONE;
 | 
						|
  DBUG_PRINT("info", ("thd->mark_used_columns: %d", thd->mark_used_columns));
 | 
						|
 | 
						|
  if (!is_create_table_ind ||
 | 
						|
       thd->lex->sql_command != SQLCOM_CREATE_TABLE)
 | 
						|
  {
 | 
						|
    if (partition_default_handling(table, part_info,
 | 
						|
                                   is_create_table_ind,
 | 
						|
                                   table->s->normalized_path.str))
 | 
						|
    {
 | 
						|
      DBUG_RETURN(TRUE);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (part_info->is_sub_partitioned())
 | 
						|
  {
 | 
						|
    DBUG_ASSERT(part_info->subpart_type == HASH_PARTITION);
 | 
						|
    /*
 | 
						|
      Subpartition is defined. We need to verify that subpartitioning
 | 
						|
      function is correct.
 | 
						|
    */
 | 
						|
    if (part_info->linear_hash_ind)
 | 
						|
      set_linear_hash_mask(part_info, part_info->no_subparts);
 | 
						|
    if (part_info->list_of_subpart_fields)
 | 
						|
    {
 | 
						|
      List_iterator<char> it(part_info->subpart_field_list);
 | 
						|
      if (unlikely(handle_list_of_fields(it, table, part_info, TRUE)))
 | 
						|
        goto end;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      if (unlikely(fix_fields_part_func(thd, part_info->subpart_expr,
 | 
						|
                                        table, TRUE, TRUE,
 | 
						|
                                        is_create_table_ind)))
 | 
						|
        goto end;
 | 
						|
      if (unlikely(part_info->subpart_expr->result_type() != INT_RESULT))
 | 
						|
      {
 | 
						|
        my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0),
 | 
						|
                 "SUBPARTITION");
 | 
						|
        goto end;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_ASSERT(part_info->part_type != NOT_A_PARTITION);
 | 
						|
  /*
 | 
						|
    Partition is defined. We need to verify that partitioning
 | 
						|
    function is correct.
 | 
						|
  */
 | 
						|
  if (part_info->part_type == HASH_PARTITION)
 | 
						|
  {
 | 
						|
    if (part_info->linear_hash_ind)
 | 
						|
      set_linear_hash_mask(part_info, part_info->no_parts);
 | 
						|
    if (part_info->list_of_part_fields)
 | 
						|
    {
 | 
						|
      List_iterator<char> it(part_info->part_field_list);
 | 
						|
      if (unlikely(handle_list_of_fields(it, table, part_info, FALSE)))
 | 
						|
        goto end;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      if (unlikely(fix_fields_part_func(thd, part_info->part_expr,
 | 
						|
                                        table, FALSE, TRUE,
 | 
						|
                                        is_create_table_ind)))
 | 
						|
        goto end;
 | 
						|
      if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
 | 
						|
      {
 | 
						|
        my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
 | 
						|
        goto end;
 | 
						|
      }
 | 
						|
      part_info->part_result_type= INT_RESULT;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    const char *error_str;
 | 
						|
    if (unlikely(fix_fields_part_func(thd, part_info->part_expr,
 | 
						|
                                      table, FALSE, TRUE,
 | 
						|
                                      is_create_table_ind)))
 | 
						|
      goto end;
 | 
						|
    if (part_info->part_type == RANGE_PARTITION)
 | 
						|
    {
 | 
						|
      error_str= partition_keywords[PKW_RANGE].str; 
 | 
						|
      if (unlikely(part_info->check_range_constants()))
 | 
						|
        goto end;
 | 
						|
    }
 | 
						|
    else if (part_info->part_type == LIST_PARTITION)
 | 
						|
    {
 | 
						|
      error_str= partition_keywords[PKW_LIST].str; 
 | 
						|
      if (unlikely(part_info->check_list_constants()))
 | 
						|
        goto end;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      DBUG_ASSERT(0);
 | 
						|
      my_error(ER_INCONSISTENT_PARTITION_INFO_ERROR, MYF(0));
 | 
						|
      goto end;
 | 
						|
    }
 | 
						|
    if (unlikely(part_info->no_parts < 1))
 | 
						|
    {
 | 
						|
      my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_str);
 | 
						|
      goto end;
 | 
						|
    }
 | 
						|
    if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
 | 
						|
    {
 | 
						|
      my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
 | 
						|
      goto end;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (((part_info->part_type != HASH_PARTITION ||
 | 
						|
      part_info->list_of_part_fields == FALSE) &&
 | 
						|
      check_part_func_fields(part_info->part_field_array, TRUE)) ||
 | 
						|
      (part_info->list_of_subpart_fields == FALSE &&
 | 
						|
       part_info->is_sub_partitioned() &&
 | 
						|
       check_part_func_fields(part_info->subpart_field_array, TRUE)))
 | 
						|
  {
 | 
						|
    my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0));
 | 
						|
    goto end;
 | 
						|
  }
 | 
						|
  if (unlikely(create_full_part_field_array(thd, table, part_info)))
 | 
						|
    goto end;
 | 
						|
  if (unlikely(check_primary_key(table)))
 | 
						|
    goto end;
 | 
						|
  if (unlikely((!(table->s->db_type()->partition_flags &&
 | 
						|
      (table->s->db_type()->partition_flags() & HA_CAN_PARTITION_UNIQUE))) &&
 | 
						|
               check_unique_keys(table)))
 | 
						|
    goto end;
 | 
						|
  if (unlikely(set_up_partition_bitmap(thd, part_info)))
 | 
						|
    goto end;
 | 
						|
  if (unlikely(part_info->set_up_charset_field_preps()))
 | 
						|
  {
 | 
						|
    my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0));
 | 
						|
    goto end;
 | 
						|
  }
 | 
						|
  check_range_capable_PF(table);
 | 
						|
  set_up_partition_key_maps(table, part_info);
 | 
						|
  set_up_partition_func_pointers(part_info);
 | 
						|
  set_up_range_analysis_info(part_info);
 | 
						|
  result= FALSE;
 | 
						|
end:
 | 
						|
  thd->mark_used_columns= save_mark_used_columns;
 | 
						|
  DBUG_PRINT("info", ("thd->mark_used_columns: %d", thd->mark_used_columns));
 | 
						|
  DBUG_RETURN(result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  The code below is support routines for the reverse parsing of the 
 | 
						|
  partitioning syntax. This feature is very useful to generate syntax for
 | 
						|
  all default values to avoid all default checking when opening the frm
 | 
						|
  file. It is also used when altering the partitioning by use of various
 | 
						|
  ALTER TABLE commands. Finally it is used for SHOW CREATE TABLES.
 | 
						|
*/
 | 
						|
 | 
						|
static int add_write(File fptr, const char *buf, uint len)
 | 
						|
{
 | 
						|
  uint len_written= my_write(fptr, (const uchar*)buf, len, MYF(0));
 | 
						|
 | 
						|
  if (likely(len == len_written))
 | 
						|
    return 0;
 | 
						|
  else
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
static int add_string_object(File fptr, String *string)
 | 
						|
{
 | 
						|
  return add_write(fptr, string->ptr(), string->length());
 | 
						|
}
 | 
						|
 | 
						|
static int add_string(File fptr, const char *string)
 | 
						|
{
 | 
						|
  return add_write(fptr, string, strlen(string));
 | 
						|
}
 | 
						|
 | 
						|
static int add_string_len(File fptr, const char *string, uint len)
 | 
						|
{
 | 
						|
  return add_write(fptr, string, len);
 | 
						|
}
 | 
						|
 | 
						|
static int add_space(File fptr)
 | 
						|
{
 | 
						|
  return add_string(fptr, space_str);
 | 
						|
}
 | 
						|
 | 
						|
static int add_comma(File fptr)
 | 
						|
{
 | 
						|
  return add_string(fptr, comma_str);
 | 
						|
}
 | 
						|
 | 
						|
static int add_equal(File fptr)
 | 
						|
{
 | 
						|
  return add_string(fptr, equal_str);
 | 
						|
}
 | 
						|
 | 
						|
static int add_end_parenthesis(File fptr)
 | 
						|
{
 | 
						|
  return add_string(fptr, end_paren_str);
 | 
						|
}
 | 
						|
 | 
						|
static int add_begin_parenthesis(File fptr)
 | 
						|
{
 | 
						|
  return add_string(fptr, begin_paren_str);
 | 
						|
}
 | 
						|
 | 
						|
static int add_part_key_word(File fptr, const char *key_string)
 | 
						|
{
 | 
						|
  int err= add_string(fptr, key_string);
 | 
						|
 | 
						|
  err+= add_space(fptr);
 | 
						|
  return err + add_begin_parenthesis(fptr);
 | 
						|
}
 | 
						|
 | 
						|
static int add_hash(File fptr)
 | 
						|
{
 | 
						|
  return add_part_key_word(fptr, partition_keywords[PKW_HASH].str);
 | 
						|
}
 | 
						|
 | 
						|
static int add_partition(File fptr)
 | 
						|
{
 | 
						|
  char buff[22];
 | 
						|
  strxmov(buff, part_str, space_str, NullS);
 | 
						|
  return add_string(fptr, buff);
 | 
						|
}
 | 
						|
 | 
						|
static int add_subpartition(File fptr)
 | 
						|
{
 | 
						|
  int err= add_string(fptr, sub_str);
 | 
						|
 | 
						|
  return err + add_partition(fptr);
 | 
						|
}
 | 
						|
 | 
						|
static int add_partition_by(File fptr)
 | 
						|
{
 | 
						|
  char buff[22];
 | 
						|
  strxmov(buff, part_str, space_str, by_str, space_str, NullS);
 | 
						|
  return add_string(fptr, buff);
 | 
						|
}
 | 
						|
 | 
						|
static int add_subpartition_by(File fptr)
 | 
						|
{
 | 
						|
  int err= add_string(fptr, sub_str);
 | 
						|
 | 
						|
  return err + add_partition_by(fptr);
 | 
						|
}
 | 
						|
 | 
						|
static int add_key_partition(File fptr, List<char> field_list)
 | 
						|
{
 | 
						|
  uint i, no_fields;
 | 
						|
  int err;
 | 
						|
 | 
						|
  List_iterator<char> part_it(field_list);
 | 
						|
  err= add_part_key_word(fptr, partition_keywords[PKW_KEY].str);
 | 
						|
  no_fields= field_list.elements;
 | 
						|
  i= 0;
 | 
						|
  while (i < no_fields)
 | 
						|
  {
 | 
						|
    const char *field_str= part_it++;
 | 
						|
    String field_string("", 0, system_charset_info);
 | 
						|
    THD *thd= current_thd;
 | 
						|
    ulonglong save_options= thd->options;
 | 
						|
    thd->options= 0;
 | 
						|
    append_identifier(thd, &field_string, field_str,
 | 
						|
                      strlen(field_str));
 | 
						|
    thd->options= save_options;
 | 
						|
    err+= add_string_object(fptr, &field_string);
 | 
						|
    if (i != (no_fields-1))
 | 
						|
      err+= add_comma(fptr);
 | 
						|
    i++;
 | 
						|
  }
 | 
						|
  return err;
 | 
						|
}
 | 
						|
 | 
						|
static int add_name_string(File fptr, const char *name)
 | 
						|
{
 | 
						|
  int err;
 | 
						|
  String name_string("", 0, system_charset_info);
 | 
						|
  THD *thd= current_thd;
 | 
						|
  ulonglong save_options= thd->options;
 | 
						|
 | 
						|
  thd->options= 0;
 | 
						|
  append_identifier(thd, &name_string, name,
 | 
						|
                    strlen(name));
 | 
						|
  thd->options= save_options;
 | 
						|
  err= add_string_object(fptr, &name_string);
 | 
						|
  return err;
 | 
						|
}
 | 
						|
 | 
						|
static int add_int(File fptr, longlong number)
 | 
						|
{
 | 
						|
  char buff[32];
 | 
						|
  llstr(number, buff);
 | 
						|
  return add_string(fptr, buff);
 | 
						|
}
 | 
						|
 | 
						|
static int add_uint(File fptr, ulonglong number)
 | 
						|
{
 | 
						|
  char buff[32];
 | 
						|
  longlong2str(number, buff, 10);
 | 
						|
  return add_string(fptr, buff);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   Must escape strings in partitioned tables frm-files,
 | 
						|
   parsing it later with mysql_unpack_partition will fail otherwise.
 | 
						|
*/
 | 
						|
static int add_quoted_string(File fptr, const char *quotestr)
 | 
						|
{
 | 
						|
  String orgstr(quotestr, system_charset_info);
 | 
						|
  String escapedstr;
 | 
						|
  int err= add_string(fptr, "'");
 | 
						|
  err+= append_escaped(&escapedstr, &orgstr);
 | 
						|
  err+= add_string(fptr, escapedstr.c_ptr_safe());
 | 
						|
  return err + add_string(fptr, "'");
 | 
						|
}
 | 
						|
 | 
						|
static int add_keyword_string(File fptr, const char *keyword,
 | 
						|
                              bool should_use_quotes, 
 | 
						|
                              const char *keystr)
 | 
						|
{
 | 
						|
  int err= add_string(fptr, keyword);
 | 
						|
 | 
						|
  err+= add_space(fptr);
 | 
						|
  err+= add_equal(fptr);
 | 
						|
  err+= add_space(fptr);
 | 
						|
  if (should_use_quotes)
 | 
						|
    err+= add_quoted_string(fptr, keystr);
 | 
						|
  else
 | 
						|
    err+= add_string(fptr, keystr);
 | 
						|
  return err + add_space(fptr);
 | 
						|
}
 | 
						|
 | 
						|
static int add_keyword_int(File fptr, const char *keyword, longlong num)
 | 
						|
{
 | 
						|
  int err= add_string(fptr, keyword);
 | 
						|
 | 
						|
  err+= add_space(fptr);
 | 
						|
  err+= add_equal(fptr);
 | 
						|
  err+= add_space(fptr);
 | 
						|
  err+= add_int(fptr, num);
 | 
						|
  return err + add_space(fptr);
 | 
						|
}
 | 
						|
 | 
						|
static int add_engine(File fptr, handlerton *engine_type)
 | 
						|
{
 | 
						|
  const char *engine_str= ha_resolve_storage_engine_name(engine_type);
 | 
						|
  DBUG_PRINT("info", ("ENGINE: %s", engine_str));
 | 
						|
  int err= add_string(fptr, "ENGINE = ");
 | 
						|
  return err + add_string(fptr, engine_str);
 | 
						|
}
 | 
						|
 | 
						|
static int add_partition_options(File fptr, partition_element *p_elem)
 | 
						|
{
 | 
						|
  int err= 0;
 | 
						|
 | 
						|
  err+= add_space(fptr);
 | 
						|
  if (p_elem->tablespace_name)
 | 
						|
    err+= add_keyword_string(fptr,"TABLESPACE", FALSE,
 | 
						|
                             p_elem->tablespace_name);
 | 
						|
  if (p_elem->nodegroup_id != UNDEF_NODEGROUP)
 | 
						|
    err+= add_keyword_int(fptr,"NODEGROUP",(longlong)p_elem->nodegroup_id);
 | 
						|
  if (p_elem->part_max_rows)
 | 
						|
    err+= add_keyword_int(fptr,"MAX_ROWS",(longlong)p_elem->part_max_rows);
 | 
						|
  if (p_elem->part_min_rows)
 | 
						|
    err+= add_keyword_int(fptr,"MIN_ROWS",(longlong)p_elem->part_min_rows);
 | 
						|
  if (!(current_thd->variables.sql_mode & MODE_NO_DIR_IN_CREATE))
 | 
						|
  {
 | 
						|
    if (p_elem->data_file_name)
 | 
						|
      err+= add_keyword_string(fptr, "DATA DIRECTORY", TRUE, 
 | 
						|
                               p_elem->data_file_name);
 | 
						|
    if (p_elem->index_file_name)
 | 
						|
      err+= add_keyword_string(fptr, "INDEX DIRECTORY", TRUE, 
 | 
						|
                               p_elem->index_file_name);
 | 
						|
  }
 | 
						|
  if (p_elem->part_comment)
 | 
						|
    err+= add_keyword_string(fptr, "COMMENT", TRUE, p_elem->part_comment);
 | 
						|
  return err + add_engine(fptr,p_elem->engine_type);
 | 
						|
}
 | 
						|
 | 
						|
static int add_partition_values(File fptr, partition_info *part_info, partition_element *p_elem)
 | 
						|
{
 | 
						|
  int err= 0;
 | 
						|
 | 
						|
  if (part_info->part_type == RANGE_PARTITION)
 | 
						|
  {
 | 
						|
    err+= add_string(fptr, " VALUES LESS THAN ");
 | 
						|
    if (!p_elem->max_value)
 | 
						|
    {
 | 
						|
      err+= add_begin_parenthesis(fptr);
 | 
						|
      if (p_elem->signed_flag)
 | 
						|
        err+= add_int(fptr, p_elem->range_value);
 | 
						|
      else
 | 
						|
        err+= add_uint(fptr, p_elem->range_value);
 | 
						|
      err+= add_end_parenthesis(fptr);
 | 
						|
    }
 | 
						|
    else
 | 
						|
      err+= add_string(fptr, partition_keywords[PKW_MAXVALUE].str);
 | 
						|
  }
 | 
						|
  else if (part_info->part_type == LIST_PARTITION)
 | 
						|
  {
 | 
						|
    uint i;
 | 
						|
    List_iterator<part_elem_value> list_val_it(p_elem->list_val_list);
 | 
						|
    err+= add_string(fptr, " VALUES IN ");
 | 
						|
    uint no_items= p_elem->list_val_list.elements;
 | 
						|
 | 
						|
    err+= add_begin_parenthesis(fptr);
 | 
						|
    if (p_elem->has_null_value)
 | 
						|
    {
 | 
						|
      err+= add_string(fptr, "NULL");
 | 
						|
      if (no_items == 0)
 | 
						|
      {
 | 
						|
        err+= add_end_parenthesis(fptr);
 | 
						|
        goto end;
 | 
						|
      }
 | 
						|
      err+= add_comma(fptr);
 | 
						|
    }
 | 
						|
    i= 0;
 | 
						|
    do
 | 
						|
    {
 | 
						|
      part_elem_value *list_value= list_val_it++;
 | 
						|
 | 
						|
      if (!list_value->unsigned_flag)
 | 
						|
        err+= add_int(fptr, list_value->value);
 | 
						|
      else
 | 
						|
        err+= add_uint(fptr, list_value->value);
 | 
						|
      if (i != (no_items-1))
 | 
						|
        err+= add_comma(fptr);
 | 
						|
    } while (++i < no_items);
 | 
						|
    err+= add_end_parenthesis(fptr);
 | 
						|
  }
 | 
						|
end:
 | 
						|
  return err;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  Generate the partition syntax from the partition data structure.
 | 
						|
  Useful for support of generating defaults, SHOW CREATE TABLES
 | 
						|
  and easy partition management.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    generate_partition_syntax()
 | 
						|
    part_info                  The partitioning data structure
 | 
						|
    buf_length                 A pointer to the returned buffer length
 | 
						|
    use_sql_alloc              Allocate buffer from sql_alloc if true
 | 
						|
                               otherwise use my_malloc
 | 
						|
    show_partition_options     Should we display partition options
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    NULL error
 | 
						|
    buf, buf_length            Buffer and its length
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
  Here we will generate the full syntax for the given command where all
 | 
						|
  defaults have been expanded. By so doing the it is also possible to
 | 
						|
  make lots of checks of correctness while at it.
 | 
						|
  This could will also be reused for SHOW CREATE TABLES and also for all
 | 
						|
  type ALTER TABLE commands focusing on changing the PARTITION structure
 | 
						|
  in any fashion.
 | 
						|
 | 
						|
  The implementation writes the syntax to a temporary file (essentially
 | 
						|
  an abstraction of a dynamic array) and if all writes goes well it
 | 
						|
  allocates a buffer and writes the syntax into this one and returns it.
 | 
						|
 | 
						|
  As a security precaution the file is deleted before writing into it. This
 | 
						|
  means that no other processes on the machine can open and read the file
 | 
						|
  while this processing is ongoing.
 | 
						|
 | 
						|
  The code is optimised for minimal code size since it is not used in any
 | 
						|
  common queries.
 | 
						|
*/
 | 
						|
 | 
						|
char *generate_partition_syntax(partition_info *part_info,
 | 
						|
                                uint *buf_length,
 | 
						|
                                bool use_sql_alloc,
 | 
						|
                                bool show_partition_options)
 | 
						|
{
 | 
						|
  uint i,j, tot_no_parts, no_subparts;
 | 
						|
  partition_element *part_elem;
 | 
						|
  ulonglong buffer_length;
 | 
						|
  char path[FN_REFLEN];
 | 
						|
  int err= 0;
 | 
						|
  List_iterator<partition_element> part_it(part_info->partitions);
 | 
						|
  File fptr;
 | 
						|
  char *buf= NULL; //Return buffer
 | 
						|
  DBUG_ENTER("generate_partition_syntax");
 | 
						|
 | 
						|
  if (unlikely(((fptr= create_temp_file(path,mysql_tmpdir,"psy", 
 | 
						|
                                        O_RDWR | O_BINARY | O_TRUNC |  
 | 
						|
                                        O_TEMPORARY, MYF(MY_WME)))) < 0))
 | 
						|
    DBUG_RETURN(NULL);
 | 
						|
#ifndef __WIN__
 | 
						|
  unlink(path);
 | 
						|
#endif
 | 
						|
  err+= add_space(fptr);
 | 
						|
  err+= add_partition_by(fptr);
 | 
						|
  switch (part_info->part_type)
 | 
						|
  {
 | 
						|
    case RANGE_PARTITION:
 | 
						|
      err+= add_part_key_word(fptr, partition_keywords[PKW_RANGE].str);
 | 
						|
      break;
 | 
						|
    case LIST_PARTITION:
 | 
						|
      err+= add_part_key_word(fptr, partition_keywords[PKW_LIST].str);
 | 
						|
      break;
 | 
						|
    case HASH_PARTITION:
 | 
						|
      if (part_info->linear_hash_ind)
 | 
						|
        err+= add_string(fptr, partition_keywords[PKW_LINEAR].str);
 | 
						|
      if (part_info->list_of_part_fields)
 | 
						|
        err+= add_key_partition(fptr, part_info->part_field_list);
 | 
						|
      else
 | 
						|
        err+= add_hash(fptr);
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      DBUG_ASSERT(0);
 | 
						|
      /* We really shouldn't get here, no use in continuing from here */
 | 
						|
      my_error(ER_OUT_OF_RESOURCES, MYF(0));
 | 
						|
      current_thd->fatal_error();
 | 
						|
      DBUG_RETURN(NULL);
 | 
						|
  }
 | 
						|
  if (part_info->part_expr)
 | 
						|
    err+= add_string_len(fptr, part_info->part_func_string,
 | 
						|
                         part_info->part_func_len);
 | 
						|
  err+= add_end_parenthesis(fptr);
 | 
						|
  if ((!part_info->use_default_no_partitions) &&
 | 
						|
       part_info->use_default_partitions)
 | 
						|
  {
 | 
						|
    err+= add_string(fptr, "\n");
 | 
						|
    err+= add_string(fptr, "PARTITIONS ");
 | 
						|
    err+= add_int(fptr, part_info->no_parts);
 | 
						|
  }
 | 
						|
  if (part_info->is_sub_partitioned())
 | 
						|
  {
 | 
						|
    err+= add_string(fptr, "\n");
 | 
						|
    err+= add_subpartition_by(fptr);
 | 
						|
    /* Must be hash partitioning for subpartitioning */
 | 
						|
    if (part_info->linear_hash_ind)
 | 
						|
      err+= add_string(fptr, partition_keywords[PKW_LINEAR].str);
 | 
						|
    if (part_info->list_of_subpart_fields)
 | 
						|
      err+= add_key_partition(fptr, part_info->subpart_field_list);
 | 
						|
    else
 | 
						|
      err+= add_hash(fptr);
 | 
						|
    if (part_info->subpart_expr)
 | 
						|
      err+= add_string_len(fptr, part_info->subpart_func_string,
 | 
						|
                           part_info->subpart_func_len);
 | 
						|
    err+= add_end_parenthesis(fptr);
 | 
						|
    if ((!part_info->use_default_no_subpartitions) && 
 | 
						|
          part_info->use_default_subpartitions)
 | 
						|
    {
 | 
						|
      err+= add_string(fptr, "\n");
 | 
						|
      err+= add_string(fptr, "SUBPARTITIONS ");
 | 
						|
      err+= add_int(fptr, part_info->no_subparts);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  tot_no_parts= part_info->partitions.elements;
 | 
						|
  no_subparts= part_info->no_subparts;
 | 
						|
 | 
						|
  if (!part_info->use_default_partitions)
 | 
						|
  {
 | 
						|
    bool first= TRUE;
 | 
						|
    err+= add_string(fptr, "\n");
 | 
						|
    err+= add_begin_parenthesis(fptr);
 | 
						|
    i= 0;
 | 
						|
    do
 | 
						|
    {
 | 
						|
      part_elem= part_it++;
 | 
						|
      if (part_elem->part_state != PART_TO_BE_DROPPED &&
 | 
						|
          part_elem->part_state != PART_REORGED_DROPPED)
 | 
						|
      {
 | 
						|
        if (!first)
 | 
						|
        {
 | 
						|
          err+= add_comma(fptr);
 | 
						|
          err+= add_string(fptr, "\n");
 | 
						|
          err+= add_space(fptr);
 | 
						|
        }
 | 
						|
        first= FALSE;
 | 
						|
        err+= add_partition(fptr);
 | 
						|
        err+= add_name_string(fptr, part_elem->partition_name);
 | 
						|
        err+= add_partition_values(fptr, part_info, part_elem);
 | 
						|
        if (!part_info->is_sub_partitioned() ||
 | 
						|
            part_info->use_default_subpartitions)
 | 
						|
        {
 | 
						|
          if (show_partition_options)
 | 
						|
            err+= add_partition_options(fptr, part_elem);
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          err+= add_string(fptr, "\n");
 | 
						|
          err+= add_space(fptr);
 | 
						|
          err+= add_begin_parenthesis(fptr);
 | 
						|
          List_iterator<partition_element> sub_it(part_elem->subpartitions);
 | 
						|
          j= 0;
 | 
						|
          do
 | 
						|
          {
 | 
						|
            part_elem= sub_it++;
 | 
						|
            err+= add_subpartition(fptr);
 | 
						|
            err+= add_name_string(fptr, part_elem->partition_name);
 | 
						|
            if (show_partition_options)
 | 
						|
              err+= add_partition_options(fptr, part_elem);
 | 
						|
            if (j != (no_subparts-1))
 | 
						|
            {
 | 
						|
              err+= add_comma(fptr);
 | 
						|
              err+= add_string(fptr, "\n");
 | 
						|
              err+= add_space(fptr);
 | 
						|
              err+= add_space(fptr);
 | 
						|
            }
 | 
						|
            else
 | 
						|
              err+= add_end_parenthesis(fptr);
 | 
						|
          } while (++j < no_subparts);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (i == (tot_no_parts-1))
 | 
						|
        err+= add_end_parenthesis(fptr);
 | 
						|
    } while (++i < tot_no_parts);
 | 
						|
  }
 | 
						|
  if (err)
 | 
						|
    goto close_file;
 | 
						|
  buffer_length= my_seek(fptr, 0L,MY_SEEK_END,MYF(0));
 | 
						|
  if (unlikely(buffer_length == MY_FILEPOS_ERROR))
 | 
						|
    goto close_file;
 | 
						|
  if (unlikely(my_seek(fptr, 0L, MY_SEEK_SET, MYF(0)) == MY_FILEPOS_ERROR))
 | 
						|
    goto close_file;
 | 
						|
  *buf_length= (uint)buffer_length;
 | 
						|
  if (use_sql_alloc)
 | 
						|
    buf= (char*) sql_alloc(*buf_length+1);
 | 
						|
  else
 | 
						|
    buf= (char*) my_malloc(*buf_length+1, MYF(MY_WME));
 | 
						|
  if (!buf)
 | 
						|
    goto close_file;
 | 
						|
 | 
						|
  if (unlikely(my_read(fptr, (uchar*)buf, *buf_length, MYF(MY_FNABP))))
 | 
						|
  {
 | 
						|
    if (!use_sql_alloc)
 | 
						|
      my_free(buf, MYF(0));
 | 
						|
    else
 | 
						|
      buf= NULL;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    buf[*buf_length]= 0;
 | 
						|
 | 
						|
close_file:
 | 
						|
  my_close(fptr, MYF(0));
 | 
						|
  DBUG_RETURN(buf);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Check if partition key fields are modified and if it can be handled by the
 | 
						|
  underlying storage engine.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    partition_key_modified
 | 
						|
    table                TABLE object for which partition fields are set-up
 | 
						|
    fields               Bitmap representing fields to be modified
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                 Need special handling of UPDATE
 | 
						|
    FALSE                Normal UPDATE handling is ok
 | 
						|
*/
 | 
						|
 | 
						|
bool partition_key_modified(TABLE *table, const MY_BITMAP *fields)
 | 
						|
{
 | 
						|
  Field **fld;
 | 
						|
  partition_info *part_info= table->part_info;
 | 
						|
  DBUG_ENTER("partition_key_modified");
 | 
						|
 | 
						|
  if (!part_info)
 | 
						|
    DBUG_RETURN(FALSE);
 | 
						|
  if (table->s->db_type()->partition_flags &&
 | 
						|
      (table->s->db_type()->partition_flags() & HA_CAN_UPDATE_PARTITION_KEY))
 | 
						|
    DBUG_RETURN(FALSE);
 | 
						|
  for (fld= part_info->full_part_field_array; *fld; fld++)
 | 
						|
    if (bitmap_is_set(fields, (*fld)->field_index))
 | 
						|
      DBUG_RETURN(TRUE);
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  A function to handle correct handling of NULL values in partition
 | 
						|
  functions.
 | 
						|
  SYNOPSIS
 | 
						|
    part_val_int()
 | 
						|
    item_expr                 The item expression to evaluate
 | 
						|
    out:result                The value of the partition function,
 | 
						|
                                LONGLONG_MIN if any null value in function
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE      Error in val_int()
 | 
						|
    FALSE     ok
 | 
						|
*/
 | 
						|
 | 
						|
static inline int part_val_int(Item *item_expr, longlong *result)
 | 
						|
{
 | 
						|
  *result= item_expr->val_int();
 | 
						|
  if (item_expr->null_value)
 | 
						|
  {
 | 
						|
    if (current_thd->is_error())
 | 
						|
      return TRUE;
 | 
						|
    else
 | 
						|
      *result= LONGLONG_MIN;
 | 
						|
  }
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  The next set of functions are used to calculate the partition identity.
 | 
						|
  A handler sets up a variable that corresponds to one of these functions
 | 
						|
  to be able to quickly call it whenever the partition id needs to calculated
 | 
						|
  based on the record in table->record[0] (or set up to fake that).
 | 
						|
  There are 4 functions for hash partitioning and 2 for RANGE/LIST partitions.
 | 
						|
  In addition there are 4 variants for RANGE subpartitioning and 4 variants
 | 
						|
  for LIST subpartitioning thus in total there are 14 variants of this
 | 
						|
  function.
 | 
						|
 | 
						|
  We have a set of support functions for these 14 variants. There are 4
 | 
						|
  variants of hash functions and there is a function for each. The KEY
 | 
						|
  partitioning uses the function calculate_key_value to calculate the hash
 | 
						|
  value based on an array of fields. The linear hash variants uses the
 | 
						|
  method get_part_id_from_linear_hash to get the partition id using the
 | 
						|
  hash value and some parameters calculated from the number of partitions.
 | 
						|
*/
 | 
						|
 | 
						|
/*
 | 
						|
  Calculate hash value for KEY partitioning using an array of fields.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    calculate_key_value()
 | 
						|
    field_array             An array of the fields in KEY partitioning
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    hash_value calculated
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Uses the hash function on the character set of the field. Integer and
 | 
						|
    floating point fields use the binary character set by default.
 | 
						|
*/
 | 
						|
 | 
						|
static uint32 calculate_key_value(Field **field_array)
 | 
						|
{
 | 
						|
  ulong nr1= 1;
 | 
						|
  ulong nr2= 4;
 | 
						|
 | 
						|
  do
 | 
						|
  {
 | 
						|
    Field *field= *field_array;
 | 
						|
    field->hash(&nr1, &nr2);
 | 
						|
  } while (*(++field_array));
 | 
						|
  return (uint32) nr1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  A simple support function to calculate part_id given local part and
 | 
						|
  sub part.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_part_id_for_sub()
 | 
						|
    loc_part_id             Local partition id
 | 
						|
    sub_part_id             Subpartition id
 | 
						|
    no_subparts             Number of subparts
 | 
						|
*/
 | 
						|
 | 
						|
inline
 | 
						|
static uint32 get_part_id_for_sub(uint32 loc_part_id, uint32 sub_part_id,
 | 
						|
                                  uint no_subparts)
 | 
						|
{
 | 
						|
  return (uint32)((loc_part_id * no_subparts) + sub_part_id);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Calculate part_id for (SUB)PARTITION BY HASH
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_part_id_hash()
 | 
						|
    no_parts                 Number of hash partitions
 | 
						|
    part_expr                Item tree of hash function
 | 
						|
    out:part_id              The returned partition id
 | 
						|
    out:func_value           Value of hash function
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    != 0                          Error code
 | 
						|
    FALSE                         Success
 | 
						|
*/
 | 
						|
 | 
						|
static int get_part_id_hash(uint no_parts,
 | 
						|
                            Item *part_expr,
 | 
						|
                            uint32 *part_id,
 | 
						|
                            longlong *func_value)
 | 
						|
{
 | 
						|
  longlong int_hash_id;
 | 
						|
  DBUG_ENTER("get_part_id_hash");
 | 
						|
 | 
						|
  if (part_val_int(part_expr, func_value))
 | 
						|
    DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
 | 
						|
 | 
						|
  int_hash_id= *func_value % no_parts;
 | 
						|
 | 
						|
  *part_id= int_hash_id < 0 ? (uint32) -int_hash_id : (uint32) int_hash_id;
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Calculate part_id for (SUB)PARTITION BY LINEAR HASH
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_part_id_linear_hash()
 | 
						|
    part_info           A reference to the partition_info struct where all the
 | 
						|
                        desired information is given
 | 
						|
    no_parts            Number of hash partitions
 | 
						|
    part_expr           Item tree of hash function
 | 
						|
    out:part_id         The returned partition id
 | 
						|
    out:func_value      Value of hash function
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    != 0     Error code
 | 
						|
    0        OK
 | 
						|
*/
 | 
						|
 | 
						|
static int get_part_id_linear_hash(partition_info *part_info,
 | 
						|
                                   uint no_parts,
 | 
						|
                                   Item *part_expr,
 | 
						|
                                   uint32 *part_id,
 | 
						|
                                   longlong *func_value)
 | 
						|
{
 | 
						|
  DBUG_ENTER("get_part_id_linear_hash");
 | 
						|
 | 
						|
  if (part_val_int(part_expr, func_value))
 | 
						|
    DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
 | 
						|
 | 
						|
  *part_id= get_part_id_from_linear_hash(*func_value,
 | 
						|
                                         part_info->linear_hash_mask,
 | 
						|
                                         no_parts);
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Calculate part_id for (SUB)PARTITION BY KEY
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_part_id_key()
 | 
						|
    field_array         Array of fields for PARTTION KEY
 | 
						|
    no_parts            Number of KEY partitions
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    Calculated partition id
 | 
						|
*/
 | 
						|
 | 
						|
inline
 | 
						|
static uint32 get_part_id_key(Field **field_array,
 | 
						|
                              uint no_parts,
 | 
						|
                              longlong *func_value)
 | 
						|
{
 | 
						|
  DBUG_ENTER("get_part_id_key");
 | 
						|
  *func_value= calculate_key_value(field_array);
 | 
						|
  DBUG_RETURN((uint32) (*func_value % no_parts));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Calculate part_id for (SUB)PARTITION BY LINEAR KEY
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_part_id_linear_key()
 | 
						|
    part_info           A reference to the partition_info struct where all the
 | 
						|
                        desired information is given
 | 
						|
    field_array         Array of fields for PARTTION KEY
 | 
						|
    no_parts            Number of KEY partitions
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    Calculated partition id
 | 
						|
*/
 | 
						|
 | 
						|
inline
 | 
						|
static uint32 get_part_id_linear_key(partition_info *part_info,
 | 
						|
                                     Field **field_array,
 | 
						|
                                     uint no_parts,
 | 
						|
                                     longlong *func_value)
 | 
						|
{
 | 
						|
  DBUG_ENTER("get_partition_id_linear_key");
 | 
						|
 | 
						|
  *func_value= calculate_key_value(field_array);
 | 
						|
  DBUG_RETURN(get_part_id_from_linear_hash(*func_value,
 | 
						|
                                           part_info->linear_hash_mask,
 | 
						|
                                           no_parts));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  Copy to field buffers and set up field pointers
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    copy_to_part_field_buffers()
 | 
						|
    ptr                          Array of fields to copy
 | 
						|
    field_bufs                   Array of field buffers to copy to
 | 
						|
    restore_ptr                  Array of pointers to restore to
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    NONE
 | 
						|
  DESCRIPTION
 | 
						|
    This routine is used to take the data from field pointer, convert
 | 
						|
    it to a standard format and store this format in a field buffer
 | 
						|
    allocated for this purpose. Next the field pointers are moved to
 | 
						|
    point to the field buffers. There is a separate to restore the
 | 
						|
    field pointers after this call.
 | 
						|
*/
 | 
						|
 | 
						|
static void copy_to_part_field_buffers(Field **ptr,
 | 
						|
                                       uchar **field_bufs,
 | 
						|
                                       uchar **restore_ptr)
 | 
						|
{
 | 
						|
  Field *field;
 | 
						|
  while ((field= *(ptr++)))
 | 
						|
  {
 | 
						|
    *restore_ptr= field->ptr;
 | 
						|
    restore_ptr++;
 | 
						|
    if (!field->maybe_null() || !field->is_null())
 | 
						|
    {
 | 
						|
      CHARSET_INFO *cs= ((Field_str*)field)->charset();
 | 
						|
      uint len= field->pack_length();
 | 
						|
      uchar *field_buf= *field_bufs;
 | 
						|
      /*
 | 
						|
         We only use the field buffer for VARCHAR and CHAR strings
 | 
						|
         which isn't of a binary collation. We also only use the
 | 
						|
         field buffer for fields which are not currently NULL.
 | 
						|
         The field buffer will store a normalised string. We use
 | 
						|
         the strnxfrm method to normalise the string.
 | 
						|
       */
 | 
						|
      if (field->type() == MYSQL_TYPE_VARCHAR)
 | 
						|
      {
 | 
						|
        uint len_bytes= ((Field_varstring*)field)->length_bytes;
 | 
						|
        my_strnxfrm(cs, field_buf + len_bytes, (len - len_bytes),
 | 
						|
                    field->ptr + len_bytes, field->field_length);
 | 
						|
        if (len_bytes == 1)
 | 
						|
          *field_buf= (uchar) field->field_length;
 | 
						|
        else
 | 
						|
          int2store(field_buf, field->field_length);
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        my_strnxfrm(cs, field_buf, len,
 | 
						|
                    field->ptr, field->field_length);
 | 
						|
      }
 | 
						|
      field->ptr= field_buf;
 | 
						|
    }
 | 
						|
    field_bufs++;
 | 
						|
  }
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  Restore field pointers
 | 
						|
  SYNOPSIS
 | 
						|
    restore_part_field_pointers()
 | 
						|
    ptr                            Array of fields to restore
 | 
						|
    restore_ptr                    Array of field pointers to restore to
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
*/
 | 
						|
 | 
						|
static void restore_part_field_pointers(Field **ptr, uchar **restore_ptr)
 | 
						|
{
 | 
						|
  Field *field;
 | 
						|
  while ((field= *(ptr++)))
 | 
						|
  {
 | 
						|
    field->ptr= *restore_ptr;
 | 
						|
    restore_ptr++;
 | 
						|
  }
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  This function is used to calculate the main partition to use in the case of
 | 
						|
  subpartitioning and we don't know enough to get the partition identity in
 | 
						|
  total.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_part_partition_id()
 | 
						|
    part_info           A reference to the partition_info struct where all the
 | 
						|
                        desired information is given
 | 
						|
    out:part_id         The partition id is returned through this pointer
 | 
						|
    out:func_value      The value calculated by partition function
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    HA_ERR_NO_PARTITION_FOUND   The fields of the partition function didn't
 | 
						|
                                fit into any partition and thus the values of 
 | 
						|
                                the PF-fields are not allowed.
 | 
						|
    0                           OK
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    
 | 
						|
    It is actually 6 different variants of this function which are called
 | 
						|
    through a function pointer.
 | 
						|
 | 
						|
    get_partition_id_list
 | 
						|
    get_partition_id_range
 | 
						|
    get_partition_id_hash_nosub
 | 
						|
    get_partition_id_key_nosub
 | 
						|
    get_partition_id_linear_hash_nosub
 | 
						|
    get_partition_id_linear_key_nosub
 | 
						|
*/
 | 
						|
 | 
						|
static int get_part_id_charset_func_subpart(partition_info *part_info,
 | 
						|
                                            uint32 *part_id,
 | 
						|
                                            longlong *func_value)
 | 
						|
{
 | 
						|
  int res;
 | 
						|
  copy_to_part_field_buffers(part_info->subpart_charset_field_array,
 | 
						|
                             part_info->subpart_field_buffers,
 | 
						|
                             part_info->restore_subpart_field_ptrs);
 | 
						|
  res= part_info->get_partition_id_charset(part_info, part_id, func_value);
 | 
						|
  restore_part_field_pointers(part_info->subpart_charset_field_array,
 | 
						|
                              part_info->restore_subpart_field_ptrs);
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int get_part_id_charset_func_part(partition_info *part_info,
 | 
						|
                                         uint32 *part_id,
 | 
						|
                                         longlong *func_value)
 | 
						|
{
 | 
						|
  int res;
 | 
						|
  copy_to_part_field_buffers(part_info->part_charset_field_array,
 | 
						|
                             part_info->part_field_buffers,
 | 
						|
                             part_info->restore_part_field_ptrs);
 | 
						|
  res= part_info->get_partition_id_charset(part_info, part_id, func_value);
 | 
						|
  restore_part_field_pointers(part_info->part_charset_field_array,
 | 
						|
                              part_info->restore_part_field_ptrs);
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int get_part_id_charset_func_all(partition_info *part_info,
 | 
						|
                                        uint32 *part_id,
 | 
						|
                                        longlong *func_value)
 | 
						|
{
 | 
						|
  int res;
 | 
						|
  copy_to_part_field_buffers(part_info->full_part_field_array,
 | 
						|
                             part_info->full_part_field_buffers,
 | 
						|
                             part_info->restore_full_part_field_ptrs);
 | 
						|
  res= part_info->get_partition_id_charset(part_info, part_id, func_value);
 | 
						|
  restore_part_field_pointers(part_info->full_part_field_array,
 | 
						|
                              part_info->restore_full_part_field_ptrs);
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int get_part_part_id_charset_func(partition_info *part_info,
 | 
						|
                                         uint32 *part_id,
 | 
						|
                                         longlong *func_value)
 | 
						|
{
 | 
						|
  int res;
 | 
						|
  copy_to_part_field_buffers(part_info->part_charset_field_array,
 | 
						|
                             part_info->part_field_buffers,
 | 
						|
                             part_info->restore_part_field_ptrs);
 | 
						|
  res= part_info->get_part_partition_id_charset(part_info,
 | 
						|
                                                part_id, func_value);
 | 
						|
  restore_part_field_pointers(part_info->part_charset_field_array,
 | 
						|
                              part_info->restore_part_field_ptrs);
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int get_subpart_id_charset_func(partition_info *part_info,
 | 
						|
                                       uint32 *part_id)
 | 
						|
{
 | 
						|
  int res;
 | 
						|
  copy_to_part_field_buffers(part_info->subpart_charset_field_array,
 | 
						|
                             part_info->subpart_field_buffers,
 | 
						|
                             part_info->restore_subpart_field_ptrs);
 | 
						|
  res= part_info->get_subpartition_id_charset(part_info, part_id);
 | 
						|
  restore_part_field_pointers(part_info->subpart_charset_field_array,
 | 
						|
                              part_info->restore_subpart_field_ptrs);
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_list(partition_info *part_info,
 | 
						|
                          uint32 *part_id,
 | 
						|
                          longlong *func_value)
 | 
						|
{
 | 
						|
  LIST_PART_ENTRY *list_array= part_info->list_array;
 | 
						|
  int list_index;
 | 
						|
  int min_list_index= 0;
 | 
						|
  int max_list_index= part_info->no_list_values - 1;
 | 
						|
  longlong part_func_value;
 | 
						|
  int error= part_val_int(part_info->part_expr, &part_func_value);
 | 
						|
  longlong list_value;
 | 
						|
  bool unsigned_flag= part_info->part_expr->unsigned_flag;
 | 
						|
  DBUG_ENTER("get_partition_id_list");
 | 
						|
 | 
						|
  if (error)
 | 
						|
    goto notfound;
 | 
						|
 | 
						|
  if (part_info->part_expr->null_value)
 | 
						|
  {
 | 
						|
    if (part_info->has_null_value)
 | 
						|
    {
 | 
						|
      *part_id= part_info->has_null_part_id;
 | 
						|
      DBUG_RETURN(0);
 | 
						|
    }
 | 
						|
    goto notfound;
 | 
						|
  }
 | 
						|
  *func_value= part_func_value;
 | 
						|
  if (unsigned_flag)
 | 
						|
    part_func_value-= 0x8000000000000000ULL;
 | 
						|
  while (max_list_index >= min_list_index)
 | 
						|
  {
 | 
						|
    list_index= (max_list_index + min_list_index) >> 1;
 | 
						|
    list_value= list_array[list_index].list_value;
 | 
						|
    if (list_value < part_func_value)
 | 
						|
      min_list_index= list_index + 1;
 | 
						|
    else if (list_value > part_func_value)
 | 
						|
    {
 | 
						|
      if (!list_index)
 | 
						|
        goto notfound;
 | 
						|
      max_list_index= list_index - 1;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      *part_id= (uint32)list_array[list_index].partition_id;
 | 
						|
      DBUG_RETURN(0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
notfound:
 | 
						|
  *part_id= 0;
 | 
						|
  DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Find the sub-array part_info->list_array that corresponds to given interval
 | 
						|
 | 
						|
  SYNOPSIS 
 | 
						|
    get_list_array_idx_for_endpoint()
 | 
						|
      part_info         Partitioning info (partitioning type must be LIST)
 | 
						|
      left_endpoint     TRUE  - the interval is [a; +inf) or (a; +inf)
 | 
						|
                        FALSE - the interval is (-inf; a] or (-inf; a)
 | 
						|
      include_endpoint  TRUE iff the interval includes the endpoint
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    This function finds the sub-array of part_info->list_array where values of
 | 
						|
    list_array[idx].list_value are contained within the specifed interval.
 | 
						|
    list_array is ordered by list_value, so
 | 
						|
    1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the 
 | 
						|
       sought sub-array starts at some index idx and continues till array end.
 | 
						|
       The function returns first number idx, such that 
 | 
						|
       list_array[idx].list_value is contained within the passed interval.
 | 
						|
       
 | 
						|
    2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the
 | 
						|
       sought sub-array starts at array start and continues till some last 
 | 
						|
       index idx.
 | 
						|
       The function returns first number idx, such that 
 | 
						|
       list_array[idx].list_value is NOT contained within the passed interval.
 | 
						|
       If all array elements are contained, part_info->no_list_values is
 | 
						|
       returned.
 | 
						|
 | 
						|
  NOTE
 | 
						|
    The caller will call this function and then will run along the sub-array of
 | 
						|
    list_array to collect partition ids. If the number of list values is 
 | 
						|
    significantly higher then number of partitions, this could be slow and
 | 
						|
    we could invent some other approach. The "run over list array" part is
 | 
						|
    already wrapped in a get_next()-like function.
 | 
						|
 | 
						|
  RETURN
 | 
						|
    The edge of corresponding sub-array of part_info->list_array
 | 
						|
*/
 | 
						|
 | 
						|
uint32 get_list_array_idx_for_endpoint_charset(partition_info *part_info,
 | 
						|
                                               bool left_endpoint,
 | 
						|
                                               bool include_endpoint)
 | 
						|
{
 | 
						|
  uint32 res;
 | 
						|
  copy_to_part_field_buffers(part_info->part_field_array,
 | 
						|
                             part_info->part_field_buffers,
 | 
						|
                             part_info->restore_part_field_ptrs);
 | 
						|
  res= get_list_array_idx_for_endpoint(part_info, left_endpoint,
 | 
						|
                                       include_endpoint);
 | 
						|
  restore_part_field_pointers(part_info->part_field_array,
 | 
						|
                              part_info->restore_part_field_ptrs);
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
uint32 get_list_array_idx_for_endpoint(partition_info *part_info,
 | 
						|
                                       bool left_endpoint,
 | 
						|
                                       bool include_endpoint)
 | 
						|
{
 | 
						|
  LIST_PART_ENTRY *list_array= part_info->list_array;
 | 
						|
  uint list_index;
 | 
						|
  uint min_list_index= 0, max_list_index= part_info->no_list_values - 1;
 | 
						|
  longlong list_value;
 | 
						|
  /* Get the partitioning function value for the endpoint */
 | 
						|
  longlong part_func_value= 
 | 
						|
    part_info->part_expr->val_int_endpoint(left_endpoint, &include_endpoint);
 | 
						|
  bool unsigned_flag= part_info->part_expr->unsigned_flag;
 | 
						|
  DBUG_ENTER("get_list_array_idx_for_endpoint");
 | 
						|
 | 
						|
  if (part_info->part_expr->null_value)
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      Special handling for MONOTONIC functions that can return NULL for
 | 
						|
      values that are comparable. I.e.
 | 
						|
      '2000-00-00' can be compared to '2000-01-01' but TO_DAYS('2000-00-00')
 | 
						|
      returns NULL which cannot be compared used <, >, <=, >= etc.
 | 
						|
 | 
						|
      Otherwise, just return the the first index (lowest value).
 | 
						|
    */
 | 
						|
    enum_monotonicity_info monotonic;
 | 
						|
    monotonic= part_info->part_expr->get_monotonicity_info();
 | 
						|
    if (monotonic != MONOTONIC_INCREASING_NOT_NULL && 
 | 
						|
        monotonic != MONOTONIC_STRICT_INCREASING_NOT_NULL)
 | 
						|
    {
 | 
						|
      /* F(col) can not return NULL, return index with lowest value */
 | 
						|
      DBUG_RETURN(0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (unsigned_flag)
 | 
						|
    part_func_value-= 0x8000000000000000ULL;
 | 
						|
  DBUG_ASSERT(part_info->no_list_values);
 | 
						|
  do
 | 
						|
  {
 | 
						|
    list_index= (max_list_index + min_list_index) >> 1;
 | 
						|
    list_value= list_array[list_index].list_value;
 | 
						|
    if (list_value < part_func_value)
 | 
						|
      min_list_index= list_index + 1;
 | 
						|
    else if (list_value > part_func_value)
 | 
						|
    {
 | 
						|
      if (!list_index)
 | 
						|
        goto notfound;
 | 
						|
      max_list_index= list_index - 1;
 | 
						|
    }
 | 
						|
    else 
 | 
						|
    {
 | 
						|
      DBUG_RETURN(list_index + test(left_endpoint ^ include_endpoint));
 | 
						|
    }
 | 
						|
  } while (max_list_index >= min_list_index);
 | 
						|
notfound:
 | 
						|
  if (list_value < part_func_value)
 | 
						|
    list_index++;
 | 
						|
  DBUG_RETURN(list_index);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_range(partition_info *part_info,
 | 
						|
                           uint32 *part_id,
 | 
						|
                           longlong *func_value)
 | 
						|
{
 | 
						|
  longlong *range_array= part_info->range_int_array;
 | 
						|
  uint max_partition= part_info->no_parts - 1;
 | 
						|
  uint min_part_id= 0;
 | 
						|
  uint max_part_id= max_partition;
 | 
						|
  uint loc_part_id;
 | 
						|
  longlong part_func_value;
 | 
						|
  int error= part_val_int(part_info->part_expr, &part_func_value);
 | 
						|
  bool unsigned_flag= part_info->part_expr->unsigned_flag;
 | 
						|
  DBUG_ENTER("get_partition_id_range");
 | 
						|
 | 
						|
  if (error)
 | 
						|
    DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
 | 
						|
 | 
						|
  if (part_info->part_expr->null_value)
 | 
						|
  {
 | 
						|
    *part_id= 0;
 | 
						|
    DBUG_RETURN(0);
 | 
						|
  }
 | 
						|
  *func_value= part_func_value;
 | 
						|
  if (unsigned_flag)
 | 
						|
    part_func_value-= 0x8000000000000000ULL;
 | 
						|
  while (max_part_id > min_part_id)
 | 
						|
  {
 | 
						|
    loc_part_id= (max_part_id + min_part_id + 1) >> 1;
 | 
						|
    if (range_array[loc_part_id] <= part_func_value)
 | 
						|
      min_part_id= loc_part_id + 1;
 | 
						|
    else
 | 
						|
      max_part_id= loc_part_id - 1;
 | 
						|
  }
 | 
						|
  loc_part_id= max_part_id;
 | 
						|
  if (part_func_value >= range_array[loc_part_id])
 | 
						|
    if (loc_part_id != max_partition)
 | 
						|
      loc_part_id++;
 | 
						|
  *part_id= (uint32)loc_part_id;
 | 
						|
  if (loc_part_id == max_partition &&
 | 
						|
      part_func_value >= range_array[loc_part_id] &&
 | 
						|
      !part_info->defined_max_value)
 | 
						|
    DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
 | 
						|
 | 
						|
  DBUG_PRINT("exit",("partition: %d", *part_id));
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Find the sub-array of part_info->range_int_array that covers given interval
 | 
						|
 
 | 
						|
  SYNOPSIS 
 | 
						|
    get_partition_id_range_for_endpoint()
 | 
						|
      part_info         Partitioning info (partitioning type must be RANGE)
 | 
						|
      left_endpoint     TRUE  - the interval is [a; +inf) or (a; +inf)
 | 
						|
                        FALSE - the interval is (-inf; a] or (-inf; a).
 | 
						|
      include_endpoint  TRUE <=> the endpoint itself is included in the
 | 
						|
                        interval
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    This function finds the sub-array of part_info->range_int_array where the
 | 
						|
    elements have non-empty intersections with the given interval.
 | 
						|
 
 | 
						|
    A range_int_array element at index idx represents the interval
 | 
						|
      
 | 
						|
      [range_int_array[idx-1], range_int_array[idx]),
 | 
						|
 | 
						|
    intervals are disjoint and ordered by their right bound, so
 | 
						|
    
 | 
						|
    1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the
 | 
						|
       sought sub-array starts at some index idx and continues till array end.
 | 
						|
       The function returns first number idx, such that the interval
 | 
						|
       represented by range_int_array[idx] has non empty intersection with 
 | 
						|
       the passed interval.
 | 
						|
       
 | 
						|
    2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the
 | 
						|
       sought sub-array starts at array start and continues till some last
 | 
						|
       index idx.
 | 
						|
       The function returns first number idx, such that the interval
 | 
						|
       represented by range_int_array[idx] has EMPTY intersection with the
 | 
						|
       passed interval.
 | 
						|
       If the interval represented by the last array element has non-empty 
 | 
						|
       intersection with the passed interval, part_info->no_parts is
 | 
						|
       returned.
 | 
						|
       
 | 
						|
  RETURN
 | 
						|
    The edge of corresponding part_info->range_int_array sub-array.
 | 
						|
*/
 | 
						|
 | 
						|
static uint32
 | 
						|
get_partition_id_range_for_endpoint_charset(partition_info *part_info,
 | 
						|
                                            bool left_endpoint,
 | 
						|
                                            bool include_endpoint)
 | 
						|
{
 | 
						|
  uint32 res;
 | 
						|
  copy_to_part_field_buffers(part_info->part_field_array,
 | 
						|
                             part_info->part_field_buffers,
 | 
						|
                             part_info->restore_part_field_ptrs);
 | 
						|
  res= get_partition_id_range_for_endpoint(part_info, left_endpoint,
 | 
						|
                                           include_endpoint);
 | 
						|
  restore_part_field_pointers(part_info->part_field_array,
 | 
						|
                              part_info->restore_part_field_ptrs);
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
uint32 get_partition_id_range_for_endpoint(partition_info *part_info,
 | 
						|
                                           bool left_endpoint,
 | 
						|
                                           bool include_endpoint)
 | 
						|
{
 | 
						|
  longlong *range_array= part_info->range_int_array;
 | 
						|
  uint max_partition= part_info->no_parts - 1;
 | 
						|
  uint min_part_id= 0, max_part_id= max_partition, loc_part_id;
 | 
						|
  /* Get the partitioning function value for the endpoint */
 | 
						|
  longlong part_func_value= 
 | 
						|
    part_info->part_expr->val_int_endpoint(left_endpoint, &include_endpoint);
 | 
						|
 | 
						|
  bool unsigned_flag= part_info->part_expr->unsigned_flag;
 | 
						|
  DBUG_ENTER("get_partition_id_range_for_endpoint");
 | 
						|
 | 
						|
  if (part_info->part_expr->null_value)
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      Special handling for MONOTONIC functions that can return NULL for
 | 
						|
      values that are comparable. I.e.
 | 
						|
      '2000-00-00' can be compared to '2000-01-01' but TO_DAYS('2000-00-00')
 | 
						|
      returns NULL which cannot be compared used <, >, <=, >= etc.
 | 
						|
 | 
						|
      Otherwise, just return the first partition
 | 
						|
      (may be included if not left endpoint)
 | 
						|
    */
 | 
						|
    enum_monotonicity_info monotonic;
 | 
						|
    monotonic= part_info->part_expr->get_monotonicity_info();
 | 
						|
    if (monotonic != MONOTONIC_INCREASING_NOT_NULL &&
 | 
						|
        monotonic != MONOTONIC_STRICT_INCREASING_NOT_NULL)
 | 
						|
    {
 | 
						|
      /* F(col) can not return NULL, return partition with lowest value */
 | 
						|
      if (!left_endpoint && include_endpoint)
 | 
						|
        DBUG_RETURN(1);
 | 
						|
      DBUG_RETURN(0);               
 | 
						|
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  if (unsigned_flag)
 | 
						|
    part_func_value-= 0x8000000000000000ULL;
 | 
						|
  if (left_endpoint && !include_endpoint)
 | 
						|
    part_func_value++;
 | 
						|
  while (max_part_id > min_part_id)
 | 
						|
  {
 | 
						|
    loc_part_id= (max_part_id + min_part_id + 1) >> 1;
 | 
						|
    if (range_array[loc_part_id] <= part_func_value)
 | 
						|
      min_part_id= loc_part_id + 1;
 | 
						|
    else
 | 
						|
      max_part_id= loc_part_id - 1;
 | 
						|
  }
 | 
						|
  loc_part_id= max_part_id;
 | 
						|
  if (loc_part_id < max_partition && 
 | 
						|
      part_func_value >= range_array[loc_part_id+1])
 | 
						|
  {
 | 
						|
   loc_part_id++;
 | 
						|
  }
 | 
						|
  if (left_endpoint)
 | 
						|
  {
 | 
						|
    longlong bound= range_array[loc_part_id];
 | 
						|
    /*
 | 
						|
      In case of PARTITION p VALUES LESS THAN MAXVALUE
 | 
						|
      the maximum value is in the current partition.
 | 
						|
    */
 | 
						|
    if (part_func_value > bound ||
 | 
						|
        (part_func_value == bound &&
 | 
						|
         (!part_info->defined_max_value || loc_part_id < max_partition)))
 | 
						|
      loc_part_id++;
 | 
						|
  }
 | 
						|
  else 
 | 
						|
  {
 | 
						|
    if (loc_part_id < max_partition)
 | 
						|
    {
 | 
						|
      if (part_func_value == range_array[loc_part_id])
 | 
						|
        loc_part_id += test(include_endpoint);
 | 
						|
      else if (part_func_value > range_array[loc_part_id])
 | 
						|
        loc_part_id++;
 | 
						|
    }
 | 
						|
    loc_part_id++;
 | 
						|
  }
 | 
						|
  DBUG_RETURN(loc_part_id);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_hash_nosub(partition_info *part_info,
 | 
						|
                                 uint32 *part_id,
 | 
						|
                                 longlong *func_value)
 | 
						|
{
 | 
						|
  return get_part_id_hash(part_info->no_parts, part_info->part_expr,
 | 
						|
                          part_id, func_value);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_linear_hash_nosub(partition_info *part_info,
 | 
						|
                                        uint32 *part_id,
 | 
						|
                                        longlong *func_value)
 | 
						|
{
 | 
						|
  return get_part_id_linear_hash(part_info, part_info->no_parts,
 | 
						|
                                 part_info->part_expr, part_id, func_value);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_key_nosub(partition_info *part_info,
 | 
						|
                                uint32 *part_id,
 | 
						|
                                longlong *func_value)
 | 
						|
{
 | 
						|
  *part_id= get_part_id_key(part_info->part_field_array,
 | 
						|
                            part_info->no_parts, func_value);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_linear_key_nosub(partition_info *part_info,
 | 
						|
                                       uint32 *part_id,
 | 
						|
                                       longlong *func_value)
 | 
						|
{
 | 
						|
  *part_id= get_part_id_linear_key(part_info,
 | 
						|
                                   part_info->part_field_array,
 | 
						|
                                   part_info->no_parts, func_value);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_range_sub_hash(partition_info *part_info,
 | 
						|
                                     uint32 *part_id,
 | 
						|
                                     longlong *func_value)
 | 
						|
{
 | 
						|
  uint32 loc_part_id, sub_part_id;
 | 
						|
  uint no_subparts;
 | 
						|
  longlong local_func_value;
 | 
						|
  int error;
 | 
						|
  DBUG_ENTER("get_partition_id_range_sub_hash");
 | 
						|
  LINT_INIT(loc_part_id);
 | 
						|
  LINT_INIT(sub_part_id);
 | 
						|
 | 
						|
  if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
 | 
						|
                                              func_value))))
 | 
						|
  {
 | 
						|
    DBUG_RETURN(error);
 | 
						|
  }
 | 
						|
  no_subparts= part_info->no_subparts;
 | 
						|
  if (unlikely((error= get_part_id_hash(no_subparts, part_info->subpart_expr,
 | 
						|
                                        &sub_part_id, &local_func_value))))
 | 
						|
  {
 | 
						|
    DBUG_RETURN(error);
 | 
						|
  }
 | 
						|
 | 
						|
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_range_sub_linear_hash(partition_info *part_info,
 | 
						|
                                            uint32 *part_id,
 | 
						|
                                            longlong *func_value)
 | 
						|
{
 | 
						|
  uint32 loc_part_id, sub_part_id;
 | 
						|
  uint no_subparts;
 | 
						|
  longlong local_func_value;
 | 
						|
  int error;
 | 
						|
  DBUG_ENTER("get_partition_id_range_sub_linear_hash");
 | 
						|
  LINT_INIT(loc_part_id);
 | 
						|
  LINT_INIT(sub_part_id);
 | 
						|
 | 
						|
  if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
 | 
						|
                                              func_value))))
 | 
						|
  {
 | 
						|
    DBUG_RETURN(error);
 | 
						|
  }
 | 
						|
  no_subparts= part_info->no_subparts;
 | 
						|
  if (unlikely((error= get_part_id_linear_hash(part_info, no_subparts,
 | 
						|
                                               part_info->subpart_expr,
 | 
						|
                                               &sub_part_id,
 | 
						|
                                               &local_func_value))))
 | 
						|
  {
 | 
						|
    DBUG_RETURN(error);
 | 
						|
  }
 | 
						|
 | 
						|
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_range_sub_key(partition_info *part_info,
 | 
						|
                                    uint32 *part_id,
 | 
						|
                                    longlong *func_value)
 | 
						|
{
 | 
						|
  uint32 loc_part_id, sub_part_id;
 | 
						|
  uint no_subparts;
 | 
						|
  longlong local_func_value;
 | 
						|
  int error;
 | 
						|
  DBUG_ENTER("get_partition_id_range_sub_key");
 | 
						|
  LINT_INIT(loc_part_id);
 | 
						|
 | 
						|
  if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
 | 
						|
                                              func_value))))
 | 
						|
  {
 | 
						|
    DBUG_RETURN(error);
 | 
						|
  }
 | 
						|
  no_subparts= part_info->no_subparts;
 | 
						|
  sub_part_id= get_part_id_key(part_info->subpart_field_array,
 | 
						|
                               no_subparts, &local_func_value);
 | 
						|
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_range_sub_linear_key(partition_info *part_info,
 | 
						|
                                           uint32 *part_id,
 | 
						|
                                           longlong *func_value)
 | 
						|
{
 | 
						|
  uint32 loc_part_id, sub_part_id;
 | 
						|
  uint no_subparts;
 | 
						|
  longlong local_func_value;
 | 
						|
  int error;
 | 
						|
  DBUG_ENTER("get_partition_id_range_sub_linear_key");
 | 
						|
  LINT_INIT(loc_part_id);
 | 
						|
 | 
						|
  if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
 | 
						|
                                              func_value))))
 | 
						|
  {
 | 
						|
    DBUG_RETURN(error);
 | 
						|
  }
 | 
						|
  no_subparts= part_info->no_subparts;
 | 
						|
  sub_part_id= get_part_id_linear_key(part_info,
 | 
						|
                                      part_info->subpart_field_array,
 | 
						|
                                      no_subparts, &local_func_value);
 | 
						|
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_list_sub_hash(partition_info *part_info,
 | 
						|
                                    uint32 *part_id,
 | 
						|
                                    longlong *func_value)
 | 
						|
{
 | 
						|
  uint32 loc_part_id, sub_part_id;
 | 
						|
  uint no_subparts;
 | 
						|
  longlong local_func_value;
 | 
						|
  int error;
 | 
						|
  DBUG_ENTER("get_partition_id_list_sub_hash");
 | 
						|
  LINT_INIT(sub_part_id);
 | 
						|
 | 
						|
  if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
 | 
						|
                                             func_value))))
 | 
						|
  {
 | 
						|
    DBUG_RETURN(error);
 | 
						|
  }
 | 
						|
  no_subparts= part_info->no_subparts;
 | 
						|
  if (unlikely((error= get_part_id_hash(no_subparts, part_info->subpart_expr,
 | 
						|
                                        &sub_part_id, &local_func_value))))
 | 
						|
  {
 | 
						|
    DBUG_RETURN(error);
 | 
						|
  }
 | 
						|
 | 
						|
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_list_sub_linear_hash(partition_info *part_info,
 | 
						|
                                           uint32 *part_id,
 | 
						|
                                           longlong *func_value)
 | 
						|
{
 | 
						|
  uint32 loc_part_id, sub_part_id;
 | 
						|
  uint no_subparts;
 | 
						|
  longlong local_func_value;
 | 
						|
  int error;
 | 
						|
  DBUG_ENTER("get_partition_id_list_sub_linear_hash");
 | 
						|
  LINT_INIT(sub_part_id);
 | 
						|
 | 
						|
  if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
 | 
						|
                                             func_value))))
 | 
						|
  {
 | 
						|
    DBUG_RETURN(error);
 | 
						|
  }
 | 
						|
  no_subparts= part_info->no_subparts;
 | 
						|
  if (unlikely((error= get_part_id_linear_hash(part_info, no_subparts,
 | 
						|
                                               part_info->subpart_expr,
 | 
						|
                                               &sub_part_id,
 | 
						|
                                               &local_func_value))))
 | 
						|
  {
 | 
						|
    DBUG_RETURN(error);
 | 
						|
  }
 | 
						|
   
 | 
						|
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_list_sub_key(partition_info *part_info,
 | 
						|
                                   uint32 *part_id,
 | 
						|
                                   longlong *func_value)
 | 
						|
{
 | 
						|
  uint32 loc_part_id, sub_part_id;
 | 
						|
  uint no_subparts;
 | 
						|
  longlong local_func_value;
 | 
						|
  int error;
 | 
						|
  DBUG_ENTER("get_partition_id_range_sub_key");
 | 
						|
 | 
						|
  if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
 | 
						|
                                             func_value))))
 | 
						|
  {
 | 
						|
    DBUG_RETURN(error);
 | 
						|
  }
 | 
						|
  no_subparts= part_info->no_subparts;
 | 
						|
  sub_part_id= get_part_id_key(part_info->subpart_field_array,
 | 
						|
                               no_subparts, &local_func_value);
 | 
						|
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_list_sub_linear_key(partition_info *part_info,
 | 
						|
                                          uint32 *part_id,
 | 
						|
                                          longlong *func_value)
 | 
						|
{
 | 
						|
  uint32 loc_part_id, sub_part_id;
 | 
						|
  uint no_subparts;
 | 
						|
  longlong local_func_value;
 | 
						|
  int error;
 | 
						|
  DBUG_ENTER("get_partition_id_list_sub_linear_key");
 | 
						|
 | 
						|
  if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
 | 
						|
                                             func_value))))
 | 
						|
  {
 | 
						|
    DBUG_RETURN(error);
 | 
						|
  }
 | 
						|
  no_subparts= part_info->no_subparts;
 | 
						|
  sub_part_id= get_part_id_linear_key(part_info,
 | 
						|
                                      part_info->subpart_field_array,
 | 
						|
                                      no_subparts, &local_func_value);
 | 
						|
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  This function is used to calculate the subpartition id
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_subpartition_id()
 | 
						|
    part_info           A reference to the partition_info struct where all the
 | 
						|
                        desired information is given
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    part_id             The subpartition identity
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    A routine used in some SELECT's when only partial knowledge of the
 | 
						|
    partitions is known.
 | 
						|
    
 | 
						|
    It is actually 4 different variants of this function which are called
 | 
						|
    through a function pointer.
 | 
						|
 | 
						|
    get_partition_id_hash_sub
 | 
						|
    get_partition_id_key_sub
 | 
						|
    get_partition_id_linear_hash_sub
 | 
						|
    get_partition_id_linear_key_sub
 | 
						|
*/
 | 
						|
 | 
						|
int get_partition_id_hash_sub(partition_info *part_info,
 | 
						|
                              uint32 *part_id)
 | 
						|
{
 | 
						|
  longlong func_value;
 | 
						|
  return get_part_id_hash(part_info->no_subparts, part_info->subpart_expr,
 | 
						|
                          part_id, &func_value);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_linear_hash_sub(partition_info *part_info,
 | 
						|
                                     uint32 *part_id)
 | 
						|
{
 | 
						|
  longlong func_value;
 | 
						|
  return get_part_id_linear_hash(part_info, part_info->no_subparts,
 | 
						|
                                 part_info->subpart_expr, part_id,
 | 
						|
                                 &func_value);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_key_sub(partition_info *part_info,
 | 
						|
                             uint32 *part_id)
 | 
						|
{
 | 
						|
  longlong func_value;
 | 
						|
  *part_id= get_part_id_key(part_info->subpart_field_array,
 | 
						|
                            part_info->no_subparts, &func_value);
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int get_partition_id_linear_key_sub(partition_info *part_info,
 | 
						|
                                       uint32 *part_id)
 | 
						|
{
 | 
						|
  longlong func_value;
 | 
						|
  *part_id= get_part_id_linear_key(part_info,
 | 
						|
                                   part_info->subpart_field_array,
 | 
						|
                                   part_info->no_subparts, &func_value);
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Set an indicator on all partition fields that are set by the key
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    set_PF_fields_in_key()
 | 
						|
    key_info                   Information about the index
 | 
						|
    key_length                 Length of key
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    TRUE                       Found partition field set by key
 | 
						|
    FALSE                      No partition field set by key
 | 
						|
*/
 | 
						|
 | 
						|
static bool set_PF_fields_in_key(KEY *key_info, uint key_length)
 | 
						|
{
 | 
						|
  KEY_PART_INFO *key_part;
 | 
						|
  bool found_part_field= FALSE;
 | 
						|
  DBUG_ENTER("set_PF_fields_in_key");
 | 
						|
 | 
						|
  for (key_part= key_info->key_part; (int)key_length > 0; key_part++)
 | 
						|
  {
 | 
						|
    if (key_part->null_bit)
 | 
						|
      key_length--;
 | 
						|
    if (key_part->type == HA_KEYTYPE_BIT)
 | 
						|
    {
 | 
						|
      if (((Field_bit*)key_part->field)->bit_len)
 | 
						|
        key_length--;
 | 
						|
    }
 | 
						|
    if (key_part->key_part_flag & (HA_BLOB_PART + HA_VAR_LENGTH_PART))
 | 
						|
    {
 | 
						|
      key_length-= HA_KEY_BLOB_LENGTH;
 | 
						|
    }
 | 
						|
    if (key_length < key_part->length)
 | 
						|
      break;
 | 
						|
    key_length-= key_part->length;
 | 
						|
    if (key_part->field->flags & FIELD_IN_PART_FUNC_FLAG)
 | 
						|
    {
 | 
						|
      found_part_field= TRUE;
 | 
						|
      key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_RETURN(found_part_field);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  We have found that at least one partition field was set by a key, now
 | 
						|
  check if a partition function has all its fields bound or not.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    check_part_func_bound()
 | 
						|
    ptr                     Array of fields NULL terminated (partition fields)
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    TRUE                    All fields in partition function are set
 | 
						|
    FALSE                   Not all fields in partition function are set
 | 
						|
*/
 | 
						|
 | 
						|
static bool check_part_func_bound(Field **ptr)
 | 
						|
{
 | 
						|
  bool result= TRUE;
 | 
						|
  DBUG_ENTER("check_part_func_bound");
 | 
						|
 | 
						|
  for (; *ptr; ptr++)
 | 
						|
  {
 | 
						|
    if (!((*ptr)->flags & GET_FIXED_FIELDS_FLAG))
 | 
						|
    {
 | 
						|
      result= FALSE;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_RETURN(result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Get the id of the subpartitioning part by using the key buffer of the
 | 
						|
  index scan.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_sub_part_id_from_key()
 | 
						|
    table         The table object
 | 
						|
    buf           A buffer that can be used to evaluate the partition function
 | 
						|
    key_info      The index object
 | 
						|
    key_spec      A key_range containing key and key length
 | 
						|
    out:part_id   The returned partition id
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                    All fields in partition function are set
 | 
						|
    FALSE                   Not all fields in partition function are set
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Use key buffer to set-up record in buf, move field pointers and
 | 
						|
    get the partition identity and restore field pointers afterwards.
 | 
						|
*/
 | 
						|
 | 
						|
static int get_sub_part_id_from_key(const TABLE *table,uchar *buf,
 | 
						|
                                    KEY *key_info,
 | 
						|
                                    const key_range *key_spec,
 | 
						|
                                    uint32 *part_id)
 | 
						|
{
 | 
						|
  uchar *rec0= table->record[0];
 | 
						|
  partition_info *part_info= table->part_info;
 | 
						|
  int res;
 | 
						|
  DBUG_ENTER("get_sub_part_id_from_key");
 | 
						|
 | 
						|
  key_restore(buf, (uchar*)key_spec->key, key_info, key_spec->length);
 | 
						|
  if (likely(rec0 == buf))
 | 
						|
  {
 | 
						|
    res= part_info->get_subpartition_id(part_info, part_id);
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    Field **part_field_array= part_info->subpart_field_array;
 | 
						|
    set_field_ptr(part_field_array, buf, rec0);
 | 
						|
    res= part_info->get_subpartition_id(part_info, part_id);
 | 
						|
    set_field_ptr(part_field_array, rec0, buf);
 | 
						|
  }
 | 
						|
  DBUG_RETURN(res);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  Get the id of the partitioning part by using the key buffer of the
 | 
						|
  index scan.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_part_id_from_key()
 | 
						|
    table         The table object
 | 
						|
    buf           A buffer that can be used to evaluate the partition function
 | 
						|
    key_info      The index object
 | 
						|
    key_spec      A key_range containing key and key length
 | 
						|
    out:part_id   Partition to use
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE          Partition to use not found
 | 
						|
    FALSE         Ok, part_id indicates partition to use
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Use key buffer to set-up record in buf, move field pointers and
 | 
						|
    get the partition identity and restore field pointers afterwards.
 | 
						|
*/
 | 
						|
 | 
						|
bool get_part_id_from_key(const TABLE *table, uchar *buf, KEY *key_info,
 | 
						|
                          const key_range *key_spec, uint32 *part_id)
 | 
						|
{
 | 
						|
  bool result;
 | 
						|
  uchar *rec0= table->record[0];
 | 
						|
  partition_info *part_info= table->part_info;
 | 
						|
  longlong func_value;
 | 
						|
  DBUG_ENTER("get_part_id_from_key");
 | 
						|
 | 
						|
  key_restore(buf, (uchar*)key_spec->key, key_info, key_spec->length);
 | 
						|
  if (likely(rec0 == buf))
 | 
						|
  {
 | 
						|
    result= part_info->get_part_partition_id(part_info, part_id,
 | 
						|
                                             &func_value);
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    Field **part_field_array= part_info->part_field_array;
 | 
						|
    set_field_ptr(part_field_array, buf, rec0);
 | 
						|
    result= part_info->get_part_partition_id(part_info, part_id,
 | 
						|
                                             &func_value);
 | 
						|
    set_field_ptr(part_field_array, rec0, buf);
 | 
						|
  }
 | 
						|
  DBUG_RETURN(result);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  Get the partitioning id of the full PF by using the key buffer of the
 | 
						|
  index scan.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_full_part_id_from_key()
 | 
						|
    table         The table object
 | 
						|
    buf           A buffer that is used to evaluate the partition function
 | 
						|
    key_info      The index object
 | 
						|
    key_spec      A key_range containing key and key length
 | 
						|
    out:part_spec A partition id containing start part and end part
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    part_spec
 | 
						|
    No partitions to scan is indicated by end_part > start_part when returning
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Use key buffer to set-up record in buf, move field pointers if needed and
 | 
						|
    get the partition identity and restore field pointers afterwards.
 | 
						|
*/
 | 
						|
 | 
						|
void get_full_part_id_from_key(const TABLE *table, uchar *buf,
 | 
						|
                               KEY *key_info,
 | 
						|
                               const key_range *key_spec,
 | 
						|
                               part_id_range *part_spec)
 | 
						|
{
 | 
						|
  bool result;
 | 
						|
  partition_info *part_info= table->part_info;
 | 
						|
  uchar *rec0= table->record[0];
 | 
						|
  longlong func_value;
 | 
						|
  DBUG_ENTER("get_full_part_id_from_key");
 | 
						|
 | 
						|
  key_restore(buf, (uchar*)key_spec->key, key_info, key_spec->length);
 | 
						|
  if (likely(rec0 == buf))
 | 
						|
  {
 | 
						|
    result= part_info->get_partition_id(part_info, &part_spec->start_part,
 | 
						|
                                        &func_value);
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    Field **part_field_array= part_info->full_part_field_array;
 | 
						|
    set_field_ptr(part_field_array, buf, rec0);
 | 
						|
    result= part_info->get_partition_id(part_info, &part_spec->start_part,
 | 
						|
                                        &func_value);
 | 
						|
    set_field_ptr(part_field_array, rec0, buf);
 | 
						|
  }
 | 
						|
  part_spec->end_part= part_spec->start_part;
 | 
						|
  if (unlikely(result))
 | 
						|
    part_spec->start_part++;
 | 
						|
  DBUG_VOID_RETURN;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  Prune the set of partitions to use in query 
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    prune_partition_set()
 | 
						|
    table         The table object
 | 
						|
    out:part_spec Contains start part, end part 
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    This function is called to prune the range of partitions to scan by
 | 
						|
    checking the used_partitions bitmap.
 | 
						|
    If start_part > end_part at return it means no partition needs to be
 | 
						|
    scanned. If start_part == end_part it always means a single partition
 | 
						|
    needs to be scanned.
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    part_spec
 | 
						|
*/
 | 
						|
void prune_partition_set(const TABLE *table, part_id_range *part_spec)
 | 
						|
{
 | 
						|
  int last_partition= -1;
 | 
						|
  uint i;
 | 
						|
  partition_info *part_info= table->part_info;
 | 
						|
 | 
						|
  DBUG_ENTER("prune_partition_set");
 | 
						|
  for (i= part_spec->start_part; i <= part_spec->end_part; i++)
 | 
						|
  {
 | 
						|
    if (bitmap_is_set(&(part_info->used_partitions), i))
 | 
						|
    {
 | 
						|
      DBUG_PRINT("info", ("Partition %d is set", i));
 | 
						|
      if (last_partition == -1)
 | 
						|
        /* First partition found in set and pruned bitmap */
 | 
						|
        part_spec->start_part= i;
 | 
						|
      last_partition= i;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (last_partition == -1)
 | 
						|
    /* No partition found in pruned bitmap */
 | 
						|
    part_spec->start_part= part_spec->end_part + 1;  
 | 
						|
  else //if (last_partition != -1)
 | 
						|
    part_spec->end_part= last_partition;
 | 
						|
 | 
						|
  DBUG_VOID_RETURN;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  Get the set of partitions to use in query.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_partition_set()
 | 
						|
    table         The table object
 | 
						|
    buf           A buffer that can be used to evaluate the partition function
 | 
						|
    index         The index of the key used, if MAX_KEY no index used
 | 
						|
    key_spec      A key_range containing key and key length
 | 
						|
    out:part_spec Contains start part, end part and indicator if bitmap is
 | 
						|
                  used for which partitions to scan
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    This function is called to discover which partitions to use in an index
 | 
						|
    scan or a full table scan.
 | 
						|
    It returns a range of partitions to scan. If there are holes in this
 | 
						|
    range with partitions that are not needed to scan a bit array is used
 | 
						|
    to signal which partitions to use and which not to use.
 | 
						|
    If start_part > end_part at return it means no partition needs to be
 | 
						|
    scanned. If start_part == end_part it always means a single partition
 | 
						|
    needs to be scanned.
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    part_spec
 | 
						|
*/
 | 
						|
void get_partition_set(const TABLE *table, uchar *buf, const uint index,
 | 
						|
                       const key_range *key_spec, part_id_range *part_spec)
 | 
						|
{
 | 
						|
  partition_info *part_info= table->part_info;
 | 
						|
  uint no_parts= part_info->get_tot_partitions();
 | 
						|
  uint i, part_id;
 | 
						|
  uint sub_part= no_parts;
 | 
						|
  uint32 part_part= no_parts;
 | 
						|
  KEY *key_info= NULL;
 | 
						|
  bool found_part_field= FALSE;
 | 
						|
  DBUG_ENTER("get_partition_set");
 | 
						|
 | 
						|
  part_spec->start_part= 0;
 | 
						|
  part_spec->end_part= no_parts - 1;
 | 
						|
  if ((index < MAX_KEY) && 
 | 
						|
       key_spec->flag == (uint)HA_READ_KEY_EXACT &&
 | 
						|
       part_info->some_fields_in_PF.is_set(index))
 | 
						|
  {
 | 
						|
    key_info= table->key_info+index;
 | 
						|
    /*
 | 
						|
      The index can potentially provide at least one PF-field (field in the
 | 
						|
      partition function). Thus it is interesting to continue our probe.
 | 
						|
    */
 | 
						|
    if (key_spec->length == key_info->key_length)
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        The entire key is set so we can check whether we can immediately
 | 
						|
        derive either the complete PF or if we can derive either
 | 
						|
        the top PF or the subpartitioning PF. This can be established by
 | 
						|
        checking precalculated bits on each index.
 | 
						|
      */
 | 
						|
      if (part_info->all_fields_in_PF.is_set(index))
 | 
						|
      {
 | 
						|
        /*
 | 
						|
          We can derive the exact partition to use, no more than this one
 | 
						|
          is needed.
 | 
						|
        */
 | 
						|
        get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
 | 
						|
        /*
 | 
						|
          Check if range can be adjusted by looking in used_partitions
 | 
						|
        */
 | 
						|
        prune_partition_set(table, part_spec);
 | 
						|
        DBUG_VOID_RETURN;
 | 
						|
      }
 | 
						|
      else if (part_info->is_sub_partitioned())
 | 
						|
      {
 | 
						|
        if (part_info->all_fields_in_SPF.is_set(index))
 | 
						|
        {
 | 
						|
          if (get_sub_part_id_from_key(table, buf, key_info, key_spec, &sub_part))
 | 
						|
          {
 | 
						|
            part_spec->start_part= no_parts;
 | 
						|
            DBUG_VOID_RETURN;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        else if (part_info->all_fields_in_PPF.is_set(index))
 | 
						|
        {
 | 
						|
          if (get_part_id_from_key(table,buf,key_info,
 | 
						|
                                   key_spec,(uint32*)&part_part))
 | 
						|
          {
 | 
						|
            /*
 | 
						|
              The value of the RANGE or LIST partitioning was outside of
 | 
						|
              allowed values. Thus it is certain that the result of this
 | 
						|
              scan will be empty.
 | 
						|
            */
 | 
						|
            part_spec->start_part= no_parts;
 | 
						|
            DBUG_VOID_RETURN;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        Set an indicator on all partition fields that are bound.
 | 
						|
        If at least one PF-field was bound it pays off to check whether
 | 
						|
        the PF or PPF or SPF has been bound.
 | 
						|
        (PF = Partition Function, SPF = Subpartition Function and
 | 
						|
         PPF = Partition Function part of subpartitioning)
 | 
						|
      */
 | 
						|
      if ((found_part_field= set_PF_fields_in_key(key_info,
 | 
						|
                                                  key_spec->length)))
 | 
						|
      {
 | 
						|
        if (check_part_func_bound(part_info->full_part_field_array))
 | 
						|
        {
 | 
						|
          /*
 | 
						|
            We were able to bind all fields in the partition function even
 | 
						|
            by using only a part of the key. Calculate the partition to use.
 | 
						|
          */
 | 
						|
          get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
 | 
						|
          clear_indicator_in_key_fields(key_info);
 | 
						|
          /*
 | 
						|
            Check if range can be adjusted by looking in used_partitions
 | 
						|
          */
 | 
						|
          prune_partition_set(table, part_spec);
 | 
						|
          DBUG_VOID_RETURN; 
 | 
						|
        }
 | 
						|
        else if (part_info->is_sub_partitioned())
 | 
						|
        {
 | 
						|
          if (check_part_func_bound(part_info->subpart_field_array))
 | 
						|
          {
 | 
						|
            if (get_sub_part_id_from_key(table, buf, key_info, key_spec, &sub_part))
 | 
						|
            {
 | 
						|
              part_spec->start_part= no_parts;
 | 
						|
              clear_indicator_in_key_fields(key_info);
 | 
						|
              DBUG_VOID_RETURN;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          else if (check_part_func_bound(part_info->part_field_array))
 | 
						|
          {
 | 
						|
            if (get_part_id_from_key(table,buf,key_info,key_spec,&part_part))
 | 
						|
            {
 | 
						|
              part_spec->start_part= no_parts;
 | 
						|
              clear_indicator_in_key_fields(key_info);
 | 
						|
              DBUG_VOID_RETURN;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      The next step is to analyse the table condition to see whether any
 | 
						|
      information about which partitions to scan can be derived from there.
 | 
						|
      Currently not implemented.
 | 
						|
    */
 | 
						|
  }
 | 
						|
  /*
 | 
						|
    If we come here we have found a range of sorts we have either discovered
 | 
						|
    nothing or we have discovered a range of partitions with possible holes
 | 
						|
    in it. We need a bitvector to further the work here.
 | 
						|
  */
 | 
						|
  if (!(part_part == no_parts && sub_part == no_parts))
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      We can only arrive here if we are using subpartitioning.
 | 
						|
    */
 | 
						|
    if (part_part != no_parts)
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        We know the top partition and need to scan all underlying
 | 
						|
        subpartitions. This is a range without holes.
 | 
						|
      */
 | 
						|
      DBUG_ASSERT(sub_part == no_parts);
 | 
						|
      part_spec->start_part= part_part * part_info->no_subparts;
 | 
						|
      part_spec->end_part= part_spec->start_part+part_info->no_subparts - 1;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      DBUG_ASSERT(sub_part != no_parts);
 | 
						|
      part_spec->start_part= sub_part;
 | 
						|
      part_spec->end_part=sub_part+
 | 
						|
                           (part_info->no_subparts*(part_info->no_parts-1));
 | 
						|
      for (i= 0, part_id= sub_part; i < part_info->no_parts;
 | 
						|
           i++, part_id+= part_info->no_subparts)
 | 
						|
        ; //Set bit part_id in bit array
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (found_part_field)
 | 
						|
    clear_indicator_in_key_fields(key_info);
 | 
						|
  /*
 | 
						|
    Check if range can be adjusted by looking in used_partitions
 | 
						|
  */
 | 
						|
  prune_partition_set(table, part_spec);
 | 
						|
  DBUG_VOID_RETURN;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   If the table is partitioned we will read the partition info into the
 | 
						|
   .frm file here.
 | 
						|
   -------------------------------
 | 
						|
   |  Fileinfo     64 bytes      |
 | 
						|
   -------------------------------
 | 
						|
   | Formnames     7 bytes       |
 | 
						|
   -------------------------------
 | 
						|
   | Not used    4021 bytes      |
 | 
						|
   -------------------------------
 | 
						|
   | Keyinfo + record            |
 | 
						|
   -------------------------------
 | 
						|
   | Padded to next multiple     |
 | 
						|
   | of IO_SIZE                  |
 | 
						|
   -------------------------------
 | 
						|
   | Forminfo     288 bytes      |
 | 
						|
   -------------------------------
 | 
						|
   | Screen buffer, to make      |
 | 
						|
   |field names readable        |
 | 
						|
   -------------------------------
 | 
						|
   | Packed field info           |
 | 
						|
   |17 + 1 + strlen(field_name) |
 | 
						|
   | + 1 end of file character   |
 | 
						|
   -------------------------------
 | 
						|
   | Partition info              |
 | 
						|
   -------------------------------
 | 
						|
   We provide the length of partition length in Fileinfo[55-58].
 | 
						|
 | 
						|
   Read the partition syntax from the frm file and parse it to get the
 | 
						|
   data structures of the partitioning.
 | 
						|
 | 
						|
   SYNOPSIS
 | 
						|
     mysql_unpack_partition()
 | 
						|
     thd                           Thread object
 | 
						|
     part_buf                      Partition info from frm file
 | 
						|
     part_info_len                 Length of partition syntax
 | 
						|
     table                         Table object of partitioned table
 | 
						|
     create_table_ind              Is it called from CREATE TABLE
 | 
						|
     default_db_type               What is the default engine of the table
 | 
						|
     work_part_info_used           Flag is raised if we don't create new
 | 
						|
                                   part_info, but used thd->work_part_info
 | 
						|
 | 
						|
   RETURN VALUE
 | 
						|
     TRUE                          Error
 | 
						|
     FALSE                         Sucess
 | 
						|
 | 
						|
   DESCRIPTION
 | 
						|
     Read the partition syntax from the current position in the frm file.
 | 
						|
     Initiate a LEX object, save the list of item tree objects to free after
 | 
						|
     the query is done. Set-up partition info object such that parser knows
 | 
						|
     it is called from internally. Call parser to create data structures
 | 
						|
     (best possible recreation of item trees and so forth since there is no
 | 
						|
     serialisation of these objects other than in parseable text format).
 | 
						|
     We need to save the text of the partition functions since it is not
 | 
						|
     possible to retrace this given an item tree.
 | 
						|
*/
 | 
						|
 | 
						|
bool mysql_unpack_partition(THD *thd,
 | 
						|
                            const char *part_buf, uint part_info_len,
 | 
						|
                            const char *part_state, uint part_state_len,
 | 
						|
                            TABLE* table, bool is_create_table_ind,
 | 
						|
                            handlerton *default_db_type,
 | 
						|
                            bool *work_part_info_used)
 | 
						|
{
 | 
						|
  bool result= TRUE;
 | 
						|
  partition_info *part_info;
 | 
						|
  CHARSET_INFO *old_character_set_client= thd->variables.character_set_client;
 | 
						|
  LEX *old_lex= thd->lex;
 | 
						|
  LEX lex;
 | 
						|
  DBUG_ENTER("mysql_unpack_partition");
 | 
						|
 | 
						|
  thd->lex= &lex;
 | 
						|
  thd->variables.character_set_client= system_charset_info;
 | 
						|
 | 
						|
  Parser_state parser_state(thd, part_buf, part_info_len);
 | 
						|
 | 
						|
  lex_start(thd);
 | 
						|
  *work_part_info_used= false;
 | 
						|
  /*
 | 
						|
    We need to use the current SELECT_LEX since I need to keep the
 | 
						|
    Name_resolution_context object which is referenced from the
 | 
						|
    Item_field objects.
 | 
						|
    This is not a nice solution since if the parser uses current_select
 | 
						|
    for anything else it will corrupt the current LEX object.
 | 
						|
    Also, we need to make sure there even is a select -- if the statement
 | 
						|
    was a "USE ...", current_select will be NULL, but we may still end up
 | 
						|
    here if we try to log to a partitioned table. This is currently
 | 
						|
    unsupported, but should still fail rather than crash!
 | 
						|
  */
 | 
						|
  if (!(thd->lex->current_select= old_lex->current_select))
 | 
						|
    goto end;
 | 
						|
  /*
 | 
						|
    All Items created is put into a free list on the THD object. This list
 | 
						|
    is used to free all Item objects after completing a query. We don't
 | 
						|
    want that to happen with the Item tree created as part of the partition
 | 
						|
    info. This should be attached to the table object and remain so until
 | 
						|
    the table object is released.
 | 
						|
    Thus we move away the current list temporarily and start a new list that
 | 
						|
    we then save in the partition info structure.
 | 
						|
  */
 | 
						|
  lex.part_info= new partition_info();/* Indicates MYSQLparse from this place */
 | 
						|
  if (!lex.part_info)
 | 
						|
  {
 | 
						|
    mem_alloc_error(sizeof(partition_info));
 | 
						|
    goto end;
 | 
						|
  }
 | 
						|
  lex.part_info->part_state= part_state;
 | 
						|
  lex.part_info->part_state_len= part_state_len;
 | 
						|
  DBUG_PRINT("info", ("Parse: %s", part_buf));
 | 
						|
  if (parse_sql(thd, & parser_state, NULL))
 | 
						|
  {
 | 
						|
    thd->free_items();
 | 
						|
    goto end;
 | 
						|
  }
 | 
						|
  /*
 | 
						|
    The parsed syntax residing in the frm file can still contain defaults.
 | 
						|
    The reason is that the frm file is sometimes saved outside of this
 | 
						|
    MySQL Server and used in backup and restore of clusters or partitioned
 | 
						|
    tables. It is not certain that the restore will restore exactly the
 | 
						|
    same default partitioning.
 | 
						|
    
 | 
						|
    The easiest manner of handling this is to simply continue using the
 | 
						|
    part_info we already built up during mysql_create_table if we are
 | 
						|
    in the process of creating a table. If the table already exists we
 | 
						|
    need to discover the number of partitions for the default parts. Since
 | 
						|
    the handler object hasn't been created here yet we need to postpone this
 | 
						|
    to the fix_partition_func method.
 | 
						|
  */
 | 
						|
 | 
						|
  DBUG_PRINT("info", ("Successful parse"));
 | 
						|
  part_info= lex.part_info;
 | 
						|
  DBUG_PRINT("info", ("default engine = %s, default_db_type = %s",
 | 
						|
             ha_resolve_storage_engine_name(part_info->default_engine_type),
 | 
						|
             ha_resolve_storage_engine_name(default_db_type)));
 | 
						|
  if (is_create_table_ind && old_lex->sql_command == SQLCOM_CREATE_TABLE)
 | 
						|
  {
 | 
						|
    if (old_lex->create_info.options & HA_LEX_CREATE_TABLE_LIKE)
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        This code is executed when we create table in CREATE TABLE t1 LIKE t2.
 | 
						|
        old_lex->query_tables contains table list element for t2 and the table
 | 
						|
        we are opening has name t1.
 | 
						|
      */
 | 
						|
      if (partition_default_handling(table, part_info, FALSE,
 | 
						|
                                     old_lex->query_tables->table->s->path.str))
 | 
						|
      {
 | 
						|
        result= TRUE;
 | 
						|
        goto end;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        When we come here we are doing a create table. In this case we
 | 
						|
        have already done some preparatory work on the old part_info
 | 
						|
        object. We don't really need this new partition_info object.
 | 
						|
        Thus we go back to the old partition info object.
 | 
						|
        We need to free any memory objects allocated on item_free_list
 | 
						|
        by the parser since we are keeping the old info from the first
 | 
						|
        parser call in CREATE TABLE.
 | 
						|
        We'll ensure that this object isn't put into table cache also
 | 
						|
        just to ensure we don't get into strange situations with the
 | 
						|
        item objects.
 | 
						|
      */
 | 
						|
      thd->free_items();
 | 
						|
      part_info= thd->work_part_info;
 | 
						|
      table->s->version= 0UL;
 | 
						|
      *work_part_info_used= true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  table->part_info= part_info;
 | 
						|
  table->file->set_part_info(part_info);
 | 
						|
  if (!part_info->default_engine_type)
 | 
						|
    part_info->default_engine_type= default_db_type;
 | 
						|
  DBUG_ASSERT(part_info->default_engine_type == default_db_type);
 | 
						|
  DBUG_ASSERT(part_info->default_engine_type->db_type != DB_TYPE_UNKNOWN);
 | 
						|
  DBUG_ASSERT(part_info->default_engine_type != partition_hton);
 | 
						|
 | 
						|
  {
 | 
						|
  /*
 | 
						|
    This code part allocates memory for the serialised item information for
 | 
						|
    the partition functions. In most cases this is not needed but if the
 | 
						|
    table is used for SHOW CREATE TABLES or ALTER TABLE that modifies
 | 
						|
    partition information it is needed and the info is lost if we don't
 | 
						|
    save it here so unfortunately we have to do it here even if in most
 | 
						|
    cases it is not needed. This is a consequence of that item trees are
 | 
						|
    not serialisable.
 | 
						|
  */
 | 
						|
    uint part_func_len= part_info->part_func_len;
 | 
						|
    uint subpart_func_len= part_info->subpart_func_len; 
 | 
						|
    char *part_func_string= NULL;
 | 
						|
    char *subpart_func_string= NULL;
 | 
						|
    if ((part_func_len &&
 | 
						|
         !((part_func_string= (char*) thd->alloc(part_func_len)))) ||
 | 
						|
        (subpart_func_len &&
 | 
						|
         !((subpart_func_string= (char*) thd->alloc(subpart_func_len)))))
 | 
						|
    {
 | 
						|
      mem_alloc_error(part_func_len);
 | 
						|
      thd->free_items();
 | 
						|
      goto end;
 | 
						|
    }
 | 
						|
    if (part_func_len)
 | 
						|
      memcpy(part_func_string, part_info->part_func_string, part_func_len);
 | 
						|
    if (subpart_func_len)
 | 
						|
      memcpy(subpart_func_string, part_info->subpart_func_string,
 | 
						|
             subpart_func_len);
 | 
						|
    part_info->part_func_string= part_func_string;
 | 
						|
    part_info->subpart_func_string= subpart_func_string;
 | 
						|
  }
 | 
						|
 | 
						|
  result= FALSE;
 | 
						|
end:
 | 
						|
  lex_end(thd->lex);
 | 
						|
  thd->lex= old_lex;
 | 
						|
  thd->variables.character_set_client= old_character_set_client;
 | 
						|
  DBUG_RETURN(result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Set engine type on all partition element objects
 | 
						|
  SYNOPSIS
 | 
						|
    set_engine_all_partitions()
 | 
						|
    part_info                  Partition info
 | 
						|
    engine_type                Handlerton reference of engine
 | 
						|
  RETURN VALUES
 | 
						|
    NONE
 | 
						|
*/
 | 
						|
 | 
						|
static
 | 
						|
void
 | 
						|
set_engine_all_partitions(partition_info *part_info,
 | 
						|
                          handlerton *engine_type)
 | 
						|
{
 | 
						|
  uint i= 0;
 | 
						|
  List_iterator<partition_element> part_it(part_info->partitions);
 | 
						|
  do
 | 
						|
  {
 | 
						|
    partition_element *part_elem= part_it++;
 | 
						|
 | 
						|
    part_elem->engine_type= engine_type;
 | 
						|
    if (part_info->is_sub_partitioned())
 | 
						|
    {
 | 
						|
      List_iterator<partition_element> sub_it(part_elem->subpartitions);
 | 
						|
      uint j= 0;
 | 
						|
 | 
						|
      do
 | 
						|
      {
 | 
						|
        partition_element *sub_elem= sub_it++;
 | 
						|
 | 
						|
        sub_elem->engine_type= engine_type;
 | 
						|
      } while (++j < part_info->no_subparts);
 | 
						|
    }
 | 
						|
  } while (++i < part_info->no_parts);
 | 
						|
}
 | 
						|
/*
 | 
						|
  SYNOPSIS
 | 
						|
    fast_end_partition()
 | 
						|
    thd                           Thread object
 | 
						|
    out:copied                    Number of records copied
 | 
						|
    out:deleted                   Number of records deleted
 | 
						|
    table_list                    Table list with the one table in it
 | 
						|
    empty                         Has nothing been done
 | 
						|
    lpt                           Struct to be used by error handler
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    FALSE                         Success
 | 
						|
    TRUE                          Failure
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Support routine to handle the successful cases for partition
 | 
						|
    management.
 | 
						|
*/
 | 
						|
 | 
						|
static int fast_end_partition(THD *thd, ulonglong copied,
 | 
						|
                              ulonglong deleted,
 | 
						|
                              TABLE *table,
 | 
						|
                              TABLE_LIST *table_list, bool is_empty,
 | 
						|
                              ALTER_PARTITION_PARAM_TYPE *lpt,
 | 
						|
                              bool written_bin_log)
 | 
						|
{
 | 
						|
  int error;
 | 
						|
  char tmp_name[80];
 | 
						|
  DBUG_ENTER("fast_end_partition");
 | 
						|
 | 
						|
  thd->proc_info="end";
 | 
						|
 | 
						|
  if (!is_empty)
 | 
						|
    query_cache_invalidate3(thd, table_list, 0);
 | 
						|
 | 
						|
  error= ha_autocommit_or_rollback(thd, 0);
 | 
						|
  if (end_active_trans(thd))
 | 
						|
    error= 1;
 | 
						|
 | 
						|
  if (error)
 | 
						|
  {
 | 
						|
    /* If error during commit, no need to rollback, it's done. */
 | 
						|
    table->file->print_error(error, MYF(0));
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
  }
 | 
						|
 | 
						|
  if ((!is_empty) && (!written_bin_log) &&
 | 
						|
      (!thd->lex->no_write_to_binlog))
 | 
						|
    write_bin_log(thd, FALSE, thd->query(), thd->query_length());
 | 
						|
 | 
						|
  my_snprintf(tmp_name, sizeof(tmp_name), ER(ER_INSERT_INFO),
 | 
						|
              (ulong) (copied + deleted),
 | 
						|
              (ulong) deleted,
 | 
						|
              (ulong) 0);
 | 
						|
  my_ok(thd, (ha_rows) (copied+deleted),0L, tmp_name);
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  We need to check if engine used by all partitions can handle
 | 
						|
  partitioning natively.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    check_native_partitioned()
 | 
						|
    create_info            Create info in CREATE TABLE
 | 
						|
    out:ret_val            Return value
 | 
						|
    part_info              Partition info
 | 
						|
    thd                    Thread object
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
  Value returned in bool ret_value
 | 
						|
    TRUE                   Native partitioning supported by engine
 | 
						|
    FALSE                  Need to use partition handler
 | 
						|
 | 
						|
  Return value from function
 | 
						|
    TRUE                   Error
 | 
						|
    FALSE                  Success
 | 
						|
*/
 | 
						|
 | 
						|
static bool check_native_partitioned(HA_CREATE_INFO *create_info,bool *ret_val,
 | 
						|
                                     partition_info *part_info, THD *thd)
 | 
						|
{
 | 
						|
  bool table_engine_set;
 | 
						|
  handlerton *engine_type= part_info->default_engine_type;
 | 
						|
  handlerton *old_engine_type= engine_type;
 | 
						|
  DBUG_ENTER("check_native_partitioned");
 | 
						|
 | 
						|
  if (create_info->used_fields & HA_CREATE_USED_ENGINE)
 | 
						|
  {
 | 
						|
    table_engine_set= TRUE;
 | 
						|
    engine_type= create_info->db_type;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    table_engine_set= FALSE;
 | 
						|
    if (thd->lex->sql_command != SQLCOM_CREATE_TABLE)
 | 
						|
    {
 | 
						|
      table_engine_set= TRUE;
 | 
						|
      DBUG_ASSERT(engine_type && engine_type != partition_hton);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_PRINT("info", ("engine_type = %s, table_engine_set = %u",
 | 
						|
                       ha_resolve_storage_engine_name(engine_type),
 | 
						|
                       table_engine_set));
 | 
						|
  if (part_info->check_engine_mix(engine_type, table_engine_set))
 | 
						|
    goto error;
 | 
						|
 | 
						|
  /*
 | 
						|
    All engines are of the same type. Check if this engine supports
 | 
						|
    native partitioning.
 | 
						|
  */
 | 
						|
 | 
						|
  if (!engine_type)
 | 
						|
    engine_type= old_engine_type;
 | 
						|
  DBUG_PRINT("info", ("engine_type = %s",
 | 
						|
              ha_resolve_storage_engine_name(engine_type)));
 | 
						|
  if (engine_type->partition_flags &&
 | 
						|
      (engine_type->partition_flags() & HA_CAN_PARTITION))
 | 
						|
  {
 | 
						|
    create_info->db_type= engine_type;
 | 
						|
    DBUG_PRINT("info", ("Changed to native partitioning"));
 | 
						|
    *ret_val= TRUE;
 | 
						|
  }
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
error:
 | 
						|
  /*
 | 
						|
    Mixed engines not yet supported but when supported it will need
 | 
						|
    the partition handler
 | 
						|
  */
 | 
						|
  my_error(ER_MIX_HANDLER_ERROR, MYF(0));
 | 
						|
  *ret_val= FALSE;
 | 
						|
  DBUG_RETURN(TRUE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Sets which partitions to be used in the command
 | 
						|
*/
 | 
						|
uint set_part_state(Alter_info *alter_info, partition_info *tab_part_info,
 | 
						|
               enum partition_state part_state)
 | 
						|
{
 | 
						|
  uint part_count= 0;
 | 
						|
  uint no_parts_found= 0;
 | 
						|
  List_iterator<partition_element> part_it(tab_part_info->partitions);
 | 
						|
 | 
						|
  do
 | 
						|
  {
 | 
						|
    partition_element *part_elem= part_it++;
 | 
						|
    if ((alter_info->flags & ALTER_ALL_PARTITION) ||
 | 
						|
         (is_name_in_list(part_elem->partition_name,
 | 
						|
          alter_info->partition_names)))
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        Mark the partition.
 | 
						|
        I.e mark the partition as a partition to be "changed" by
 | 
						|
        analyzing/optimizing/rebuilding/checking/repairing
 | 
						|
      */
 | 
						|
      no_parts_found++;
 | 
						|
      part_elem->part_state= part_state;
 | 
						|
      DBUG_PRINT("info", ("Setting part_state to %u for partition %s",
 | 
						|
                          part_state, part_elem->partition_name));
 | 
						|
    }
 | 
						|
  } while (++part_count < tab_part_info->no_parts);
 | 
						|
  return no_parts_found;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Prepare for ALTER TABLE of partition structure
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    prep_alter_part_table()
 | 
						|
    thd                        Thread object
 | 
						|
    table                      Table object
 | 
						|
    inout:alter_info           Alter information
 | 
						|
    inout:create_info          Create info for CREATE TABLE
 | 
						|
    old_db_type                Old engine type
 | 
						|
    out:partition_changed      Boolean indicating whether partition changed
 | 
						|
    out:fast_alter_partition   Boolean indicating whether fast partition
 | 
						|
                               change is requested
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                       Error
 | 
						|
    FALSE                      Success
 | 
						|
    partition_changed
 | 
						|
    fast_alter_partition
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    This method handles all preparations for ALTER TABLE for partitioned
 | 
						|
    tables
 | 
						|
    We need to handle both partition management command such as Add Partition
 | 
						|
    and others here as well as an ALTER TABLE that completely changes the
 | 
						|
    partitioning and yet others that don't change anything at all. We start
 | 
						|
    by checking the partition management variants and then check the general
 | 
						|
    change patterns.
 | 
						|
*/
 | 
						|
 | 
						|
uint prep_alter_part_table(THD *thd, TABLE *table, Alter_info *alter_info,
 | 
						|
                           HA_CREATE_INFO *create_info,
 | 
						|
                           handlerton *old_db_type,
 | 
						|
                           bool *partition_changed,
 | 
						|
                           uint *fast_alter_partition)
 | 
						|
{
 | 
						|
  DBUG_ENTER("prep_alter_part_table");
 | 
						|
 | 
						|
  /*
 | 
						|
    We are going to manipulate the partition info on the table object
 | 
						|
    so we need to ensure that the data structure of the table object
 | 
						|
    is freed by setting version to 0. table->s->version= 0 forces a
 | 
						|
    flush of the table object in close_thread_tables().
 | 
						|
  */
 | 
						|
  if (table->part_info)
 | 
						|
    table->s->version= 0L;
 | 
						|
 | 
						|
  thd->work_part_info= thd->lex->part_info;
 | 
						|
  if (thd->work_part_info &&
 | 
						|
      !(thd->work_part_info= thd->lex->part_info->get_clone()))
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
 | 
						|
  /* ALTER_ADMIN_PARTITION is handled in mysql_admin_table */
 | 
						|
  DBUG_ASSERT(!(alter_info->flags & ALTER_ADMIN_PARTITION));
 | 
						|
 | 
						|
  if (alter_info->flags &
 | 
						|
      (ALTER_ADD_PARTITION | ALTER_DROP_PARTITION |
 | 
						|
       ALTER_COALESCE_PARTITION | ALTER_REORGANIZE_PARTITION |
 | 
						|
       ALTER_TABLE_REORG | ALTER_REBUILD_PARTITION))
 | 
						|
  {
 | 
						|
    partition_info *tab_part_info= table->part_info;
 | 
						|
    partition_info *alt_part_info= thd->work_part_info;
 | 
						|
    uint flags= 0;
 | 
						|
    if (!tab_part_info)
 | 
						|
    {
 | 
						|
      my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0));
 | 
						|
      DBUG_RETURN(TRUE);
 | 
						|
    }
 | 
						|
    if (alter_info->flags & ALTER_TABLE_REORG)
 | 
						|
    {
 | 
						|
      uint new_part_no, curr_part_no;
 | 
						|
      if (tab_part_info->part_type != HASH_PARTITION ||
 | 
						|
          tab_part_info->use_default_no_partitions)
 | 
						|
      {
 | 
						|
        my_error(ER_REORG_NO_PARAM_ERROR, MYF(0));
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      new_part_no= table->file->get_default_no_partitions(create_info);
 | 
						|
      curr_part_no= tab_part_info->no_parts;
 | 
						|
      if (new_part_no == curr_part_no)
 | 
						|
      {
 | 
						|
        /*
 | 
						|
          No change is needed, we will have the same number of partitions
 | 
						|
          after the change as before. Thus we can reply ok immediately
 | 
						|
          without any changes at all.
 | 
						|
        */
 | 
						|
        *fast_alter_partition= TRUE;
 | 
						|
        DBUG_RETURN(FALSE);
 | 
						|
      }
 | 
						|
      else if (new_part_no > curr_part_no)
 | 
						|
      {
 | 
						|
        /*
 | 
						|
          We will add more partitions, we use the ADD PARTITION without
 | 
						|
          setting the flag for no default number of partitions
 | 
						|
        */
 | 
						|
        alter_info->flags|= ALTER_ADD_PARTITION;
 | 
						|
        thd->work_part_info->no_parts= new_part_no - curr_part_no;
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        /*
 | 
						|
          We will remove hash partitions, we use the COALESCE PARTITION
 | 
						|
          without setting the flag for no default number of partitions
 | 
						|
        */
 | 
						|
        alter_info->flags|= ALTER_COALESCE_PARTITION;
 | 
						|
        alter_info->no_parts= curr_part_no - new_part_no;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!(flags= table->file->alter_table_flags(alter_info->flags)))
 | 
						|
    {
 | 
						|
      my_error(ER_PARTITION_FUNCTION_FAILURE, MYF(0));
 | 
						|
      DBUG_RETURN(1);
 | 
						|
    }
 | 
						|
    *fast_alter_partition=
 | 
						|
      ((flags & (HA_FAST_CHANGE_PARTITION | HA_PARTITION_ONE_PHASE)) != 0);
 | 
						|
    DBUG_PRINT("info", ("*fast_alter_partition: %d  flags: 0x%x",
 | 
						|
                        *fast_alter_partition, flags));
 | 
						|
    if (((alter_info->flags & ALTER_ADD_PARTITION) ||
 | 
						|
         (alter_info->flags & ALTER_REORGANIZE_PARTITION)) &&
 | 
						|
         (thd->work_part_info->part_type != tab_part_info->part_type) &&
 | 
						|
         (thd->work_part_info->part_type != NOT_A_PARTITION))
 | 
						|
    {
 | 
						|
      if (thd->work_part_info->part_type == RANGE_PARTITION)
 | 
						|
      {
 | 
						|
        my_error(ER_PARTITION_WRONG_VALUES_ERROR, MYF(0),
 | 
						|
                 "RANGE", "LESS THAN");
 | 
						|
      }
 | 
						|
      else if (thd->work_part_info->part_type == LIST_PARTITION)
 | 
						|
      {
 | 
						|
        DBUG_ASSERT(thd->work_part_info->part_type == LIST_PARTITION);
 | 
						|
        my_error(ER_PARTITION_WRONG_VALUES_ERROR, MYF(0),
 | 
						|
                 "LIST", "IN");
 | 
						|
      }
 | 
						|
      else if (tab_part_info->part_type == RANGE_PARTITION)
 | 
						|
      {
 | 
						|
        my_error(ER_PARTITION_REQUIRES_VALUES_ERROR, MYF(0),
 | 
						|
                 "RANGE", "LESS THAN");
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        DBUG_ASSERT(tab_part_info->part_type == LIST_PARTITION);
 | 
						|
        my_error(ER_PARTITION_REQUIRES_VALUES_ERROR, MYF(0),
 | 
						|
                 "LIST", "IN");
 | 
						|
      }
 | 
						|
      DBUG_RETURN(TRUE);
 | 
						|
    }
 | 
						|
    if (alter_info->flags & ALTER_ADD_PARTITION)
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        We start by moving the new partitions to the list of temporary
 | 
						|
        partitions. We will then check that the new partitions fit in the
 | 
						|
        partitioning scheme as currently set-up.
 | 
						|
        Partitions are always added at the end in ADD PARTITION.
 | 
						|
      */
 | 
						|
      uint no_new_partitions= alt_part_info->no_parts;
 | 
						|
      uint no_orig_partitions= tab_part_info->no_parts;
 | 
						|
      uint check_total_partitions= no_new_partitions + no_orig_partitions;
 | 
						|
      uint new_total_partitions= check_total_partitions;
 | 
						|
      /*
 | 
						|
        We allow quite a lot of values to be supplied by defaults, however we
 | 
						|
        must know the number of new partitions in this case.
 | 
						|
      */
 | 
						|
      if (thd->lex->no_write_to_binlog &&
 | 
						|
          tab_part_info->part_type != HASH_PARTITION)
 | 
						|
      {
 | 
						|
        my_error(ER_NO_BINLOG_ERROR, MYF(0));
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      if (tab_part_info->defined_max_value)
 | 
						|
      {
 | 
						|
        my_error(ER_PARTITION_MAXVALUE_ERROR, MYF(0));
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      if (no_new_partitions == 0)
 | 
						|
      {
 | 
						|
        my_error(ER_ADD_PARTITION_NO_NEW_PARTITION, MYF(0));
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      if (tab_part_info->is_sub_partitioned())
 | 
						|
      {
 | 
						|
        if (alt_part_info->no_subparts == 0)
 | 
						|
          alt_part_info->no_subparts= tab_part_info->no_subparts;
 | 
						|
        else if (alt_part_info->no_subparts != tab_part_info->no_subparts)
 | 
						|
        {
 | 
						|
          my_error(ER_ADD_PARTITION_SUBPART_ERROR, MYF(0));
 | 
						|
          DBUG_RETURN(TRUE);
 | 
						|
        }
 | 
						|
        check_total_partitions= new_total_partitions*
 | 
						|
                                alt_part_info->no_subparts;
 | 
						|
      }
 | 
						|
      if (check_total_partitions > MAX_PARTITIONS)
 | 
						|
      {
 | 
						|
        my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      alt_part_info->part_type= tab_part_info->part_type;
 | 
						|
      alt_part_info->subpart_type= tab_part_info->subpart_type;
 | 
						|
      if (alt_part_info->set_up_defaults_for_partitioning(table->file,
 | 
						|
                                                          ULL(0), 
 | 
						|
                                                          tab_part_info->no_parts))
 | 
						|
      {
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
/*
 | 
						|
Handling of on-line cases:
 | 
						|
 | 
						|
ADD PARTITION for RANGE/LIST PARTITIONING:
 | 
						|
------------------------------------------
 | 
						|
For range and list partitions add partition is simply adding a
 | 
						|
new empty partition to the table. If the handler support this we
 | 
						|
will use the simple method of doing this. The figure below shows
 | 
						|
an example of this and the states involved in making this change.
 | 
						|
            
 | 
						|
Existing partitions                                     New added partitions
 | 
						|
------       ------        ------        ------      |  ------    ------
 | 
						|
|    |       |    |        |    |        |    |      |  |    |    |    |
 | 
						|
| p0 |       | p1 |        | p2 |        | p3 |      |  | p4 |    | p5 |
 | 
						|
------       ------        ------        ------      |  ------    ------
 | 
						|
PART_NORMAL  PART_NORMAL   PART_NORMAL   PART_NORMAL    PART_TO_BE_ADDED*2
 | 
						|
PART_NORMAL  PART_NORMAL   PART_NORMAL   PART_NORMAL    PART_IS_ADDED*2
 | 
						|
 | 
						|
The first line is the states before adding the new partitions and the 
 | 
						|
second line is after the new partitions are added. All the partitions are
 | 
						|
in the partitions list, no partitions are placed in the temp_partitions
 | 
						|
list.
 | 
						|
 | 
						|
ADD PARTITION for HASH PARTITIONING
 | 
						|
-----------------------------------
 | 
						|
This little figure tries to show the various partitions involved when
 | 
						|
adding two new partitions to a linear hash based partitioned table with
 | 
						|
four partitions to start with, which lists are used and the states they
 | 
						|
pass through. Adding partitions to a normal hash based is similar except
 | 
						|
that it is always all the existing partitions that are reorganised not
 | 
						|
only a subset of them.
 | 
						|
 | 
						|
Existing partitions                                     New added partitions
 | 
						|
------       ------        ------        ------      |  ------    ------
 | 
						|
|    |       |    |        |    |        |    |      |  |    |    |    |
 | 
						|
| p0 |       | p1 |        | p2 |        | p3 |      |  | p4 |    | p5 |
 | 
						|
------       ------        ------        ------      |  ------    ------
 | 
						|
PART_CHANGED PART_CHANGED  PART_NORMAL   PART_NORMAL    PART_TO_BE_ADDED
 | 
						|
PART_IS_CHANGED*2          PART_NORMAL   PART_NORMAL    PART_IS_ADDED
 | 
						|
PART_NORMAL  PART_NORMAL   PART_NORMAL   PART_NORMAL    PART_IS_ADDED
 | 
						|
 | 
						|
Reorganised existing partitions
 | 
						|
------      ------
 | 
						|
|    |      |    |
 | 
						|
| p0'|      | p1'|
 | 
						|
------      ------
 | 
						|
 | 
						|
p0 - p5 will be in the partitions list of partitions.
 | 
						|
p0' and p1' will actually not exist as separate objects, there presence can
 | 
						|
be deduced from the state of the partition and also the names of those
 | 
						|
partitions can be deduced this way.
 | 
						|
 | 
						|
After adding the partitions and copying the partition data to p0', p1',
 | 
						|
p4 and p5 from p0 and p1 the states change to adapt for the new situation
 | 
						|
where p0 and p1 is dropped and replaced by p0' and p1' and the new p4 and
 | 
						|
p5 are in the table again.
 | 
						|
 | 
						|
The first line above shows the states of the partitions before we start
 | 
						|
adding and copying partitions, the second after completing the adding
 | 
						|
and copying and finally the third line after also dropping the partitions
 | 
						|
that are reorganised.
 | 
						|
*/
 | 
						|
      if (*fast_alter_partition &&
 | 
						|
          tab_part_info->part_type == HASH_PARTITION)
 | 
						|
      {
 | 
						|
        uint part_no= 0, start_part= 1, start_sec_part= 1;
 | 
						|
        uint end_part= 0, end_sec_part= 0;
 | 
						|
        uint upper_2n= tab_part_info->linear_hash_mask + 1;
 | 
						|
        uint lower_2n= upper_2n >> 1;
 | 
						|
        bool all_parts= TRUE;
 | 
						|
        if (tab_part_info->linear_hash_ind &&
 | 
						|
            no_new_partitions < upper_2n)
 | 
						|
        {
 | 
						|
          /*
 | 
						|
            An analysis of which parts needs reorganisation shows that it is
 | 
						|
            divided into two intervals. The first interval is those parts
 | 
						|
            that are reorganised up until upper_2n - 1. From upper_2n and
 | 
						|
            onwards it starts again from partition 0 and goes on until
 | 
						|
            it reaches p(upper_2n - 1). If the last new partition reaches
 | 
						|
            beyond upper_2n - 1 then the first interval will end with
 | 
						|
            p(lower_2n - 1) and start with p(no_orig_partitions - lower_2n).
 | 
						|
            If lower_2n partitions are added then p0 to p(lower_2n - 1) will
 | 
						|
            be reorganised which means that the two interval becomes one
 | 
						|
            interval at this point. Thus only when adding less than
 | 
						|
            lower_2n partitions and going beyond a total of upper_2n we
 | 
						|
            actually get two intervals.
 | 
						|
 | 
						|
            To exemplify this assume we have 6 partitions to start with and
 | 
						|
            add 1, 2, 3, 5, 6, 7, 8, 9 partitions.
 | 
						|
            The first to add after p5 is p6 = 110 in bit numbers. Thus we
 | 
						|
            can see that 10 = p2 will be partition to reorganise if only one
 | 
						|
            partition.
 | 
						|
            If 2 partitions are added we reorganise [p2, p3]. Those two
 | 
						|
            cases are covered by the second if part below.
 | 
						|
            If 3 partitions are added we reorganise [p2, p3] U [p0,p0]. This
 | 
						|
            part is covered by the else part below.
 | 
						|
            If 5 partitions are added we get [p2,p3] U [p0, p2] = [p0, p3].
 | 
						|
            This is covered by the first if part where we need the max check
 | 
						|
            to here use lower_2n - 1.
 | 
						|
            If 7 partitions are added we get [p2,p3] U [p0, p4] = [p0, p4].
 | 
						|
            This is covered by the first if part but here we use the first
 | 
						|
            calculated end_part.
 | 
						|
            Finally with 9 new partitions we would also reorganise p6 if we
 | 
						|
            used the method below but we cannot reorganise more partitions
 | 
						|
            than what we had from the start and thus we simply set all_parts
 | 
						|
            to TRUE. In this case we don't get into this if-part at all.
 | 
						|
          */
 | 
						|
          all_parts= FALSE;
 | 
						|
          if (no_new_partitions >= lower_2n)
 | 
						|
          {
 | 
						|
            /*
 | 
						|
              In this case there is only one interval since the two intervals
 | 
						|
              overlap and this starts from zero to last_part_no - upper_2n
 | 
						|
            */
 | 
						|
            start_part= 0;
 | 
						|
            end_part= new_total_partitions - (upper_2n + 1);
 | 
						|
            end_part= max(lower_2n - 1, end_part);
 | 
						|
          }
 | 
						|
          else if (new_total_partitions <= upper_2n)
 | 
						|
          {
 | 
						|
            /*
 | 
						|
              Also in this case there is only one interval since we are not
 | 
						|
              going over a 2**n boundary
 | 
						|
            */
 | 
						|
            start_part= no_orig_partitions - lower_2n;
 | 
						|
            end_part= start_part + (no_new_partitions - 1);
 | 
						|
          }
 | 
						|
          else
 | 
						|
          {
 | 
						|
            /* We have two non-overlapping intervals since we are not
 | 
						|
               passing a 2**n border and we have not at least lower_2n
 | 
						|
               new parts that would ensure that the intervals become
 | 
						|
               overlapping.
 | 
						|
            */
 | 
						|
            start_part= no_orig_partitions - lower_2n;
 | 
						|
            end_part= upper_2n - 1;
 | 
						|
            start_sec_part= 0;
 | 
						|
            end_sec_part= new_total_partitions - (upper_2n + 1);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        List_iterator<partition_element> tab_it(tab_part_info->partitions);
 | 
						|
        part_no= 0;
 | 
						|
        do
 | 
						|
        {
 | 
						|
          partition_element *p_elem= tab_it++;
 | 
						|
          if (all_parts ||
 | 
						|
              (part_no >= start_part && part_no <= end_part) ||
 | 
						|
              (part_no >= start_sec_part && part_no <= end_sec_part))
 | 
						|
          {
 | 
						|
            p_elem->part_state= PART_CHANGED;
 | 
						|
          }
 | 
						|
        } while (++part_no < no_orig_partitions);
 | 
						|
      }
 | 
						|
      /*
 | 
						|
        Need to concatenate the lists here to make it possible to check the
 | 
						|
        partition info for correctness using check_partition_info.
 | 
						|
        For on-line add partition we set the state of this partition to
 | 
						|
        PART_TO_BE_ADDED to ensure that it is known that it is not yet
 | 
						|
        usable (becomes usable when partition is created and the switch of
 | 
						|
        partition configuration is made.
 | 
						|
      */
 | 
						|
      {
 | 
						|
        List_iterator<partition_element> alt_it(alt_part_info->partitions);
 | 
						|
        uint part_count= 0;
 | 
						|
        do
 | 
						|
        {
 | 
						|
          partition_element *part_elem= alt_it++;
 | 
						|
          if (*fast_alter_partition)
 | 
						|
            part_elem->part_state= PART_TO_BE_ADDED;
 | 
						|
          if (tab_part_info->partitions.push_back(part_elem))
 | 
						|
          {
 | 
						|
            mem_alloc_error(1);
 | 
						|
            DBUG_RETURN(TRUE);
 | 
						|
          }
 | 
						|
        } while (++part_count < no_new_partitions);
 | 
						|
        tab_part_info->no_parts+= no_new_partitions;
 | 
						|
      }
 | 
						|
      /*
 | 
						|
        If we specify partitions explicitly we don't use defaults anymore.
 | 
						|
        Using ADD PARTITION also means that we don't have the default number
 | 
						|
        of partitions anymore. We use this code also for Table reorganisations
 | 
						|
        and here we don't set any default flags to FALSE.
 | 
						|
      */
 | 
						|
      if (!(alter_info->flags & ALTER_TABLE_REORG))
 | 
						|
      {
 | 
						|
        if (!alt_part_info->use_default_partitions)
 | 
						|
        {
 | 
						|
          DBUG_PRINT("info", ("part_info: 0x%lx", (long) tab_part_info));
 | 
						|
          tab_part_info->use_default_partitions= FALSE;
 | 
						|
        }
 | 
						|
        tab_part_info->use_default_no_partitions= FALSE;
 | 
						|
        tab_part_info->is_auto_partitioned= FALSE;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else if (alter_info->flags & ALTER_DROP_PARTITION)
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        Drop a partition from a range partition and list partitioning is
 | 
						|
        always safe and can be made more or less immediate. It is necessary
 | 
						|
        however to ensure that the partition to be removed is safely removed
 | 
						|
        and that REPAIR TABLE can remove the partition if for some reason the
 | 
						|
        command to drop the partition failed in the middle.
 | 
						|
      */
 | 
						|
      uint part_count= 0;
 | 
						|
      uint no_parts_dropped= alter_info->partition_names.elements;
 | 
						|
      uint no_parts_found= 0;
 | 
						|
      List_iterator<partition_element> part_it(tab_part_info->partitions);
 | 
						|
 | 
						|
      tab_part_info->is_auto_partitioned= FALSE;
 | 
						|
      if (!(tab_part_info->part_type == RANGE_PARTITION ||
 | 
						|
            tab_part_info->part_type == LIST_PARTITION))
 | 
						|
      {
 | 
						|
        my_error(ER_ONLY_ON_RANGE_LIST_PARTITION, MYF(0), "DROP");
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      if (no_parts_dropped >= tab_part_info->no_parts)
 | 
						|
      {
 | 
						|
        my_error(ER_DROP_LAST_PARTITION, MYF(0));
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      do
 | 
						|
      {
 | 
						|
        partition_element *part_elem= part_it++;
 | 
						|
        if (is_name_in_list(part_elem->partition_name,
 | 
						|
                            alter_info->partition_names))
 | 
						|
        {
 | 
						|
          /*
 | 
						|
            Set state to indicate that the partition is to be dropped.
 | 
						|
          */
 | 
						|
          no_parts_found++;
 | 
						|
          part_elem->part_state= PART_TO_BE_DROPPED;
 | 
						|
        }
 | 
						|
      } while (++part_count < tab_part_info->no_parts);
 | 
						|
      if (no_parts_found != no_parts_dropped)
 | 
						|
      {
 | 
						|
        my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "DROP");
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      if (table->file->is_fk_defined_on_table_or_index(MAX_KEY))
 | 
						|
      {
 | 
						|
        my_error(ER_ROW_IS_REFERENCED, MYF(0));
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      tab_part_info->no_parts-= no_parts_dropped;
 | 
						|
    }
 | 
						|
    else if (alter_info->flags & ALTER_REBUILD_PARTITION)
 | 
						|
    {
 | 
						|
      uint no_parts_found;
 | 
						|
      uint no_parts_opt= alter_info->partition_names.elements;
 | 
						|
      no_parts_found= set_part_state(alter_info, tab_part_info, PART_CHANGED);
 | 
						|
      if (no_parts_found != no_parts_opt &&
 | 
						|
          (!(alter_info->flags & ALTER_ALL_PARTITION)))
 | 
						|
      {
 | 
						|
        my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "REBUILD");
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      if (!(*fast_alter_partition))
 | 
						|
      {
 | 
						|
        table->file->print_error(HA_ERR_WRONG_COMMAND, MYF(0));
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else if (alter_info->flags & ALTER_COALESCE_PARTITION)
 | 
						|
    {
 | 
						|
      uint no_parts_coalesced= alter_info->no_parts;
 | 
						|
      uint no_parts_remain= tab_part_info->no_parts - no_parts_coalesced;
 | 
						|
      List_iterator<partition_element> part_it(tab_part_info->partitions);
 | 
						|
      if (tab_part_info->part_type != HASH_PARTITION)
 | 
						|
      {
 | 
						|
        my_error(ER_COALESCE_ONLY_ON_HASH_PARTITION, MYF(0));
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      if (no_parts_coalesced == 0)
 | 
						|
      {
 | 
						|
        my_error(ER_COALESCE_PARTITION_NO_PARTITION, MYF(0));
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      if (no_parts_coalesced >= tab_part_info->no_parts)
 | 
						|
      {
 | 
						|
        my_error(ER_DROP_LAST_PARTITION, MYF(0));
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
/*
 | 
						|
Online handling:
 | 
						|
COALESCE PARTITION:
 | 
						|
-------------------
 | 
						|
The figure below shows the manner in which partitions are handled when
 | 
						|
performing an on-line coalesce partition and which states they go through
 | 
						|
at start, after adding and copying partitions and finally after dropping
 | 
						|
the partitions to drop. The figure shows an example using four partitions
 | 
						|
to start with, using linear hash and coalescing one partition (always the
 | 
						|
last partition).
 | 
						|
 | 
						|
Using linear hash then all remaining partitions will have a new reorganised
 | 
						|
part.
 | 
						|
 | 
						|
Existing partitions                     Coalesced partition 
 | 
						|
------       ------              ------   |      ------
 | 
						|
|    |       |    |              |    |   |      |    |
 | 
						|
| p0 |       | p1 |              | p2 |   |      | p3 |
 | 
						|
------       ------              ------   |      ------
 | 
						|
PART_NORMAL  PART_CHANGED        PART_NORMAL     PART_REORGED_DROPPED
 | 
						|
PART_NORMAL  PART_IS_CHANGED     PART_NORMAL     PART_TO_BE_DROPPED
 | 
						|
PART_NORMAL  PART_NORMAL         PART_NORMAL     PART_IS_DROPPED
 | 
						|
 | 
						|
Reorganised existing partitions
 | 
						|
            ------
 | 
						|
            |    |
 | 
						|
            | p1'|
 | 
						|
            ------
 | 
						|
 | 
						|
p0 - p3 is in the partitions list.
 | 
						|
The p1' partition will actually not be in any list it is deduced from the
 | 
						|
state of p1.
 | 
						|
*/
 | 
						|
      {
 | 
						|
        uint part_count= 0, start_part= 1, start_sec_part= 1;
 | 
						|
        uint end_part= 0, end_sec_part= 0;
 | 
						|
        bool all_parts= TRUE;
 | 
						|
        if (*fast_alter_partition &&
 | 
						|
            tab_part_info->linear_hash_ind)
 | 
						|
        {
 | 
						|
          uint upper_2n= tab_part_info->linear_hash_mask + 1;
 | 
						|
          uint lower_2n= upper_2n >> 1;
 | 
						|
          all_parts= FALSE;
 | 
						|
          if (no_parts_coalesced >= lower_2n)
 | 
						|
          {
 | 
						|
            all_parts= TRUE;
 | 
						|
          }
 | 
						|
          else if (no_parts_remain >= lower_2n)
 | 
						|
          {
 | 
						|
            end_part= tab_part_info->no_parts - (lower_2n + 1);
 | 
						|
            start_part= no_parts_remain - lower_2n;
 | 
						|
          }
 | 
						|
          else
 | 
						|
          {
 | 
						|
            start_part= 0;
 | 
						|
            end_part= tab_part_info->no_parts - (lower_2n + 1);
 | 
						|
            end_sec_part= (lower_2n >> 1) - 1;
 | 
						|
            start_sec_part= end_sec_part - (lower_2n - (no_parts_remain + 1));
 | 
						|
          }
 | 
						|
        }
 | 
						|
        do
 | 
						|
        {
 | 
						|
          partition_element *p_elem= part_it++;
 | 
						|
          if (*fast_alter_partition &&
 | 
						|
              (all_parts ||
 | 
						|
              (part_count >= start_part && part_count <= end_part) ||
 | 
						|
              (part_count >= start_sec_part && part_count <= end_sec_part)))
 | 
						|
            p_elem->part_state= PART_CHANGED;
 | 
						|
          if (++part_count > no_parts_remain)
 | 
						|
          {
 | 
						|
            if (*fast_alter_partition)
 | 
						|
              p_elem->part_state= PART_REORGED_DROPPED;
 | 
						|
            else
 | 
						|
              part_it.remove();
 | 
						|
          }
 | 
						|
        } while (part_count < tab_part_info->no_parts);
 | 
						|
        tab_part_info->no_parts= no_parts_remain;
 | 
						|
      }
 | 
						|
      if (!(alter_info->flags & ALTER_TABLE_REORG))
 | 
						|
      {
 | 
						|
        tab_part_info->use_default_no_partitions= FALSE;
 | 
						|
        tab_part_info->is_auto_partitioned= FALSE;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else if (alter_info->flags & ALTER_REORGANIZE_PARTITION)
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        Reorganise partitions takes a number of partitions that are next
 | 
						|
        to each other (at least for RANGE PARTITIONS) and then uses those
 | 
						|
        to create a set of new partitions. So data is copied from those
 | 
						|
        partitions into the new set of partitions. Those new partitions
 | 
						|
        can have more values in the LIST value specifications or less both
 | 
						|
        are allowed. The ranges can be different but since they are 
 | 
						|
        changing a set of consecutive partitions they must cover the same
 | 
						|
        range as those changed from.
 | 
						|
        This command can be used on RANGE and LIST partitions.
 | 
						|
      */
 | 
						|
      uint no_parts_reorged= alter_info->partition_names.elements;
 | 
						|
      uint no_parts_new= thd->work_part_info->partitions.elements;
 | 
						|
      partition_info *alt_part_info= thd->work_part_info;
 | 
						|
      uint check_total_partitions;
 | 
						|
 | 
						|
      tab_part_info->is_auto_partitioned= FALSE;
 | 
						|
      if (no_parts_reorged > tab_part_info->no_parts)
 | 
						|
      {
 | 
						|
        my_error(ER_REORG_PARTITION_NOT_EXIST, MYF(0));
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      if (!(tab_part_info->part_type == RANGE_PARTITION ||
 | 
						|
            tab_part_info->part_type == LIST_PARTITION) &&
 | 
						|
           (no_parts_new != no_parts_reorged))
 | 
						|
      {
 | 
						|
        my_error(ER_REORG_HASH_ONLY_ON_SAME_NO, MYF(0));
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      if (tab_part_info->is_sub_partitioned() &&
 | 
						|
          alt_part_info->no_subparts &&
 | 
						|
          alt_part_info->no_subparts != tab_part_info->no_subparts)
 | 
						|
      {
 | 
						|
        my_error(ER_PARTITION_WRONG_NO_SUBPART_ERROR, MYF(0));
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      check_total_partitions= tab_part_info->no_parts + no_parts_new;
 | 
						|
      check_total_partitions-= no_parts_reorged;
 | 
						|
      if (check_total_partitions > MAX_PARTITIONS)
 | 
						|
      {
 | 
						|
        my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      alt_part_info->part_type= tab_part_info->part_type;
 | 
						|
      alt_part_info->subpart_type= tab_part_info->subpart_type;
 | 
						|
      alt_part_info->no_subparts= tab_part_info->no_subparts;
 | 
						|
      DBUG_ASSERT(!alt_part_info->use_default_partitions);
 | 
						|
      if (alt_part_info->set_up_defaults_for_partitioning(table->file,
 | 
						|
                                                          ULL(0), 
 | 
						|
                                                          0))
 | 
						|
      {
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
/*
 | 
						|
Online handling:
 | 
						|
REORGANIZE PARTITION:
 | 
						|
---------------------
 | 
						|
The figure exemplifies the handling of partitions, their state changes and
 | 
						|
how they are organised. It exemplifies four partitions where two of the
 | 
						|
partitions are reorganised (p1 and p2) into two new partitions (p4 and p5).
 | 
						|
The reason of this change could be to change range limits, change list
 | 
						|
values or for hash partitions simply reorganise the partition which could
 | 
						|
also involve moving them to new disks or new node groups (MySQL Cluster).
 | 
						|
 | 
						|
Existing partitions                                  
 | 
						|
------       ------        ------        ------
 | 
						|
|    |       |    |        |    |        |    |
 | 
						|
| p0 |       | p1 |        | p2 |        | p3 |
 | 
						|
------       ------        ------        ------
 | 
						|
PART_NORMAL  PART_TO_BE_REORGED          PART_NORMAL
 | 
						|
PART_NORMAL  PART_TO_BE_DROPPED          PART_NORMAL
 | 
						|
PART_NORMAL  PART_IS_DROPPED             PART_NORMAL
 | 
						|
 | 
						|
Reorganised new partitions (replacing p1 and p2)
 | 
						|
------      ------
 | 
						|
|    |      |    |
 | 
						|
| p4 |      | p5 |
 | 
						|
------      ------
 | 
						|
PART_TO_BE_ADDED
 | 
						|
PART_IS_ADDED
 | 
						|
PART_IS_ADDED
 | 
						|
 | 
						|
All unchanged partitions and the new partitions are in the partitions list
 | 
						|
in the order they will have when the change is completed. The reorganised
 | 
						|
partitions are placed in the temp_partitions list. PART_IS_ADDED is only a
 | 
						|
temporary state not written in the frm file. It is used to ensure we write
 | 
						|
the generated partition syntax in a correct manner.
 | 
						|
*/
 | 
						|
      {
 | 
						|
        List_iterator<partition_element> tab_it(tab_part_info->partitions);
 | 
						|
        uint part_count= 0;
 | 
						|
        bool found_first= FALSE;
 | 
						|
        bool found_last= FALSE;
 | 
						|
        bool is_last_partition_reorged;
 | 
						|
        uint drop_count= 0;
 | 
						|
        longlong tab_max_range= 0, alt_max_range= 0;
 | 
						|
        do
 | 
						|
        {
 | 
						|
          partition_element *part_elem= tab_it++;
 | 
						|
          is_last_partition_reorged= FALSE;
 | 
						|
          if (is_name_in_list(part_elem->partition_name,
 | 
						|
                              alter_info->partition_names))
 | 
						|
          {
 | 
						|
            is_last_partition_reorged= TRUE;
 | 
						|
            drop_count++;
 | 
						|
            tab_max_range= part_elem->range_value;
 | 
						|
            if (*fast_alter_partition &&
 | 
						|
                tab_part_info->temp_partitions.push_back(part_elem))
 | 
						|
            {
 | 
						|
              mem_alloc_error(1);
 | 
						|
              DBUG_RETURN(TRUE);
 | 
						|
            }
 | 
						|
            if (*fast_alter_partition)
 | 
						|
              part_elem->part_state= PART_TO_BE_REORGED;
 | 
						|
            if (!found_first)
 | 
						|
            {
 | 
						|
              uint alt_part_count= 0;
 | 
						|
              found_first= TRUE;
 | 
						|
              List_iterator<partition_element>
 | 
						|
                                 alt_it(alt_part_info->partitions);
 | 
						|
              do
 | 
						|
              {
 | 
						|
                partition_element *alt_part_elem= alt_it++;
 | 
						|
                alt_max_range= alt_part_elem->range_value;
 | 
						|
                if (*fast_alter_partition)
 | 
						|
                  alt_part_elem->part_state= PART_TO_BE_ADDED;
 | 
						|
                if (alt_part_count == 0)
 | 
						|
                  tab_it.replace(alt_part_elem);
 | 
						|
                else
 | 
						|
                  tab_it.after(alt_part_elem);
 | 
						|
              } while (++alt_part_count < no_parts_new);
 | 
						|
            }
 | 
						|
            else if (found_last)
 | 
						|
            {
 | 
						|
              my_error(ER_CONSECUTIVE_REORG_PARTITIONS, MYF(0));
 | 
						|
              DBUG_RETURN(TRUE);
 | 
						|
            }
 | 
						|
            else
 | 
						|
              tab_it.remove();
 | 
						|
          }
 | 
						|
          else
 | 
						|
          {
 | 
						|
            if (found_first)
 | 
						|
              found_last= TRUE;
 | 
						|
          }
 | 
						|
        } while (++part_count < tab_part_info->no_parts);
 | 
						|
        if (drop_count != no_parts_reorged)
 | 
						|
        {
 | 
						|
          my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "REORGANIZE");
 | 
						|
          DBUG_RETURN(TRUE);
 | 
						|
        }
 | 
						|
        if (tab_part_info->part_type == RANGE_PARTITION &&
 | 
						|
            ((is_last_partition_reorged &&
 | 
						|
               alt_max_range < tab_max_range) ||
 | 
						|
              (!is_last_partition_reorged &&
 | 
						|
               alt_max_range != tab_max_range)))
 | 
						|
        {
 | 
						|
          /*
 | 
						|
            For range partitioning the total resulting range before and
 | 
						|
            after the change must be the same except in one case. This is
 | 
						|
            when the last partition is reorganised, in this case it is
 | 
						|
            acceptable to increase the total range.
 | 
						|
            The reason is that it is not allowed to have "holes" in the
 | 
						|
            middle of the ranges and thus we should not allow to reorganise
 | 
						|
            to create "holes". Also we should not allow using REORGANIZE
 | 
						|
            to drop data.
 | 
						|
          */
 | 
						|
          my_error(ER_REORG_OUTSIDE_RANGE, MYF(0));
 | 
						|
          DBUG_RETURN(TRUE);
 | 
						|
        }
 | 
						|
        tab_part_info->no_parts= check_total_partitions;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      DBUG_ASSERT(FALSE);
 | 
						|
    }
 | 
						|
    *partition_changed= TRUE;
 | 
						|
    thd->work_part_info= tab_part_info;
 | 
						|
    if (alter_info->flags & ALTER_ADD_PARTITION ||
 | 
						|
        alter_info->flags & ALTER_REORGANIZE_PARTITION)
 | 
						|
    {
 | 
						|
      if (tab_part_info->use_default_subpartitions &&
 | 
						|
          !alt_part_info->use_default_subpartitions)
 | 
						|
      {
 | 
						|
        tab_part_info->use_default_subpartitions= FALSE;
 | 
						|
        tab_part_info->use_default_no_subpartitions= FALSE;
 | 
						|
      }
 | 
						|
      if (tab_part_info->check_partition_info(thd, (handlerton**)NULL,
 | 
						|
                                              table->file, ULL(0), FALSE))
 | 
						|
      {
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    /*
 | 
						|
     When thd->lex->part_info has a reference to a partition_info the
 | 
						|
     ALTER TABLE contained a definition of a partitioning.
 | 
						|
 | 
						|
     Case I:
 | 
						|
       If there was a partition before and there is a new one defined.
 | 
						|
       We use the new partitioning. The new partitioning is already
 | 
						|
       defined in the correct variable so no work is needed to
 | 
						|
       accomplish this.
 | 
						|
       We do however need to update partition_changed to ensure that not
 | 
						|
       only the frm file is changed in the ALTER TABLE command.
 | 
						|
 | 
						|
     Case IIa:
 | 
						|
       There was a partitioning before and there is no new one defined.
 | 
						|
       Also the user has not specified to remove partitioning explicitly.
 | 
						|
 | 
						|
       We use the old partitioning also for the new table. We do this
 | 
						|
       by assigning the partition_info from the table loaded in
 | 
						|
       open_table to the partition_info struct used by mysql_create_table
 | 
						|
       later in this method.
 | 
						|
 | 
						|
     Case IIb:
 | 
						|
       There was a partitioning before and there is no new one defined.
 | 
						|
       The user has specified explicitly to remove partitioning
 | 
						|
 | 
						|
       Since the user has specified explicitly to remove partitioning
 | 
						|
       we override the old partitioning info and create a new table using
 | 
						|
       the specified engine.
 | 
						|
       In this case the partition also is changed.
 | 
						|
 | 
						|
     Case III:
 | 
						|
       There was no partitioning before altering the table, there is
 | 
						|
       partitioning defined in the altered table. Use the new partitioning.
 | 
						|
       No work needed since the partitioning info is already in the
 | 
						|
       correct variable.
 | 
						|
 | 
						|
       In this case we discover one case where the new partitioning is using
 | 
						|
       the same partition function as the default (PARTITION BY KEY or
 | 
						|
       PARTITION BY LINEAR KEY with the list of fields equal to the primary
 | 
						|
       key fields OR PARTITION BY [LINEAR] KEY() for tables without primary
 | 
						|
       key)
 | 
						|
       Also here partition has changed and thus a new table must be
 | 
						|
       created.
 | 
						|
 | 
						|
     Case IV:
 | 
						|
       There was no partitioning before and no partitioning defined.
 | 
						|
       Obviously no work needed.
 | 
						|
    */
 | 
						|
    if (table->part_info)
 | 
						|
    {
 | 
						|
      if (alter_info->flags & ALTER_REMOVE_PARTITIONING)
 | 
						|
      {
 | 
						|
        DBUG_PRINT("info", ("Remove partitioning"));
 | 
						|
        if (!(create_info->used_fields & HA_CREATE_USED_ENGINE))
 | 
						|
        {
 | 
						|
          DBUG_PRINT("info", ("No explicit engine used"));
 | 
						|
          create_info->db_type= table->part_info->default_engine_type;
 | 
						|
        }
 | 
						|
        DBUG_PRINT("info", ("New engine type: %s",
 | 
						|
                   ha_resolve_storage_engine_name(create_info->db_type)));
 | 
						|
        thd->work_part_info= NULL;
 | 
						|
        *partition_changed= TRUE;
 | 
						|
      }
 | 
						|
      else if (!thd->work_part_info)
 | 
						|
      {
 | 
						|
        /*
 | 
						|
          Retain partitioning but possibly with a new storage engine
 | 
						|
          beneath.
 | 
						|
        */
 | 
						|
        thd->work_part_info= table->part_info;
 | 
						|
        if (create_info->used_fields & HA_CREATE_USED_ENGINE &&
 | 
						|
            create_info->db_type != table->part_info->default_engine_type)
 | 
						|
        {
 | 
						|
          /*
 | 
						|
            Make sure change of engine happens to all partitions.
 | 
						|
          */
 | 
						|
          DBUG_PRINT("info", ("partition changed"));
 | 
						|
          if (table->part_info->is_auto_partitioned)
 | 
						|
          {
 | 
						|
            /*
 | 
						|
              If the user originally didn't specify partitioning to be
 | 
						|
              used we can remove it now.
 | 
						|
            */
 | 
						|
            thd->work_part_info= NULL;
 | 
						|
          }
 | 
						|
          else
 | 
						|
          {
 | 
						|
            /*
 | 
						|
              Ensure that all partitions have the proper engine set-up
 | 
						|
            */
 | 
						|
            set_engine_all_partitions(thd->work_part_info,
 | 
						|
                                      create_info->db_type);
 | 
						|
          }
 | 
						|
          *partition_changed= TRUE;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (thd->work_part_info)
 | 
						|
    {
 | 
						|
      partition_info *part_info= thd->work_part_info;
 | 
						|
      bool is_native_partitioned= FALSE;
 | 
						|
      /*
 | 
						|
        Need to cater for engine types that can handle partition without
 | 
						|
        using the partition handler.
 | 
						|
      */
 | 
						|
      if (thd->work_part_info != table->part_info)
 | 
						|
      {
 | 
						|
        DBUG_PRINT("info", ("partition changed"));
 | 
						|
        *partition_changed= TRUE;
 | 
						|
      }
 | 
						|
      /*
 | 
						|
        Set up partition default_engine_type either from the create_info
 | 
						|
        or from the previus table
 | 
						|
      */
 | 
						|
      if (create_info->used_fields & HA_CREATE_USED_ENGINE)
 | 
						|
        part_info->default_engine_type= create_info->db_type;
 | 
						|
      else
 | 
						|
      {
 | 
						|
        if (table->part_info)
 | 
						|
          part_info->default_engine_type= table->part_info->default_engine_type;
 | 
						|
        else
 | 
						|
          part_info->default_engine_type= create_info->db_type;
 | 
						|
      }
 | 
						|
      DBUG_ASSERT(part_info->default_engine_type &&
 | 
						|
                  part_info->default_engine_type != partition_hton);
 | 
						|
      if (check_native_partitioned(create_info, &is_native_partitioned,
 | 
						|
                                   part_info, thd))
 | 
						|
      {
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      if (!is_native_partitioned)
 | 
						|
      {
 | 
						|
        DBUG_ASSERT(create_info->db_type);
 | 
						|
        create_info->db_type= partition_hton;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Change partitions, used to implement ALTER TABLE ADD/REORGANIZE/COALESCE
 | 
						|
  partitions. This method is used to implement both single-phase and multi-
 | 
						|
  phase implementations of ADD/REORGANIZE/COALESCE partitions.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    mysql_change_partitions()
 | 
						|
    lpt                        Struct containing parameters
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                          Failure
 | 
						|
    FALSE                         Success
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Request handler to add partitions as set in states of the partition
 | 
						|
 | 
						|
    Elements of the lpt parameters used:
 | 
						|
    create_info                Create information used to create partitions
 | 
						|
    db                         Database name
 | 
						|
    table_name                 Table name
 | 
						|
    copied                     Output parameter where number of copied
 | 
						|
                               records are added
 | 
						|
    deleted                    Output parameter where number of deleted
 | 
						|
                               records are added
 | 
						|
*/
 | 
						|
 | 
						|
static bool mysql_change_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
 | 
						|
{
 | 
						|
  char path[FN_REFLEN+1];
 | 
						|
  int error;
 | 
						|
  handler *file= lpt->table->file;
 | 
						|
  DBUG_ENTER("mysql_change_partitions");
 | 
						|
 | 
						|
  build_table_filename(path, sizeof(path) - 1, lpt->db, lpt->table_name, "", 0);
 | 
						|
  if ((error= file->ha_change_partitions(lpt->create_info, path, &lpt->copied,
 | 
						|
                                         &lpt->deleted, lpt->pack_frm_data,
 | 
						|
                                         lpt->pack_frm_len)))
 | 
						|
  {
 | 
						|
    if (error != ER_OUTOFMEMORY)
 | 
						|
      file->print_error(error, MYF(0));
 | 
						|
    else
 | 
						|
      lpt->thd->fatal_error();
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
  }
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Rename partitions in an ALTER TABLE of partitions
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    mysql_rename_partitions()
 | 
						|
    lpt                        Struct containing parameters
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                          Failure
 | 
						|
    FALSE                         Success
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Request handler to rename partitions as set in states of the partition
 | 
						|
 | 
						|
    Parameters used:
 | 
						|
    db                         Database name
 | 
						|
    table_name                 Table name
 | 
						|
*/
 | 
						|
 | 
						|
static bool mysql_rename_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
 | 
						|
{
 | 
						|
  char path[FN_REFLEN+1];
 | 
						|
  int error;
 | 
						|
  DBUG_ENTER("mysql_rename_partitions");
 | 
						|
 | 
						|
  build_table_filename(path, sizeof(path) - 1, lpt->db, lpt->table_name, "", 0);
 | 
						|
  if ((error= lpt->table->file->ha_rename_partitions(path)))
 | 
						|
  {
 | 
						|
    if (error != 1)
 | 
						|
      lpt->table->file->print_error(error, MYF(0));
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
  }
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Drop partitions in an ALTER TABLE of partitions
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    mysql_drop_partitions()
 | 
						|
    lpt                        Struct containing parameters
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                          Failure
 | 
						|
    FALSE                         Success
 | 
						|
  DESCRIPTION
 | 
						|
    Drop the partitions marked with PART_TO_BE_DROPPED state and remove
 | 
						|
    those partitions from the list.
 | 
						|
 | 
						|
    Parameters used:
 | 
						|
    table                       Table object
 | 
						|
    db                          Database name
 | 
						|
    table_name                  Table name
 | 
						|
*/
 | 
						|
 | 
						|
static bool mysql_drop_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
 | 
						|
{
 | 
						|
  char path[FN_REFLEN+1];
 | 
						|
  partition_info *part_info= lpt->table->part_info;
 | 
						|
  List_iterator<partition_element> part_it(part_info->partitions);
 | 
						|
  uint i= 0;
 | 
						|
  uint remove_count= 0;
 | 
						|
  int error;
 | 
						|
  DBUG_ENTER("mysql_drop_partitions");
 | 
						|
 | 
						|
  build_table_filename(path, sizeof(path) - 1, lpt->db, lpt->table_name, "", 0);
 | 
						|
  if ((error= lpt->table->file->ha_drop_partitions(path)))
 | 
						|
  {
 | 
						|
    lpt->table->file->print_error(error, MYF(0));
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
  }
 | 
						|
  do
 | 
						|
  {
 | 
						|
    partition_element *part_elem= part_it++;
 | 
						|
    if (part_elem->part_state == PART_IS_DROPPED)
 | 
						|
    {
 | 
						|
      part_it.remove();
 | 
						|
      remove_count++;
 | 
						|
    }
 | 
						|
  } while (++i < part_info->no_parts);
 | 
						|
  part_info->no_parts-= remove_count;
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Insert log entry into list
 | 
						|
  SYNOPSIS
 | 
						|
    insert_part_info_log_entry_list()
 | 
						|
    log_entry
 | 
						|
  RETURN VALUES
 | 
						|
    NONE
 | 
						|
*/
 | 
						|
 | 
						|
static void insert_part_info_log_entry_list(partition_info *part_info,
 | 
						|
                                            DDL_LOG_MEMORY_ENTRY *log_entry)
 | 
						|
{
 | 
						|
  log_entry->next_active_log_entry= part_info->first_log_entry;
 | 
						|
  part_info->first_log_entry= log_entry;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Release all log entries for this partition info struct
 | 
						|
  SYNOPSIS
 | 
						|
    release_part_info_log_entries()
 | 
						|
    first_log_entry                 First log entry in list to release
 | 
						|
  RETURN VALUES
 | 
						|
    NONE
 | 
						|
*/
 | 
						|
 | 
						|
static void release_part_info_log_entries(DDL_LOG_MEMORY_ENTRY *log_entry)
 | 
						|
{
 | 
						|
  DBUG_ENTER("release_part_info_log_entries");
 | 
						|
 | 
						|
  while (log_entry)
 | 
						|
  {
 | 
						|
    release_ddl_log_memory_entry(log_entry);
 | 
						|
    log_entry= log_entry->next_active_log_entry;
 | 
						|
  }
 | 
						|
  DBUG_VOID_RETURN;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Log an delete/rename frm file
 | 
						|
  SYNOPSIS
 | 
						|
    write_log_replace_delete_frm()
 | 
						|
    lpt                            Struct for parameters
 | 
						|
    next_entry                     Next reference to use in log record
 | 
						|
    from_path                      Name to rename from
 | 
						|
    to_path                        Name to rename to
 | 
						|
    replace_flag                   TRUE if replace, else delete
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                           Error
 | 
						|
    FALSE                          Success
 | 
						|
  DESCRIPTION
 | 
						|
    Support routine that writes a replace or delete of an frm file into the
 | 
						|
    ddl log. It also inserts an entry that keeps track of used space into
 | 
						|
    the partition info object
 | 
						|
*/
 | 
						|
 | 
						|
static bool write_log_replace_delete_frm(ALTER_PARTITION_PARAM_TYPE *lpt,
 | 
						|
                                         uint next_entry,
 | 
						|
                                         const char *from_path,
 | 
						|
                                         const char *to_path,
 | 
						|
                                         bool replace_flag)
 | 
						|
{
 | 
						|
  DDL_LOG_ENTRY ddl_log_entry;
 | 
						|
  DDL_LOG_MEMORY_ENTRY *log_entry;
 | 
						|
  DBUG_ENTER("write_log_replace_delete_frm");
 | 
						|
 | 
						|
  if (replace_flag)
 | 
						|
    ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION;
 | 
						|
  else
 | 
						|
    ddl_log_entry.action_type= DDL_LOG_DELETE_ACTION;
 | 
						|
  ddl_log_entry.next_entry= next_entry;
 | 
						|
  ddl_log_entry.handler_name= reg_ext;
 | 
						|
  ddl_log_entry.name= to_path;
 | 
						|
  if (replace_flag)
 | 
						|
    ddl_log_entry.from_name= from_path;
 | 
						|
  if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
 | 
						|
  {
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
  }
 | 
						|
  insert_part_info_log_entry_list(lpt->part_info, log_entry);
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Log final partition changes in change partition
 | 
						|
  SYNOPSIS
 | 
						|
    write_log_changed_partitions()
 | 
						|
    lpt                      Struct containing parameters
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                     Error
 | 
						|
    FALSE                    Success
 | 
						|
  DESCRIPTION
 | 
						|
    This code is used to perform safe ADD PARTITION for HASH partitions
 | 
						|
    and COALESCE for HASH partitions and REORGANIZE for any type of
 | 
						|
    partitions.
 | 
						|
    We prepare entries for all partitions except the reorganised partitions
 | 
						|
    in REORGANIZE partition, those are handled by
 | 
						|
    write_log_dropped_partitions. For those partitions that are replaced
 | 
						|
    special care is needed to ensure that this is performed correctly and
 | 
						|
    this requires a two-phased approach with this log as a helper for this.
 | 
						|
 | 
						|
    This code is closely intertwined with the code in rename_partitions in
 | 
						|
    the partition handler.
 | 
						|
*/
 | 
						|
 | 
						|
static bool write_log_changed_partitions(ALTER_PARTITION_PARAM_TYPE *lpt,
 | 
						|
                                         uint *next_entry, const char *path)
 | 
						|
{
 | 
						|
  DDL_LOG_ENTRY ddl_log_entry;
 | 
						|
  partition_info *part_info= lpt->part_info;
 | 
						|
  DDL_LOG_MEMORY_ENTRY *log_entry;
 | 
						|
  char tmp_path[FN_REFLEN];
 | 
						|
  char normal_path[FN_REFLEN];
 | 
						|
  List_iterator<partition_element> part_it(part_info->partitions);
 | 
						|
  uint temp_partitions= part_info->temp_partitions.elements;
 | 
						|
  uint no_elements= part_info->partitions.elements;
 | 
						|
  uint i= 0;
 | 
						|
  DBUG_ENTER("write_log_changed_partitions");
 | 
						|
 | 
						|
  do
 | 
						|
  {
 | 
						|
    partition_element *part_elem= part_it++;
 | 
						|
    if (part_elem->part_state == PART_IS_CHANGED ||
 | 
						|
        (part_elem->part_state == PART_IS_ADDED && temp_partitions))
 | 
						|
    {
 | 
						|
      if (part_info->is_sub_partitioned())
 | 
						|
      {
 | 
						|
        List_iterator<partition_element> sub_it(part_elem->subpartitions);
 | 
						|
        uint no_subparts= part_info->no_subparts;
 | 
						|
        uint j= 0;
 | 
						|
        do
 | 
						|
        {
 | 
						|
          partition_element *sub_elem= sub_it++;
 | 
						|
          ddl_log_entry.next_entry= *next_entry;
 | 
						|
          ddl_log_entry.handler_name=
 | 
						|
               ha_resolve_storage_engine_name(sub_elem->engine_type);
 | 
						|
          create_subpartition_name(tmp_path, path,
 | 
						|
                                   part_elem->partition_name,
 | 
						|
                                   sub_elem->partition_name,
 | 
						|
                                   TEMP_PART_NAME);
 | 
						|
          create_subpartition_name(normal_path, path,
 | 
						|
                                   part_elem->partition_name,
 | 
						|
                                   sub_elem->partition_name,
 | 
						|
                                   NORMAL_PART_NAME);
 | 
						|
          ddl_log_entry.name= normal_path;
 | 
						|
          ddl_log_entry.from_name= tmp_path;
 | 
						|
          if (part_elem->part_state == PART_IS_CHANGED)
 | 
						|
            ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION;
 | 
						|
          else
 | 
						|
            ddl_log_entry.action_type= DDL_LOG_RENAME_ACTION;
 | 
						|
          if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
 | 
						|
          {
 | 
						|
            DBUG_RETURN(TRUE);
 | 
						|
          }
 | 
						|
          *next_entry= log_entry->entry_pos;
 | 
						|
          sub_elem->log_entry= log_entry;
 | 
						|
          insert_part_info_log_entry_list(part_info, log_entry);
 | 
						|
        } while (++j < no_subparts);
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        ddl_log_entry.next_entry= *next_entry;
 | 
						|
        ddl_log_entry.handler_name=
 | 
						|
               ha_resolve_storage_engine_name(part_elem->engine_type);
 | 
						|
        create_partition_name(tmp_path, path,
 | 
						|
                              part_elem->partition_name,
 | 
						|
                              TEMP_PART_NAME, TRUE);
 | 
						|
        create_partition_name(normal_path, path,
 | 
						|
                              part_elem->partition_name,
 | 
						|
                              NORMAL_PART_NAME, TRUE);
 | 
						|
        ddl_log_entry.name= normal_path;
 | 
						|
        ddl_log_entry.from_name= tmp_path;
 | 
						|
        if (part_elem->part_state == PART_IS_CHANGED)
 | 
						|
          ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION;
 | 
						|
        else
 | 
						|
          ddl_log_entry.action_type= DDL_LOG_RENAME_ACTION;
 | 
						|
        if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
 | 
						|
        {
 | 
						|
          DBUG_RETURN(TRUE);
 | 
						|
        }
 | 
						|
        *next_entry= log_entry->entry_pos;
 | 
						|
        part_elem->log_entry= log_entry;
 | 
						|
        insert_part_info_log_entry_list(part_info, log_entry);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while (++i < no_elements);
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Log dropped partitions
 | 
						|
  SYNOPSIS
 | 
						|
    write_log_dropped_partitions()
 | 
						|
    lpt                      Struct containing parameters
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                     Error
 | 
						|
    FALSE                    Success
 | 
						|
*/
 | 
						|
 | 
						|
static bool write_log_dropped_partitions(ALTER_PARTITION_PARAM_TYPE *lpt,
 | 
						|
                                         uint *next_entry,
 | 
						|
                                         const char *path,
 | 
						|
                                         bool temp_list)
 | 
						|
{
 | 
						|
  DDL_LOG_ENTRY ddl_log_entry;
 | 
						|
  partition_info *part_info= lpt->part_info;
 | 
						|
  DDL_LOG_MEMORY_ENTRY *log_entry;
 | 
						|
  char tmp_path[FN_LEN];
 | 
						|
  List_iterator<partition_element> part_it(part_info->partitions);
 | 
						|
  List_iterator<partition_element> temp_it(part_info->temp_partitions);
 | 
						|
  uint no_temp_partitions= part_info->temp_partitions.elements;
 | 
						|
  uint no_elements= part_info->partitions.elements;
 | 
						|
  DBUG_ENTER("write_log_dropped_partitions");
 | 
						|
 | 
						|
  ddl_log_entry.action_type= DDL_LOG_DELETE_ACTION;
 | 
						|
  if (temp_list)
 | 
						|
    no_elements= no_temp_partitions;
 | 
						|
  while (no_elements--)
 | 
						|
  {
 | 
						|
    partition_element *part_elem;
 | 
						|
    if (temp_list)
 | 
						|
      part_elem= temp_it++;
 | 
						|
    else
 | 
						|
      part_elem= part_it++;
 | 
						|
    if (part_elem->part_state == PART_TO_BE_DROPPED ||
 | 
						|
        part_elem->part_state == PART_TO_BE_ADDED ||
 | 
						|
        part_elem->part_state == PART_CHANGED)
 | 
						|
    {
 | 
						|
      uint name_variant;
 | 
						|
      if (part_elem->part_state == PART_CHANGED ||
 | 
						|
          (part_elem->part_state == PART_TO_BE_ADDED &&
 | 
						|
           no_temp_partitions))
 | 
						|
        name_variant= TEMP_PART_NAME;
 | 
						|
      else
 | 
						|
        name_variant= NORMAL_PART_NAME;
 | 
						|
      if (part_info->is_sub_partitioned())
 | 
						|
      {
 | 
						|
        List_iterator<partition_element> sub_it(part_elem->subpartitions);
 | 
						|
        uint no_subparts= part_info->no_subparts;
 | 
						|
        uint j= 0;
 | 
						|
        do
 | 
						|
        {
 | 
						|
          partition_element *sub_elem= sub_it++;
 | 
						|
          ddl_log_entry.next_entry= *next_entry;
 | 
						|
          ddl_log_entry.handler_name=
 | 
						|
               ha_resolve_storage_engine_name(sub_elem->engine_type);
 | 
						|
          create_subpartition_name(tmp_path, path,
 | 
						|
                                   part_elem->partition_name,
 | 
						|
                                   sub_elem->partition_name,
 | 
						|
                                   name_variant);
 | 
						|
          ddl_log_entry.name= tmp_path;
 | 
						|
          if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
 | 
						|
          {
 | 
						|
            DBUG_RETURN(TRUE);
 | 
						|
          }
 | 
						|
          *next_entry= log_entry->entry_pos;
 | 
						|
          sub_elem->log_entry= log_entry;
 | 
						|
          insert_part_info_log_entry_list(part_info, log_entry);
 | 
						|
        } while (++j < no_subparts);
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        ddl_log_entry.next_entry= *next_entry;
 | 
						|
        ddl_log_entry.handler_name=
 | 
						|
               ha_resolve_storage_engine_name(part_elem->engine_type);
 | 
						|
        create_partition_name(tmp_path, path,
 | 
						|
                              part_elem->partition_name,
 | 
						|
                              name_variant, TRUE);
 | 
						|
        ddl_log_entry.name= tmp_path;
 | 
						|
        if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
 | 
						|
        {
 | 
						|
          DBUG_RETURN(TRUE);
 | 
						|
        }
 | 
						|
        *next_entry= log_entry->entry_pos;
 | 
						|
        part_elem->log_entry= log_entry;
 | 
						|
        insert_part_info_log_entry_list(part_info, log_entry);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Set execute log entry in ddl log for this partitioned table
 | 
						|
  SYNOPSIS
 | 
						|
    set_part_info_exec_log_entry()
 | 
						|
    part_info                      Partition info object
 | 
						|
    exec_log_entry                 Log entry
 | 
						|
  RETURN VALUES
 | 
						|
    NONE
 | 
						|
*/
 | 
						|
 | 
						|
static void set_part_info_exec_log_entry(partition_info *part_info,
 | 
						|
                                         DDL_LOG_MEMORY_ENTRY *exec_log_entry)
 | 
						|
{
 | 
						|
  part_info->exec_log_entry= exec_log_entry;
 | 
						|
  exec_log_entry->next_active_log_entry= NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Write the log entry to ensure that the shadow frm file is removed at
 | 
						|
  crash.
 | 
						|
  SYNOPSIS
 | 
						|
    write_log_drop_shadow_frm()
 | 
						|
    lpt                      Struct containing parameters
 | 
						|
    install_frm              Should we log action to install shadow frm or should
 | 
						|
                             the action be to remove the shadow frm file.
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                     Error
 | 
						|
    FALSE                    Success
 | 
						|
  DESCRIPTION
 | 
						|
    Prepare an entry to the ddl log indicating a drop/install of the shadow frm
 | 
						|
    file and its corresponding handler file.
 | 
						|
*/
 | 
						|
 | 
						|
static bool write_log_drop_shadow_frm(ALTER_PARTITION_PARAM_TYPE *lpt)
 | 
						|
{
 | 
						|
  partition_info *part_info= lpt->part_info;
 | 
						|
  DDL_LOG_MEMORY_ENTRY *log_entry;
 | 
						|
  DDL_LOG_MEMORY_ENTRY *exec_log_entry= NULL;
 | 
						|
  char shadow_path[FN_REFLEN + 1];
 | 
						|
  DBUG_ENTER("write_log_drop_shadow_frm");
 | 
						|
 | 
						|
  build_table_shadow_filename(shadow_path, sizeof(shadow_path) - 1, lpt);
 | 
						|
  pthread_mutex_lock(&LOCK_gdl);
 | 
						|
  if (write_log_replace_delete_frm(lpt, 0UL, NULL,
 | 
						|
                                  (const char*)shadow_path, FALSE))
 | 
						|
    goto error;
 | 
						|
  log_entry= part_info->first_log_entry;
 | 
						|
  if (write_execute_ddl_log_entry(log_entry->entry_pos,
 | 
						|
                                    FALSE, &exec_log_entry))
 | 
						|
    goto error;
 | 
						|
  pthread_mutex_unlock(&LOCK_gdl);
 | 
						|
  set_part_info_exec_log_entry(part_info, exec_log_entry);
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
 | 
						|
error:
 | 
						|
  release_part_info_log_entries(part_info->first_log_entry);
 | 
						|
  pthread_mutex_unlock(&LOCK_gdl);
 | 
						|
  part_info->first_log_entry= NULL;
 | 
						|
  my_error(ER_DDL_LOG_ERROR, MYF(0));
 | 
						|
  DBUG_RETURN(TRUE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Log renaming of shadow frm to real frm name and dropping of old frm
 | 
						|
  SYNOPSIS
 | 
						|
    write_log_rename_frm()
 | 
						|
    lpt                      Struct containing parameters
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                     Error
 | 
						|
    FALSE                    Success
 | 
						|
  DESCRIPTION
 | 
						|
    Prepare an entry to ensure that we complete the renaming of the frm
 | 
						|
    file if failure occurs in the middle of the rename process.
 | 
						|
*/
 | 
						|
 | 
						|
static bool write_log_rename_frm(ALTER_PARTITION_PARAM_TYPE *lpt)
 | 
						|
{
 | 
						|
  partition_info *part_info= lpt->part_info;
 | 
						|
  DDL_LOG_MEMORY_ENTRY *log_entry;
 | 
						|
  DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry;
 | 
						|
  char path[FN_REFLEN + 1];
 | 
						|
  char shadow_path[FN_REFLEN + 1];
 | 
						|
  DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry;
 | 
						|
  DBUG_ENTER("write_log_rename_frm");
 | 
						|
 | 
						|
  part_info->first_log_entry= NULL;
 | 
						|
  build_table_filename(path, sizeof(path) - 1, lpt->db,
 | 
						|
                       lpt->table_name, "", 0);
 | 
						|
  build_table_shadow_filename(shadow_path, sizeof(shadow_path) - 1, lpt);
 | 
						|
  pthread_mutex_lock(&LOCK_gdl);
 | 
						|
  if (write_log_replace_delete_frm(lpt, 0UL, shadow_path, path, TRUE))
 | 
						|
    goto error;
 | 
						|
  log_entry= part_info->first_log_entry;
 | 
						|
  part_info->frm_log_entry= log_entry;
 | 
						|
  if (write_execute_ddl_log_entry(log_entry->entry_pos,
 | 
						|
                                    FALSE, &exec_log_entry))
 | 
						|
    goto error;
 | 
						|
  release_part_info_log_entries(old_first_log_entry);
 | 
						|
  pthread_mutex_unlock(&LOCK_gdl);
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
 | 
						|
error:
 | 
						|
  release_part_info_log_entries(part_info->first_log_entry);
 | 
						|
  pthread_mutex_unlock(&LOCK_gdl);
 | 
						|
  part_info->first_log_entry= old_first_log_entry;
 | 
						|
  part_info->frm_log_entry= NULL;
 | 
						|
  my_error(ER_DDL_LOG_ERROR, MYF(0));
 | 
						|
  DBUG_RETURN(TRUE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Write the log entries to ensure that the drop partition command is completed
 | 
						|
  even in the presence of a crash.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    write_log_drop_partition()
 | 
						|
    lpt                      Struct containing parameters
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                     Error
 | 
						|
    FALSE                    Success
 | 
						|
  DESCRIPTION
 | 
						|
    Prepare entries to the ddl log indicating all partitions to drop and to
 | 
						|
    install the shadow frm file and remove the old frm file.
 | 
						|
*/
 | 
						|
 | 
						|
static bool write_log_drop_partition(ALTER_PARTITION_PARAM_TYPE *lpt)
 | 
						|
{
 | 
						|
  partition_info *part_info= lpt->part_info;
 | 
						|
  DDL_LOG_MEMORY_ENTRY *log_entry;
 | 
						|
  DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry;
 | 
						|
  char tmp_path[FN_REFLEN + 1];
 | 
						|
  char path[FN_REFLEN + 1];
 | 
						|
  uint next_entry= 0;
 | 
						|
  DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry;
 | 
						|
  DBUG_ENTER("write_log_drop_partition");
 | 
						|
 | 
						|
  part_info->first_log_entry= NULL;
 | 
						|
  build_table_filename(path, sizeof(path) - 1, lpt->db,
 | 
						|
                       lpt->table_name, "", 0);
 | 
						|
  build_table_filename(tmp_path, sizeof(tmp_path) - 1, lpt->db,
 | 
						|
                       lpt->table_name, "#", 0);
 | 
						|
  pthread_mutex_lock(&LOCK_gdl);
 | 
						|
  if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path,
 | 
						|
                                   FALSE))
 | 
						|
    goto error;
 | 
						|
  if (write_log_replace_delete_frm(lpt, next_entry, (const char*)tmp_path,
 | 
						|
                                  (const char*)path, TRUE))
 | 
						|
    goto error;
 | 
						|
  log_entry= part_info->first_log_entry;
 | 
						|
  part_info->frm_log_entry= log_entry;
 | 
						|
  if (write_execute_ddl_log_entry(log_entry->entry_pos,
 | 
						|
                                    FALSE, &exec_log_entry))
 | 
						|
    goto error;
 | 
						|
  release_part_info_log_entries(old_first_log_entry);
 | 
						|
  pthread_mutex_unlock(&LOCK_gdl);
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
 | 
						|
error:
 | 
						|
  release_part_info_log_entries(part_info->first_log_entry);
 | 
						|
  pthread_mutex_unlock(&LOCK_gdl);
 | 
						|
  part_info->first_log_entry= old_first_log_entry;
 | 
						|
  part_info->frm_log_entry= NULL;
 | 
						|
  my_error(ER_DDL_LOG_ERROR, MYF(0));
 | 
						|
  DBUG_RETURN(TRUE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Write the log entries to ensure that the add partition command is not
 | 
						|
  executed at all if a crash before it has completed
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    write_log_add_change_partition()
 | 
						|
    lpt                      Struct containing parameters
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                     Error
 | 
						|
    FALSE                    Success
 | 
						|
  DESCRIPTION
 | 
						|
    Prepare entries to the ddl log indicating all partitions to drop and to
 | 
						|
    remove the shadow frm file.
 | 
						|
    We always inject entries backwards in the list in the ddl log since we
 | 
						|
    don't know the entry position until we have written it.
 | 
						|
*/
 | 
						|
 | 
						|
static bool write_log_add_change_partition(ALTER_PARTITION_PARAM_TYPE *lpt)
 | 
						|
{
 | 
						|
  partition_info *part_info= lpt->part_info;
 | 
						|
  DDL_LOG_MEMORY_ENTRY *log_entry;
 | 
						|
  DDL_LOG_MEMORY_ENTRY *exec_log_entry= NULL;
 | 
						|
  char tmp_path[FN_REFLEN + 1];
 | 
						|
  char path[FN_REFLEN + 1];
 | 
						|
  uint next_entry= 0;
 | 
						|
  DBUG_ENTER("write_log_add_change_partition");
 | 
						|
 | 
						|
  build_table_filename(path, sizeof(path) - 1, lpt->db,
 | 
						|
                       lpt->table_name, "", 0);
 | 
						|
  build_table_filename(tmp_path, sizeof(tmp_path) - 1, lpt->db,
 | 
						|
                       lpt->table_name, "#", 0);
 | 
						|
  pthread_mutex_lock(&LOCK_gdl);
 | 
						|
  if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path,
 | 
						|
                                   FALSE))
 | 
						|
    goto error;
 | 
						|
  if (write_log_replace_delete_frm(lpt, next_entry, NULL, tmp_path,
 | 
						|
                                  FALSE))
 | 
						|
    goto error;
 | 
						|
  log_entry= part_info->first_log_entry;
 | 
						|
  if (write_execute_ddl_log_entry(log_entry->entry_pos,
 | 
						|
                                    FALSE, &exec_log_entry))
 | 
						|
    goto error;
 | 
						|
  pthread_mutex_unlock(&LOCK_gdl);
 | 
						|
  set_part_info_exec_log_entry(part_info, exec_log_entry);
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
 | 
						|
error:
 | 
						|
  release_part_info_log_entries(part_info->first_log_entry);
 | 
						|
  pthread_mutex_unlock(&LOCK_gdl);
 | 
						|
  part_info->first_log_entry= NULL;
 | 
						|
  my_error(ER_DDL_LOG_ERROR, MYF(0));
 | 
						|
  DBUG_RETURN(TRUE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Write description of how to complete the operation after first phase of
 | 
						|
  change partitions.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    write_log_final_change_partition()
 | 
						|
    lpt                      Struct containing parameters
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                     Error
 | 
						|
    FALSE                    Success
 | 
						|
  DESCRIPTION
 | 
						|
    We will write log entries that specify to remove all partitions reorganised,
 | 
						|
    to rename others to reflect the new naming scheme and to install the shadow
 | 
						|
    frm file.
 | 
						|
*/
 | 
						|
 | 
						|
static bool write_log_final_change_partition(ALTER_PARTITION_PARAM_TYPE *lpt)
 | 
						|
{
 | 
						|
  partition_info *part_info= lpt->part_info;
 | 
						|
  DDL_LOG_MEMORY_ENTRY *log_entry;
 | 
						|
  DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry;
 | 
						|
  char path[FN_REFLEN + 1];
 | 
						|
  char shadow_path[FN_REFLEN + 1];
 | 
						|
  DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry;
 | 
						|
  uint next_entry= 0;
 | 
						|
  DBUG_ENTER("write_log_final_change_partition");
 | 
						|
 | 
						|
  part_info->first_log_entry= NULL;
 | 
						|
  build_table_filename(path, sizeof(path) - 1, lpt->db,
 | 
						|
                       lpt->table_name, "", 0);
 | 
						|
  build_table_shadow_filename(shadow_path, sizeof(shadow_path) - 1, lpt);
 | 
						|
  pthread_mutex_lock(&LOCK_gdl);
 | 
						|
  if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path,
 | 
						|
                      lpt->alter_info->flags & ALTER_REORGANIZE_PARTITION))
 | 
						|
    goto error;
 | 
						|
  if (write_log_changed_partitions(lpt, &next_entry, (const char*)path))
 | 
						|
    goto error;
 | 
						|
  if (write_log_replace_delete_frm(lpt, 0UL, shadow_path, path, TRUE))
 | 
						|
    goto error;
 | 
						|
  log_entry= part_info->first_log_entry;
 | 
						|
  part_info->frm_log_entry= log_entry;
 | 
						|
  if (write_execute_ddl_log_entry(log_entry->entry_pos,
 | 
						|
                                    FALSE, &exec_log_entry))
 | 
						|
    goto error;
 | 
						|
  release_part_info_log_entries(old_first_log_entry);
 | 
						|
  pthread_mutex_unlock(&LOCK_gdl);
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
 | 
						|
error:
 | 
						|
  release_part_info_log_entries(part_info->first_log_entry);
 | 
						|
  pthread_mutex_unlock(&LOCK_gdl);
 | 
						|
  part_info->first_log_entry= old_first_log_entry;
 | 
						|
  part_info->frm_log_entry= NULL;
 | 
						|
  my_error(ER_DDL_LOG_ERROR, MYF(0));
 | 
						|
  DBUG_RETURN(TRUE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Remove entry from ddl log and release resources for others to use
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    write_log_completed()
 | 
						|
    lpt                      Struct containing parameters
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                     Error
 | 
						|
    FALSE                    Success
 | 
						|
*/
 | 
						|
 | 
						|
static void write_log_completed(ALTER_PARTITION_PARAM_TYPE *lpt,
 | 
						|
                                bool dont_crash)
 | 
						|
{
 | 
						|
  partition_info *part_info= lpt->part_info;
 | 
						|
  DDL_LOG_MEMORY_ENTRY *log_entry= part_info->exec_log_entry;
 | 
						|
  DBUG_ENTER("write_log_completed");
 | 
						|
 | 
						|
  DBUG_ASSERT(log_entry);
 | 
						|
  pthread_mutex_lock(&LOCK_gdl);
 | 
						|
  if (write_execute_ddl_log_entry(0UL, TRUE, &log_entry))
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      Failed to write, Bad...
 | 
						|
      We have completed the operation but have log records to REMOVE
 | 
						|
      stuff that shouldn't be removed. What clever things could one do
 | 
						|
      here? An error output was written to the error output by the
 | 
						|
      above method so we don't do anything here.
 | 
						|
    */
 | 
						|
    ;
 | 
						|
  }
 | 
						|
  release_part_info_log_entries(part_info->first_log_entry);
 | 
						|
  release_part_info_log_entries(part_info->exec_log_entry);
 | 
						|
  pthread_mutex_unlock(&LOCK_gdl);
 | 
						|
  part_info->exec_log_entry= NULL;
 | 
						|
  part_info->first_log_entry= NULL;
 | 
						|
  DBUG_VOID_RETURN;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
   Release all log entries
 | 
						|
   SYNOPSIS
 | 
						|
     release_log_entries()
 | 
						|
     part_info                  Partition info struct
 | 
						|
   RETURN VALUES
 | 
						|
     NONE
 | 
						|
*/
 | 
						|
 | 
						|
static void release_log_entries(partition_info *part_info)
 | 
						|
{
 | 
						|
  pthread_mutex_lock(&LOCK_gdl);
 | 
						|
  release_part_info_log_entries(part_info->first_log_entry);
 | 
						|
  release_part_info_log_entries(part_info->exec_log_entry);
 | 
						|
  pthread_mutex_unlock(&LOCK_gdl);
 | 
						|
  part_info->first_log_entry= NULL;
 | 
						|
  part_info->exec_log_entry= NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Final part of partition changes to handle things when under
 | 
						|
  LOCK TABLES.
 | 
						|
  SYNPOSIS
 | 
						|
    alter_partition_lock_handling()
 | 
						|
    lpt                        Struct carrying parameters
 | 
						|
  RETURN VALUES
 | 
						|
    NONE
 | 
						|
*/
 | 
						|
static void alter_partition_lock_handling(ALTER_PARTITION_PARAM_TYPE *lpt)
 | 
						|
{
 | 
						|
  int err;
 | 
						|
  if (lpt->thd->locked_tables)
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      When we have the table locked, it is necessary to reopen the table
 | 
						|
      since all table objects were closed and removed as part of the
 | 
						|
      ALTER TABLE of partitioning structure.
 | 
						|
    */
 | 
						|
    pthread_mutex_lock(&LOCK_open);
 | 
						|
    lpt->thd->in_lock_tables= 1;
 | 
						|
    err= reopen_tables(lpt->thd, 1, 1);
 | 
						|
    lpt->thd->in_lock_tables= 0;
 | 
						|
    if (err)
 | 
						|
    {
 | 
						|
      /*
 | 
						|
       Issue a warning since we weren't able to regain the lock again.
 | 
						|
       We also need to unlink table from thread's open list and from
 | 
						|
       table_cache
 | 
						|
     */
 | 
						|
      unlink_open_table(lpt->thd, lpt->table, FALSE);
 | 
						|
      sql_print_warning("We failed to reacquire LOCKs in ALTER TABLE");
 | 
						|
    }
 | 
						|
    pthread_mutex_unlock(&LOCK_open);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  Unlock and close table before renaming and dropping partitions
 | 
						|
  SYNOPSIS
 | 
						|
    alter_close_tables()
 | 
						|
    lpt                        Struct carrying parameters
 | 
						|
  RETURN VALUES
 | 
						|
    0
 | 
						|
*/
 | 
						|
 | 
						|
static int alter_close_tables(ALTER_PARTITION_PARAM_TYPE *lpt)
 | 
						|
{
 | 
						|
  THD *thd= lpt->thd;
 | 
						|
  const char *db= lpt->db;
 | 
						|
  const char *table_name= lpt->table_name;
 | 
						|
  DBUG_ENTER("alter_close_tables");
 | 
						|
  /*
 | 
						|
    We need to also unlock tables and close all handlers.
 | 
						|
    We set lock to zero to ensure we don't do this twice
 | 
						|
    and we set db_stat to zero to ensure we don't close twice.
 | 
						|
  */
 | 
						|
  pthread_mutex_lock(&LOCK_open);
 | 
						|
  close_data_files_and_morph_locks(thd, db, table_name);
 | 
						|
  pthread_mutex_unlock(&LOCK_open);
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Handle errors for ALTER TABLE for partitioning
 | 
						|
  SYNOPSIS
 | 
						|
    handle_alter_part_error()
 | 
						|
    lpt                        Struct carrying parameters
 | 
						|
    not_completed              Was request in complete phase when error occurred
 | 
						|
  RETURN VALUES
 | 
						|
    NONE
 | 
						|
*/
 | 
						|
 | 
						|
void handle_alter_part_error(ALTER_PARTITION_PARAM_TYPE *lpt,
 | 
						|
                             bool not_completed,
 | 
						|
                             bool drop_partition,
 | 
						|
                             bool frm_install)
 | 
						|
{
 | 
						|
  partition_info *part_info= lpt->part_info;
 | 
						|
  DBUG_ENTER("handle_alter_part_error");
 | 
						|
 | 
						|
  if (!part_info->first_log_entry &&
 | 
						|
      execute_ddl_log_entry(current_thd,
 | 
						|
                            part_info->first_log_entry->entry_pos))
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      We couldn't recover from error, most likely manual interaction
 | 
						|
      is required.
 | 
						|
    */
 | 
						|
    write_log_completed(lpt, FALSE);
 | 
						|
    release_log_entries(part_info);
 | 
						|
    if (not_completed)
 | 
						|
    {
 | 
						|
      if (drop_partition)
 | 
						|
      {
 | 
						|
        /* Table is still ok, but we left a shadow frm file behind. */
 | 
						|
        push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
 | 
						|
                            "%s %s",
 | 
						|
           "Operation was unsuccessful, table is still intact,",
 | 
						|
           "but it is possible that a shadow frm file was left behind");
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
 | 
						|
                            "%s %s %s %s",
 | 
						|
           "Operation was unsuccessful, table is still intact,",
 | 
						|
           "but it is possible that a shadow frm file was left behind.",
 | 
						|
           "It is also possible that temporary partitions are left behind,",
 | 
						|
           "these could be empty or more or less filled with records");
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      if (frm_install)
 | 
						|
      {
 | 
						|
        /*
 | 
						|
           Failed during install of shadow frm file, table isn't intact
 | 
						|
           and dropped partitions are still there
 | 
						|
        */
 | 
						|
        push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
 | 
						|
                            "%s %s %s",
 | 
						|
          "Failed during alter of partitions, table is no longer intact.",
 | 
						|
          "The frm file is in an unknown state, and a backup",
 | 
						|
          "is required.");
 | 
						|
      }
 | 
						|
      else if (drop_partition)
 | 
						|
      {
 | 
						|
        /*
 | 
						|
          Table is ok, we have switched to new table but left dropped
 | 
						|
          partitions still in their places. We remove the log records and
 | 
						|
          ask the user to perform the action manually. We remove the log
 | 
						|
          records and ask the user to perform the action manually.
 | 
						|
        */
 | 
						|
        push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
 | 
						|
                            "%s %s",
 | 
						|
              "Failed during drop of partitions, table is intact.",
 | 
						|
              "Manual drop of remaining partitions is required");
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        /*
 | 
						|
          We failed during renaming of partitions. The table is most
 | 
						|
          certainly in a very bad state so we give user warning and disable
 | 
						|
          the table by writing an ancient frm version into it.
 | 
						|
        */
 | 
						|
        push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
 | 
						|
                            "%s %s %s",
 | 
						|
           "Failed during renaming of partitions. We are now in a position",
 | 
						|
           "where table is not reusable",
 | 
						|
           "Table is disabled by writing ancient frm file version into it");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    release_log_entries(part_info);
 | 
						|
    if (not_completed)
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        We hit an error before things were completed but managed
 | 
						|
        to recover from the error. An error occurred and we have
 | 
						|
        restored things to original so no need for further action.
 | 
						|
      */
 | 
						|
      ;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        We hit an error after we had completed most of the operation
 | 
						|
        and were successful in a second attempt so the operation
 | 
						|
        actually is successful now. We need to issue a warning that
 | 
						|
        even though we reported an error the operation was successfully
 | 
						|
        completed.
 | 
						|
      */
 | 
						|
      push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,"%s %s",
 | 
						|
         "Operation was successfully completed by failure handling,",
 | 
						|
         "after failure of normal operation");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_VOID_RETURN;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Actually perform the change requested by ALTER TABLE of partitions
 | 
						|
  previously prepared.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    fast_alter_partition_table()
 | 
						|
    thd                           Thread object
 | 
						|
    table                         Table object
 | 
						|
    alter_info                    ALTER TABLE info
 | 
						|
    create_info                   Create info for CREATE TABLE
 | 
						|
    table_list                    List of the table involved
 | 
						|
    db                            Database name of new table
 | 
						|
    table_name                    Table name of new table
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    TRUE                          Error
 | 
						|
    FALSE                         Success
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Perform all ALTER TABLE operations for partitioned tables that can be
 | 
						|
    performed fast without a full copy of the original table.
 | 
						|
*/
 | 
						|
 | 
						|
uint fast_alter_partition_table(THD *thd, TABLE *table,
 | 
						|
                                Alter_info *alter_info,
 | 
						|
                                HA_CREATE_INFO *create_info,
 | 
						|
                                TABLE_LIST *table_list,
 | 
						|
                                char *db,
 | 
						|
                                const char *table_name,
 | 
						|
                                uint fast_alter_partition)
 | 
						|
{
 | 
						|
  /* Set-up struct used to write frm files */
 | 
						|
  partition_info *part_info= table->part_info;
 | 
						|
  ALTER_PARTITION_PARAM_TYPE lpt_obj;
 | 
						|
  ALTER_PARTITION_PARAM_TYPE *lpt= &lpt_obj;
 | 
						|
  bool written_bin_log= TRUE;
 | 
						|
  bool not_completed= TRUE;
 | 
						|
  bool frm_install= FALSE;
 | 
						|
  DBUG_ENTER("fast_alter_partition_table");
 | 
						|
 | 
						|
  lpt->thd= thd;
 | 
						|
  lpt->part_info= part_info;
 | 
						|
  lpt->alter_info= alter_info;
 | 
						|
  lpt->create_info= create_info;
 | 
						|
  lpt->db_options= create_info->table_options;
 | 
						|
  if (create_info->row_type == ROW_TYPE_DYNAMIC)
 | 
						|
    lpt->db_options|= HA_OPTION_PACK_RECORD;
 | 
						|
  lpt->table= table;
 | 
						|
  lpt->key_info_buffer= 0;
 | 
						|
  lpt->key_count= 0;
 | 
						|
  lpt->db= db;
 | 
						|
  lpt->table_name= table_name;
 | 
						|
  lpt->copied= 0;
 | 
						|
  lpt->deleted= 0;
 | 
						|
  lpt->pack_frm_data= NULL;
 | 
						|
  lpt->pack_frm_len= 0;
 | 
						|
  thd->work_part_info= part_info;
 | 
						|
 | 
						|
  /* Never update timestamp columns when alter */
 | 
						|
  table->timestamp_field_type= TIMESTAMP_NO_AUTO_SET;
 | 
						|
 | 
						|
  if (fast_alter_partition & HA_PARTITION_ONE_PHASE)
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      In the case where the engine supports one phase online partition
 | 
						|
      changes it is not necessary to have any exclusive locks. The
 | 
						|
      correctness is upheld instead by transactions being aborted if they
 | 
						|
      access the table after its partition definition has changed (if they
 | 
						|
      are still using the old partition definition).
 | 
						|
 | 
						|
      The handler is in this case responsible to ensure that all users
 | 
						|
      start using the new frm file after it has changed. To implement
 | 
						|
      one phase it is necessary for the handler to have the master copy
 | 
						|
      of the frm file and use discovery mechanisms to renew it. Thus
 | 
						|
      write frm will write the frm, pack the new frm and finally
 | 
						|
      the frm is deleted and the discovery mechanisms will either restore
 | 
						|
      back to the old or installing the new after the change is activated.
 | 
						|
 | 
						|
      Thus all open tables will be discovered that they are old, if not
 | 
						|
      earlier as soon as they try an operation using the old table. One
 | 
						|
      should ensure that this is checked already when opening a table,
 | 
						|
      even if it is found in the cache of open tables.
 | 
						|
 | 
						|
      change_partitions will perform all operations and it is the duty of
 | 
						|
      the handler to ensure that the frm files in the system gets updated
 | 
						|
      in synch with the changes made and if an error occurs that a proper
 | 
						|
      error handling is done.
 | 
						|
 | 
						|
      If the MySQL Server crashes at this moment but the handler succeeds
 | 
						|
      in performing the change then the binlog is not written for the
 | 
						|
      change. There is no way to solve this as long as the binlog is not
 | 
						|
      transactional and even then it is hard to solve it completely.
 | 
						|
 
 | 
						|
      The first approach here was to downgrade locks. Now a different approach
 | 
						|
      is decided upon. The idea is that the handler will have access to the
 | 
						|
      Alter_info when store_lock arrives with TL_WRITE_ALLOW_READ. So if the
 | 
						|
      handler knows that this functionality can be handled with a lower lock
 | 
						|
      level it will set the lock level to TL_WRITE_ALLOW_WRITE immediately.
 | 
						|
      Thus the need to downgrade the lock disappears.
 | 
						|
      1) Write the new frm, pack it and then delete it
 | 
						|
      2) Perform the change within the handler
 | 
						|
    */
 | 
						|
    if (mysql_write_frm(lpt, WFRM_WRITE_SHADOW | WFRM_PACK_FRM) ||
 | 
						|
        mysql_change_partitions(lpt))
 | 
						|
    {
 | 
						|
      goto err;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (alter_info->flags & ALTER_DROP_PARTITION)
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      Now after all checks and setting state on dropped partitions we can
 | 
						|
      start the actual dropping of the partitions.
 | 
						|
 | 
						|
      Drop partition is actually two things happening. The first is that
 | 
						|
      a lot of records are deleted. The second is that the behaviour of
 | 
						|
      subsequent updates and writes and deletes will change. The delete
 | 
						|
      part can be handled without any particular high lock level by
 | 
						|
      transactional engines whereas non-transactional engines need to
 | 
						|
      ensure that this change is done with an exclusive lock on the table.
 | 
						|
      The second part, the change of partitioning does however require
 | 
						|
      an exclusive lock to install the new partitioning as one atomic
 | 
						|
      operation. If this is not the case, it is possible for two
 | 
						|
      transactions to see the change in a different order than their
 | 
						|
      serialisation order. Thus we need an exclusive lock for both
 | 
						|
      transactional and non-transactional engines.
 | 
						|
 | 
						|
      For LIST partitions it could be possible to avoid the exclusive lock
 | 
						|
      (and for RANGE partitions if they didn't rearrange range definitions
 | 
						|
      after a DROP PARTITION) if one ensured that failed accesses to the
 | 
						|
      dropped partitions was aborted for sure (thus only possible for
 | 
						|
      transactional engines).
 | 
						|
 | 
						|
      0) Write an entry that removes the shadow frm file if crash occurs 
 | 
						|
      1) Write the new frm file as a shadow frm
 | 
						|
      2) Write the ddl log to ensure that the operation is completed
 | 
						|
         even in the presence of a MySQL Server crash
 | 
						|
      3) Lock the table in TL_WRITE_ONLY to ensure all other accesses to
 | 
						|
         the table have completed. This ensures that other threads can not
 | 
						|
         execute on the table in parallel.
 | 
						|
      4) Get a name lock on the table. This ensures that we can release all
 | 
						|
         locks on the table and since no one can open the table, there can
 | 
						|
         be no new threads accessing the table. They will be hanging on the
 | 
						|
         name lock.
 | 
						|
      5) Close all tables that have already been opened but didn't stumble on
 | 
						|
         the abort locked previously. This is done as part of the
 | 
						|
         close_data_files_and_morph_locks call.
 | 
						|
      6) We are now ready to release all locks we got in this thread.
 | 
						|
      7) Write the bin log
 | 
						|
         Unfortunately the writing of the binlog is not synchronised with
 | 
						|
         other logging activities. So no matter in which order the binlog
 | 
						|
         is written compared to other activities there will always be cases
 | 
						|
         where crashes make strange things occur. In this placement it can
 | 
						|
         happen that the ALTER TABLE DROP PARTITION gets performed in the
 | 
						|
         master but not in the slaves if we have a crash, after writing the
 | 
						|
         ddl log but before writing the binlog. A solution to this would
 | 
						|
         require writing the statement first in the ddl log and then
 | 
						|
         when recovering from the crash read the binlog and insert it into
 | 
						|
         the binlog if not written already.
 | 
						|
      8) Install the previously written shadow frm file
 | 
						|
      9) Prepare handlers for drop of partitions
 | 
						|
      10) Drop the partitions
 | 
						|
      11) Remove entries from ddl log
 | 
						|
      12) Reopen table if under lock tables
 | 
						|
      13) Complete query
 | 
						|
 | 
						|
      We insert Error injections at all places where it could be interesting
 | 
						|
      to test if recovery is properly done.
 | 
						|
    */
 | 
						|
    if (write_log_drop_shadow_frm(lpt) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_drop_partition_1") ||
 | 
						|
        mysql_write_frm(lpt, WFRM_WRITE_SHADOW) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_drop_partition_2") ||
 | 
						|
        write_log_drop_partition(lpt) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_drop_partition_3") ||
 | 
						|
        (not_completed= FALSE) ||
 | 
						|
        abort_and_upgrade_lock(lpt) || /* Always returns 0 */
 | 
						|
        ERROR_INJECT_CRASH("crash_drop_partition_4") ||
 | 
						|
        alter_close_tables(lpt) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_drop_partition_5") ||
 | 
						|
        ((!thd->lex->no_write_to_binlog) &&
 | 
						|
         (write_bin_log(thd, FALSE,
 | 
						|
                        thd->query(), thd->query_length()), FALSE)) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_drop_partition_6") ||
 | 
						|
        ((frm_install= TRUE), FALSE) ||
 | 
						|
        mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) ||
 | 
						|
        ((frm_install= FALSE), FALSE) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_drop_partition_7") ||
 | 
						|
        mysql_drop_partitions(lpt) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_drop_partition_8") ||
 | 
						|
        (write_log_completed(lpt, FALSE), FALSE) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_drop_partition_9") ||
 | 
						|
        (alter_partition_lock_handling(lpt), FALSE)) 
 | 
						|
    {
 | 
						|
      handle_alter_part_error(lpt, not_completed, TRUE, frm_install);
 | 
						|
      goto err;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if ((alter_info->flags & ALTER_ADD_PARTITION) &&
 | 
						|
           (part_info->part_type == RANGE_PARTITION ||
 | 
						|
            part_info->part_type == LIST_PARTITION))
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      ADD RANGE/LIST PARTITIONS
 | 
						|
      In this case there are no tuples removed and no tuples are added.
 | 
						|
      Thus the operation is merely adding a new partition. Thus it is
 | 
						|
      necessary to perform the change as an atomic operation. Otherwise
 | 
						|
      someone reading without seeing the new partition could potentially
 | 
						|
      miss updates made by a transaction serialised before it that are
 | 
						|
      inserted into the new partition.
 | 
						|
 | 
						|
      0) Write an entry that removes the shadow frm file if crash occurs 
 | 
						|
      1) Write the new frm file as a shadow frm file
 | 
						|
      2) Log the changes to happen in ddl log
 | 
						|
      2) Add the new partitions
 | 
						|
      3) Lock all partitions in TL_WRITE_ONLY to ensure that no users
 | 
						|
         are still using the old partitioning scheme. Wait until all
 | 
						|
         ongoing users have completed before progressing.
 | 
						|
      4) Get a name lock on the table. This ensures that we can release all
 | 
						|
         locks on the table and since no one can open the table, there can
 | 
						|
         be no new threads accessing the table. They will be hanging on the
 | 
						|
         name lock.
 | 
						|
      5) Close all tables that have already been opened but didn't stumble on
 | 
						|
         the abort locked previously. This is done as part of the
 | 
						|
         close_data_files_and_morph_locks call.
 | 
						|
      6) Close all table handlers and unlock all handlers but retain name lock
 | 
						|
      7) Write binlog
 | 
						|
      8) Now the change is completed except for the installation of the
 | 
						|
         new frm file. We thus write an action in the log to change to
 | 
						|
         the shadow frm file
 | 
						|
      9) Install the new frm file of the table where the partitions are
 | 
						|
         added to the table.
 | 
						|
      10)Wait until all accesses using the old frm file has completed
 | 
						|
      11)Remove entries from ddl log
 | 
						|
      12)Reopen tables if under lock tables
 | 
						|
      13)Complete query
 | 
						|
    */
 | 
						|
    if (write_log_add_change_partition(lpt) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_add_partition_1") ||
 | 
						|
        mysql_write_frm(lpt, WFRM_WRITE_SHADOW) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_add_partition_2") ||
 | 
						|
        mysql_change_partitions(lpt) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_add_partition_3") ||
 | 
						|
        abort_and_upgrade_lock(lpt) || /* Always returns 0 */
 | 
						|
        ERROR_INJECT_CRASH("crash_add_partition_4") ||
 | 
						|
        alter_close_tables(lpt) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_add_partition_5") ||
 | 
						|
        ((!thd->lex->no_write_to_binlog) &&
 | 
						|
         (write_bin_log(thd, FALSE,
 | 
						|
                        thd->query(), thd->query_length()), FALSE)) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_add_partition_6") ||
 | 
						|
        write_log_rename_frm(lpt) ||
 | 
						|
        (not_completed= FALSE) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_add_partition_7") ||
 | 
						|
        ((frm_install= TRUE), FALSE) ||
 | 
						|
        mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_add_partition_8") ||
 | 
						|
        (write_log_completed(lpt, FALSE), FALSE) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_add_partition_9") ||
 | 
						|
        (alter_partition_lock_handling(lpt), FALSE)) 
 | 
						|
    {
 | 
						|
      handle_alter_part_error(lpt, not_completed, FALSE, frm_install);
 | 
						|
      goto err;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      ADD HASH PARTITION/
 | 
						|
      COALESCE PARTITION/
 | 
						|
      REBUILD PARTITION/
 | 
						|
      REORGANIZE PARTITION
 | 
						|
 
 | 
						|
      In this case all records are still around after the change although
 | 
						|
      possibly organised into new partitions, thus by ensuring that all
 | 
						|
      updates go to both the old and the new partitioning scheme we can
 | 
						|
      actually perform this operation lock-free. The only exception to
 | 
						|
      this is when REORGANIZE PARTITION adds/drops ranges. In this case
 | 
						|
      there needs to be an exclusive lock during the time when the range
 | 
						|
      changes occur.
 | 
						|
      This is only possible if the handler can ensure double-write for a
 | 
						|
      period. The double write will ensure that it doesn't matter where the
 | 
						|
      data is read from since both places are updated for writes. If such
 | 
						|
      double writing is not performed then it is necessary to perform the
 | 
						|
      change with the usual exclusive lock. With double writes it is even
 | 
						|
      possible to perform writes in parallel with the reorganisation of
 | 
						|
      partitions.
 | 
						|
 | 
						|
      Without double write procedure we get the following procedure.
 | 
						|
      The only difference with using double write is that we can downgrade
 | 
						|
      the lock to TL_WRITE_ALLOW_WRITE. Double write in this case only
 | 
						|
      double writes from old to new. If we had double writing in both
 | 
						|
      directions we could perform the change completely without exclusive
 | 
						|
      lock for HASH partitions.
 | 
						|
      Handlers that perform double writing during the copy phase can actually
 | 
						|
      use a lower lock level. This can be handled inside store_lock in the
 | 
						|
      respective handler.
 | 
						|
 | 
						|
      0) Write an entry that removes the shadow frm file if crash occurs 
 | 
						|
      1) Write the shadow frm file of new partitioning
 | 
						|
      2) Log such that temporary partitions added in change phase are
 | 
						|
         removed in a crash situation
 | 
						|
      3) Add the new partitions
 | 
						|
         Copy from the reorganised partitions to the new partitions
 | 
						|
      4) Log that operation is completed and log all complete actions
 | 
						|
         needed to complete operation from here
 | 
						|
      5) Lock all partitions in TL_WRITE_ONLY to ensure that no users
 | 
						|
         are still using the old partitioning scheme. Wait until all
 | 
						|
         ongoing users have completed before progressing.
 | 
						|
      6) Get a name lock of the table
 | 
						|
      7) Close all tables opened but not yet locked, after this call we are
 | 
						|
         certain that no other thread is in the lock wait queue or has
 | 
						|
         opened the table. The name lock will ensure that they are blocked
 | 
						|
         on the open call.
 | 
						|
         This is achieved also by close_data_files_and_morph_locks call.
 | 
						|
      8) Close all partitions opened by this thread, but retain name lock.
 | 
						|
      9) Write bin log
 | 
						|
      10) Prepare handlers for rename and delete of partitions
 | 
						|
      11) Rename and drop the reorged partitions such that they are no
 | 
						|
          longer used and rename those added to their real new names.
 | 
						|
      12) Install the shadow frm file
 | 
						|
      13) Reopen the table if under lock tables
 | 
						|
      14) Complete query
 | 
						|
    */
 | 
						|
    if (write_log_add_change_partition(lpt) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_change_partition_1") ||
 | 
						|
        mysql_write_frm(lpt, WFRM_WRITE_SHADOW) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_change_partition_2") ||
 | 
						|
        mysql_change_partitions(lpt) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_change_partition_3") ||
 | 
						|
        write_log_final_change_partition(lpt) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_change_partition_4") ||
 | 
						|
        (not_completed= FALSE) ||
 | 
						|
        abort_and_upgrade_lock(lpt) || /* Always returns 0 */
 | 
						|
        ERROR_INJECT_CRASH("crash_change_partition_5") ||
 | 
						|
        alter_close_tables(lpt) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_change_partition_6") ||
 | 
						|
        ((!thd->lex->no_write_to_binlog) &&
 | 
						|
         (write_bin_log(thd, FALSE,
 | 
						|
                        thd->query(), thd->query_length()), FALSE)) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_change_partition_7") ||
 | 
						|
        mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_change_partition_8") ||
 | 
						|
        mysql_drop_partitions(lpt) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_change_partition_9") ||
 | 
						|
        mysql_rename_partitions(lpt) ||
 | 
						|
        ((frm_install= TRUE), FALSE) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_change_partition_10") ||
 | 
						|
        (write_log_completed(lpt, FALSE), FALSE) ||
 | 
						|
        ERROR_INJECT_CRASH("crash_change_partition_11") ||
 | 
						|
        (alter_partition_lock_handling(lpt), FALSE))
 | 
						|
    {
 | 
						|
      handle_alter_part_error(lpt, not_completed, FALSE, frm_install);
 | 
						|
      goto err;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  /*
 | 
						|
    A final step is to write the query to the binlog and send ok to the
 | 
						|
    user
 | 
						|
  */
 | 
						|
  DBUG_RETURN(fast_end_partition(thd, lpt->copied, lpt->deleted,
 | 
						|
                                 table, table_list, FALSE, NULL,
 | 
						|
                                 written_bin_log));
 | 
						|
err:
 | 
						|
  close_thread_tables(thd);
 | 
						|
  DBUG_RETURN(TRUE);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Prepare for calling val_int on partition function by setting fields to
 | 
						|
  point to the record where the values of the PF-fields are stored.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    set_field_ptr()
 | 
						|
    ptr                 Array of fields to change ptr
 | 
						|
    new_buf             New record pointer
 | 
						|
    old_buf             Old record pointer
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Set ptr in field objects of field array to refer to new_buf record
 | 
						|
    instead of previously old_buf. Used before calling val_int and after
 | 
						|
    it is used to restore pointers to table->record[0].
 | 
						|
    This routine is placed outside of partition code since it can be useful
 | 
						|
    also for other programs.
 | 
						|
*/
 | 
						|
 | 
						|
void set_field_ptr(Field **ptr, const uchar *new_buf,
 | 
						|
                   const uchar *old_buf)
 | 
						|
{
 | 
						|
  my_ptrdiff_t diff= (new_buf - old_buf);
 | 
						|
  DBUG_ENTER("set_field_ptr");
 | 
						|
 | 
						|
  do
 | 
						|
  {
 | 
						|
    (*ptr)->move_field_offset(diff);
 | 
						|
  } while (*(++ptr));
 | 
						|
  DBUG_VOID_RETURN;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Prepare for calling val_int on partition function by setting fields to
 | 
						|
  point to the record where the values of the PF-fields are stored.
 | 
						|
  This variant works on a key_part reference.
 | 
						|
  It is not required that all fields are NOT NULL fields.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    set_key_field_ptr()
 | 
						|
    key_info            key info with a set of fields to change ptr
 | 
						|
    new_buf             New record pointer
 | 
						|
    old_buf             Old record pointer
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Set ptr in field objects of field array to refer to new_buf record
 | 
						|
    instead of previously old_buf. Used before calling val_int and after
 | 
						|
    it is used to restore pointers to table->record[0].
 | 
						|
    This routine is placed outside of partition code since it can be useful
 | 
						|
    also for other programs.
 | 
						|
*/
 | 
						|
 | 
						|
void set_key_field_ptr(KEY *key_info, const uchar *new_buf,
 | 
						|
                       const uchar *old_buf)
 | 
						|
{
 | 
						|
  KEY_PART_INFO *key_part= key_info->key_part;
 | 
						|
  uint key_parts= key_info->key_parts;
 | 
						|
  uint i= 0;
 | 
						|
  my_ptrdiff_t diff= (new_buf - old_buf);
 | 
						|
  DBUG_ENTER("set_key_field_ptr");
 | 
						|
 | 
						|
  do
 | 
						|
  {
 | 
						|
    key_part->field->move_field_offset(diff);
 | 
						|
    key_part++;
 | 
						|
  } while (++i < key_parts);
 | 
						|
  DBUG_VOID_RETURN;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  SYNOPSIS
 | 
						|
    mem_alloc_error()
 | 
						|
    size                Size of memory attempted to allocate
 | 
						|
    None
 | 
						|
 | 
						|
  RETURN VALUES
 | 
						|
    None
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    A routine to use for all the many places in the code where memory
 | 
						|
    allocation error can happen, a tremendous amount of them, needs
 | 
						|
    simple routine that signals this error.
 | 
						|
*/
 | 
						|
 | 
						|
void mem_alloc_error(size_t size)
 | 
						|
{
 | 
						|
  my_error(ER_OUTOFMEMORY, MYF(0), size);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef WITH_PARTITION_STORAGE_ENGINE
 | 
						|
/*
 | 
						|
  Return comma-separated list of used partitions in the provided given string
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    make_used_partitions_str()
 | 
						|
      part_info  IN  Partitioning info
 | 
						|
      parts_str  OUT The string to fill
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Generate a list of used partitions (from bits in part_info->used_partitions
 | 
						|
    bitmap), asd store it into the provided String object.
 | 
						|
    
 | 
						|
  NOTE
 | 
						|
    The produced string must not be longer then MAX_PARTITIONS * (1 + FN_LEN).
 | 
						|
*/
 | 
						|
 | 
						|
void make_used_partitions_str(partition_info *part_info, String *parts_str)
 | 
						|
{
 | 
						|
  parts_str->length(0);
 | 
						|
  partition_element *pe;
 | 
						|
  uint partition_id= 0;
 | 
						|
  List_iterator<partition_element> it(part_info->partitions);
 | 
						|
  
 | 
						|
  if (part_info->is_sub_partitioned())
 | 
						|
  {
 | 
						|
    partition_element *head_pe;
 | 
						|
    while ((head_pe= it++))
 | 
						|
    {
 | 
						|
      List_iterator<partition_element> it2(head_pe->subpartitions);
 | 
						|
      while ((pe= it2++))
 | 
						|
      {
 | 
						|
        if (bitmap_is_set(&part_info->used_partitions, partition_id))
 | 
						|
        {
 | 
						|
          if (parts_str->length())
 | 
						|
            parts_str->append(',');
 | 
						|
          parts_str->append(head_pe->partition_name,
 | 
						|
                           strlen(head_pe->partition_name),
 | 
						|
                           system_charset_info);
 | 
						|
          parts_str->append('_');
 | 
						|
          parts_str->append(pe->partition_name,
 | 
						|
                           strlen(pe->partition_name),
 | 
						|
                           system_charset_info);
 | 
						|
        }
 | 
						|
        partition_id++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    while ((pe= it++))
 | 
						|
    {
 | 
						|
      if (bitmap_is_set(&part_info->used_partitions, partition_id))
 | 
						|
      {
 | 
						|
        if (parts_str->length())
 | 
						|
          parts_str->append(',');
 | 
						|
        parts_str->append(pe->partition_name, strlen(pe->partition_name),
 | 
						|
                         system_charset_info);
 | 
						|
      }
 | 
						|
      partition_id++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/****************************************************************************
 | 
						|
 * Partition interval analysis support
 | 
						|
 ***************************************************************************/
 | 
						|
 | 
						|
/*
 | 
						|
  Setup partition_info::* members related to partitioning range analysis
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    set_up_partition_func_pointers()
 | 
						|
      part_info  Partitioning info structure
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Assuming that passed partition_info structure already has correct values
 | 
						|
    for members that specify [sub]partitioning type, table fields, and
 | 
						|
    functions, set up partition_info::* members that are related to
 | 
						|
    Partitioning Interval Analysis (see get_partitions_in_range_iter for its
 | 
						|
    definition)
 | 
						|
 | 
						|
  IMPLEMENTATION
 | 
						|
    There are two available interval analyzer functions:
 | 
						|
    (1) get_part_iter_for_interval_via_mapping 
 | 
						|
    (2) get_part_iter_for_interval_via_walking
 | 
						|
 | 
						|
    They both have limited applicability:
 | 
						|
    (1) is applicable for "PARTITION BY <RANGE|LIST>(func(t.field))", where
 | 
						|
    func is a monotonic function.
 | 
						|
    
 | 
						|
    (2) is applicable for 
 | 
						|
      "[SUB]PARTITION BY <any-partitioning-type>(any_func(t.integer_field))"
 | 
						|
      
 | 
						|
    If both are applicable, (1) is preferred over (2).
 | 
						|
    
 | 
						|
    This function sets part_info::get_part_iter_for_interval according to
 | 
						|
    this criteria, and also sets some auxilary fields that the function
 | 
						|
    uses.
 | 
						|
*/
 | 
						|
#ifdef WITH_PARTITION_STORAGE_ENGINE
 | 
						|
static void set_up_range_analysis_info(partition_info *part_info)
 | 
						|
{
 | 
						|
  /* Set the catch-all default */
 | 
						|
  part_info->get_part_iter_for_interval= NULL;
 | 
						|
  part_info->get_subpart_iter_for_interval= NULL;
 | 
						|
 | 
						|
  /* 
 | 
						|
    Check if get_part_iter_for_interval_via_mapping() can be used for 
 | 
						|
    partitioning
 | 
						|
  */
 | 
						|
  switch (part_info->part_type) {
 | 
						|
  case RANGE_PARTITION:
 | 
						|
  case LIST_PARTITION:
 | 
						|
    if (part_info->part_expr->get_monotonicity_info() != NON_MONOTONIC)
 | 
						|
    {
 | 
						|
      part_info->get_part_iter_for_interval=
 | 
						|
        get_part_iter_for_interval_via_mapping;
 | 
						|
      goto setup_subparts;
 | 
						|
    }
 | 
						|
  default:
 | 
						|
    ;
 | 
						|
  }
 | 
						|
   
 | 
						|
  /*
 | 
						|
    Check if get_part_iter_for_interval_via_walking() can be used for
 | 
						|
    partitioning
 | 
						|
  */
 | 
						|
  if (part_info->no_part_fields == 1)
 | 
						|
  {
 | 
						|
    Field *field= part_info->part_field_array[0];
 | 
						|
    switch (field->type()) {
 | 
						|
    case MYSQL_TYPE_TINY:
 | 
						|
    case MYSQL_TYPE_SHORT:
 | 
						|
    case MYSQL_TYPE_INT24:
 | 
						|
    case MYSQL_TYPE_LONG:
 | 
						|
    case MYSQL_TYPE_LONGLONG:
 | 
						|
      part_info->get_part_iter_for_interval=
 | 
						|
        get_part_iter_for_interval_via_walking;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      ;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
setup_subparts:
 | 
						|
  /*
 | 
						|
    Check if get_part_iter_for_interval_via_walking() can be used for
 | 
						|
    subpartitioning
 | 
						|
  */
 | 
						|
  if (part_info->no_subpart_fields == 1)
 | 
						|
  {
 | 
						|
    Field *field= part_info->subpart_field_array[0];
 | 
						|
    switch (field->type()) {
 | 
						|
    case MYSQL_TYPE_TINY:
 | 
						|
    case MYSQL_TYPE_SHORT:
 | 
						|
    case MYSQL_TYPE_LONG:
 | 
						|
    case MYSQL_TYPE_LONGLONG:
 | 
						|
      part_info->get_subpart_iter_for_interval=
 | 
						|
        get_part_iter_for_interval_via_walking;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      ;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
 | 
						|
                                    bool include_endpoint);
 | 
						|
 | 
						|
/*
 | 
						|
  Partitioning Interval Analysis: Initialize the iterator for "mapping" case
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_part_iter_for_interval_via_mapping()
 | 
						|
      part_info   Partition info
 | 
						|
      is_subpart  TRUE  - act for subpartitioning
 | 
						|
                  FALSE - act for partitioning
 | 
						|
      min_value   minimum field value, in opt_range key format.
 | 
						|
      max_value   minimum field value, in opt_range key format.
 | 
						|
      flags       Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
 | 
						|
                  NO_MAX_RANGE.
 | 
						|
      part_iter   Iterator structure to be initialized
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Initialize partition set iterator to walk over the interval in
 | 
						|
    ordered-array-of-partitions (for RANGE partitioning) or 
 | 
						|
    ordered-array-of-list-constants (for LIST partitioning) space.
 | 
						|
 | 
						|
  IMPLEMENTATION
 | 
						|
    This function is used when partitioning is done by
 | 
						|
    <RANGE|LIST>(ascending_func(t.field)), and we can map an interval in
 | 
						|
    t.field space into a sub-array of partition_info::range_int_array or
 | 
						|
    partition_info::list_array (see get_partition_id_range_for_endpoint,
 | 
						|
    get_list_array_idx_for_endpoint for details).
 | 
						|
    
 | 
						|
    The function performs this interval mapping, and sets the iterator to
 | 
						|
    traverse the sub-array and return appropriate partitions.
 | 
						|
    
 | 
						|
  RETURN
 | 
						|
    0 - No matching partitions (iterator not initialized)
 | 
						|
    1 - Ok, iterator intialized for traversal of matching partitions.
 | 
						|
   -1 - All partitions would match (iterator not initialized)
 | 
						|
*/
 | 
						|
 | 
						|
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
 | 
						|
                                           bool is_subpart,
 | 
						|
                                           uchar *min_value, uchar *max_value,
 | 
						|
                                           uint flags,
 | 
						|
                                           PARTITION_ITERATOR *part_iter)
 | 
						|
{
 | 
						|
  DBUG_ASSERT(!is_subpart);
 | 
						|
  Field *field= part_info->part_field_array[0];
 | 
						|
  uint32             max_endpoint_val;
 | 
						|
  get_endpoint_func  get_endpoint;
 | 
						|
  bool               can_match_multiple_values;  /* is not '=' */
 | 
						|
  uint field_len= field->pack_length_in_rec();
 | 
						|
  part_iter->ret_null_part= part_iter->ret_null_part_orig= FALSE;
 | 
						|
 | 
						|
  if (part_info->part_type == RANGE_PARTITION)
 | 
						|
  {
 | 
						|
    if (part_info->part_charset_field_array)
 | 
						|
      get_endpoint=        get_partition_id_range_for_endpoint_charset;
 | 
						|
    else
 | 
						|
      get_endpoint=        get_partition_id_range_for_endpoint;
 | 
						|
    max_endpoint_val=    part_info->no_parts;
 | 
						|
    part_iter->get_next= get_next_partition_id_range;
 | 
						|
  }
 | 
						|
  else if (part_info->part_type == LIST_PARTITION)
 | 
						|
  {
 | 
						|
 | 
						|
    if (part_info->part_charset_field_array)
 | 
						|
      get_endpoint=        get_list_array_idx_for_endpoint_charset;
 | 
						|
    else
 | 
						|
      get_endpoint=        get_list_array_idx_for_endpoint;
 | 
						|
    max_endpoint_val=    part_info->no_list_values;
 | 
						|
    part_iter->get_next= get_next_partition_id_list;
 | 
						|
    part_iter->part_info= part_info;
 | 
						|
    if (max_endpoint_val == 0)
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        We handle this special case without optimisations since it is
 | 
						|
        of little practical value but causes a great number of complex
 | 
						|
        checks later in the code.
 | 
						|
      */
 | 
						|
      part_iter->part_nums.start= part_iter->part_nums.end= 0;
 | 
						|
      part_iter->part_nums.cur= 0;
 | 
						|
      part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE;
 | 
						|
      return -1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
    assert(0);
 | 
						|
  
 | 
						|
  can_match_multiple_values= (flags || !min_value || !max_value ||
 | 
						|
                              memcmp(min_value, max_value, field_len));
 | 
						|
  if (can_match_multiple_values &&
 | 
						|
      (part_info->part_type == RANGE_PARTITION ||
 | 
						|
       part_info->has_null_value))
 | 
						|
  {
 | 
						|
    /* Range scan on RANGE or LIST partitioned table */
 | 
						|
    enum_monotonicity_info monotonic;
 | 
						|
    monotonic= part_info->part_expr->get_monotonicity_info();
 | 
						|
    if (monotonic == MONOTONIC_INCREASING_NOT_NULL ||
 | 
						|
        monotonic == MONOTONIC_STRICT_INCREASING_NOT_NULL)
 | 
						|
    {
 | 
						|
      /* col is NOT NULL, but F(col) can return NULL, add NULL partition */
 | 
						|
      part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* 
 | 
						|
    Find minimum: Do special handling if the interval has left bound in form
 | 
						|
     " NULL <= X ":
 | 
						|
  */
 | 
						|
  if (field->real_maybe_null() && part_info->has_null_value && 
 | 
						|
      !(flags & (NO_MIN_RANGE | NEAR_MIN)) && *min_value)
 | 
						|
  {
 | 
						|
    part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE;
 | 
						|
    part_iter->part_nums.start= part_iter->part_nums.cur= 0;
 | 
						|
    if (*max_value && !(flags & NO_MAX_RANGE))
 | 
						|
    {
 | 
						|
      /* The right bound is X <= NULL, i.e. it is a "X IS NULL" interval */
 | 
						|
      part_iter->part_nums.end= 0;
 | 
						|
      return 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    if (flags & NO_MIN_RANGE)
 | 
						|
      part_iter->part_nums.start= part_iter->part_nums.cur= 0;
 | 
						|
    else
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        Store the interval edge in the record buffer, and call the
 | 
						|
        function that maps the edge in table-field space to an edge
 | 
						|
        in ordered-set-of-partitions (for RANGE partitioning) or 
 | 
						|
        index-in-ordered-array-of-list-constants (for LIST) space.
 | 
						|
      */
 | 
						|
      store_key_image_to_rec(field, min_value, field_len);
 | 
						|
      bool include_endp= !test(flags & NEAR_MIN);
 | 
						|
      part_iter->part_nums.start= get_endpoint(part_info, 1, include_endp);
 | 
						|
      if (!can_match_multiple_values && part_info->part_expr->null_value)
 | 
						|
      {
 | 
						|
        /* col = x and F(x) = NULL -> only search NULL partition */
 | 
						|
        part_iter->part_nums.cur= part_iter->part_nums.start= 0;
 | 
						|
        part_iter->part_nums.end= 0;
 | 
						|
        part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE;
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
      part_iter->part_nums.cur= part_iter->part_nums.start;
 | 
						|
      if (part_iter->part_nums.start == max_endpoint_val)
 | 
						|
        return 0; /* No partitions */
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Find maximum, do the same as above but for right interval bound */
 | 
						|
  if (flags & NO_MAX_RANGE)
 | 
						|
    part_iter->part_nums.end= max_endpoint_val;
 | 
						|
  else
 | 
						|
  {
 | 
						|
    store_key_image_to_rec(field, max_value, field_len);
 | 
						|
    bool include_endp= !test(flags & NEAR_MAX);
 | 
						|
    part_iter->part_nums.end= get_endpoint(part_info, 0, include_endp);
 | 
						|
    if (part_iter->part_nums.start >= part_iter->part_nums.end &&
 | 
						|
        !part_iter->ret_null_part)
 | 
						|
      return 0; /* No partitions */
 | 
						|
  }
 | 
						|
  return 1; /* Ok, iterator initialized */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* See get_part_iter_for_interval_via_walking for definition of what this is */
 | 
						|
#define MAX_RANGE_TO_WALK 10
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Partitioning Interval Analysis: Initialize iterator to walk field interval
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_part_iter_for_interval_via_walking()
 | 
						|
      part_info   Partition info
 | 
						|
      is_subpart  TRUE  - act for subpartitioning
 | 
						|
                  FALSE - act for partitioning
 | 
						|
      min_value   minimum field value, in opt_range key format.
 | 
						|
      max_value   minimum field value, in opt_range key format.
 | 
						|
      flags       Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
 | 
						|
                  NO_MAX_RANGE.
 | 
						|
      part_iter   Iterator structure to be initialized
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Initialize partition set iterator to walk over interval in integer field
 | 
						|
    space. That is, for "const1 <=? t.field <=? const2" interval, initialize 
 | 
						|
    the iterator to return a set of [sub]partitions obtained with the
 | 
						|
    following procedure:
 | 
						|
      get partition id for t.field = const1,   return it
 | 
						|
      get partition id for t.field = const1+1, return it
 | 
						|
       ...                 t.field = const1+2, ...
 | 
						|
       ...                           ...       ...
 | 
						|
       ...                 t.field = const2    ...
 | 
						|
 | 
						|
  IMPLEMENTATION
 | 
						|
    See get_partitions_in_range_iter for general description of interval
 | 
						|
    analysis. We support walking over the following intervals: 
 | 
						|
      "t.field IS NULL" 
 | 
						|
      "c1 <=? t.field <=? c2", where c1 and c2 are finite. 
 | 
						|
    Intervals with +inf/-inf, and [NULL, c1] interval can be processed but
 | 
						|
    that is more tricky and I don't have time to do it right now.
 | 
						|
 | 
						|
    Additionally we have these requirements:
 | 
						|
    * number of values in the interval must be less then number of
 | 
						|
      [sub]partitions, and 
 | 
						|
    * Number of values in the interval must be less then MAX_RANGE_TO_WALK.
 | 
						|
    
 | 
						|
    The rationale behind these requirements is that if they are not met
 | 
						|
    we're likely to hit most of the partitions and traversing the interval
 | 
						|
    will only add overhead. So it's better return "all partitions used" in
 | 
						|
    that case.
 | 
						|
 | 
						|
  RETURN
 | 
						|
    0 - No matching partitions, iterator not initialized
 | 
						|
    1 - Some partitions would match, iterator intialized for traversing them
 | 
						|
   -1 - All partitions would match, iterator not initialized
 | 
						|
*/
 | 
						|
 | 
						|
int get_part_iter_for_interval_via_walking(partition_info *part_info,
 | 
						|
                                           bool is_subpart,
 | 
						|
                                           uchar *min_value, uchar *max_value,
 | 
						|
                                           uint flags,
 | 
						|
                                           PARTITION_ITERATOR *part_iter)
 | 
						|
{
 | 
						|
  Field *field;
 | 
						|
  uint total_parts;
 | 
						|
  partition_iter_func get_next_func;
 | 
						|
  part_iter->ret_null_part= part_iter->ret_null_part_orig= FALSE;
 | 
						|
  if (is_subpart)
 | 
						|
  {
 | 
						|
    field= part_info->subpart_field_array[0];
 | 
						|
    total_parts= part_info->no_subparts;
 | 
						|
    get_next_func=  get_next_subpartition_via_walking;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    field= part_info->part_field_array[0];
 | 
						|
    total_parts= part_info->no_parts;
 | 
						|
    get_next_func=  get_next_partition_via_walking;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Handle the "t.field IS NULL" interval, it is a special case */
 | 
						|
  if (field->real_maybe_null() && !(flags & (NO_MIN_RANGE | NO_MAX_RANGE)) &&
 | 
						|
      *min_value && *max_value)
 | 
						|
  {
 | 
						|
    /* 
 | 
						|
      We don't have a part_iter->get_next() function that would find which
 | 
						|
      partition "t.field IS NULL" belongs to, so find partition that contains 
 | 
						|
      NULL right here, and return an iterator over singleton set.
 | 
						|
    */
 | 
						|
    uint32 part_id;
 | 
						|
    field->set_null();
 | 
						|
    if (is_subpart)
 | 
						|
    {
 | 
						|
      if (!part_info->get_subpartition_id(part_info, &part_id))
 | 
						|
      {
 | 
						|
        init_single_partition_iterator(part_id, part_iter);
 | 
						|
        return 1; /* Ok, iterator initialized */
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      longlong dummy;
 | 
						|
      int res= part_info->is_sub_partitioned() ?
 | 
						|
                  part_info->get_part_partition_id(part_info, &part_id,
 | 
						|
                                                   &dummy):
 | 
						|
                  part_info->get_partition_id(part_info, &part_id, &dummy);
 | 
						|
      if (!res)
 | 
						|
      {
 | 
						|
        init_single_partition_iterator(part_id, part_iter);
 | 
						|
        return 1; /* Ok, iterator initialized */
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return 0; /* No partitions match */
 | 
						|
  }
 | 
						|
 | 
						|
  if ((field->real_maybe_null() && 
 | 
						|
       ((!(flags & NO_MIN_RANGE) && *min_value) ||  // NULL <? X
 | 
						|
        (!(flags & NO_MAX_RANGE) && *max_value))) ||  // X <? NULL
 | 
						|
      (flags & (NO_MIN_RANGE | NO_MAX_RANGE)))    // -inf at any bound
 | 
						|
  {
 | 
						|
    return -1; /* Can't handle this interval, have to use all partitions */
 | 
						|
  }
 | 
						|
  
 | 
						|
  /* Get integers for left and right interval bound */
 | 
						|
  longlong a, b;
 | 
						|
  uint len= field->pack_length_in_rec();
 | 
						|
  store_key_image_to_rec(field, min_value, len);
 | 
						|
  a= field->val_int();
 | 
						|
  
 | 
						|
  store_key_image_to_rec(field, max_value, len);
 | 
						|
  b= field->val_int();
 | 
						|
  
 | 
						|
  /* 
 | 
						|
    Handle a special case where the distance between interval bounds is 
 | 
						|
    exactly 4G-1. This interval is too big for range walking, and if it is an
 | 
						|
    (x,y]-type interval then the following "b +=..." code will convert it to 
 | 
						|
    an empty interval by "wrapping around" a + 4G-1 + 1 = a. 
 | 
						|
  */
 | 
						|
  if ((ulonglong)b - (ulonglong)a == ~0ULL)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  a += test(flags & NEAR_MIN);
 | 
						|
  b += test(!(flags & NEAR_MAX));
 | 
						|
  ulonglong n_values= b - a;
 | 
						|
  
 | 
						|
  if (n_values > total_parts || n_values > MAX_RANGE_TO_WALK)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  part_iter->field_vals.start= part_iter->field_vals.cur= a;
 | 
						|
  part_iter->field_vals.end=   b;
 | 
						|
  part_iter->part_info= part_info;
 | 
						|
  part_iter->get_next=  get_next_func;
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  PARTITION_ITERATOR::get_next implementation: enumerate partitions in range
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_next_partition_id_range()
 | 
						|
      part_iter  Partition set iterator structure
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    This is implementation of PARTITION_ITERATOR::get_next() that returns
 | 
						|
    [sub]partition ids in [min_partition_id, max_partition_id] range.
 | 
						|
    The function conforms to partition_iter_func type.
 | 
						|
 | 
						|
  RETURN
 | 
						|
    partition id
 | 
						|
    NOT_A_PARTITION_ID if there are no more partitions
 | 
						|
*/
 | 
						|
 | 
						|
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter)
 | 
						|
{
 | 
						|
  if (part_iter->part_nums.cur >= part_iter->part_nums.end)
 | 
						|
  {
 | 
						|
    if (part_iter->ret_null_part)
 | 
						|
    {
 | 
						|
      part_iter->ret_null_part= FALSE;
 | 
						|
      return 0;                    /* NULL always in first range partition */
 | 
						|
    }
 | 
						|
    part_iter->part_nums.cur= part_iter->part_nums.start;
 | 
						|
    part_iter->ret_null_part= part_iter->ret_null_part_orig;
 | 
						|
    return NOT_A_PARTITION_ID;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    return part_iter->part_nums.cur++;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  PARTITION_ITERATOR::get_next implementation for LIST partitioning
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_next_partition_id_list()
 | 
						|
      part_iter  Partition set iterator structure
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    This implementation of PARTITION_ITERATOR::get_next() is special for 
 | 
						|
    LIST partitioning: it enumerates partition ids in 
 | 
						|
    part_info->list_array[i] where i runs over [min_idx, max_idx] interval.
 | 
						|
    The function conforms to partition_iter_func type.
 | 
						|
 | 
						|
  RETURN 
 | 
						|
    partition id
 | 
						|
    NOT_A_PARTITION_ID if there are no more partitions
 | 
						|
*/
 | 
						|
 | 
						|
uint32 get_next_partition_id_list(PARTITION_ITERATOR *part_iter)
 | 
						|
{
 | 
						|
  if (part_iter->part_nums.cur >= part_iter->part_nums.end)
 | 
						|
  {
 | 
						|
    if (part_iter->ret_null_part)
 | 
						|
    {
 | 
						|
      part_iter->ret_null_part= FALSE;
 | 
						|
      return part_iter->part_info->has_null_part_id;
 | 
						|
    }
 | 
						|
    part_iter->part_nums.cur= part_iter->part_nums.start;
 | 
						|
    part_iter->ret_null_part= part_iter->ret_null_part_orig;
 | 
						|
    return NOT_A_PARTITION_ID;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    return part_iter->part_info->list_array[part_iter->
 | 
						|
                                            part_nums.cur++].partition_id;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  PARTITION_ITERATOR::get_next implementation: walk over field-space interval
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_next_partition_via_walking()
 | 
						|
      part_iter  Partitioning iterator
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    This implementation of PARTITION_ITERATOR::get_next() returns ids of
 | 
						|
    partitions that contain records with partitioning field value within
 | 
						|
    [start_val, end_val] interval.
 | 
						|
    The function conforms to partition_iter_func type.
 | 
						|
 | 
						|
  RETURN 
 | 
						|
    partition id
 | 
						|
    NOT_A_PARTITION_ID if there are no more partitioning.
 | 
						|
*/
 | 
						|
 | 
						|
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR *part_iter)
 | 
						|
{
 | 
						|
  uint32 part_id;
 | 
						|
  Field *field= part_iter->part_info->part_field_array[0];
 | 
						|
  while (part_iter->field_vals.cur != part_iter->field_vals.end)
 | 
						|
  {
 | 
						|
    longlong dummy;
 | 
						|
    field->store(part_iter->field_vals.cur++,
 | 
						|
                 ((Field_num*)field)->unsigned_flag);
 | 
						|
    if ((part_iter->part_info->is_sub_partitioned() &&
 | 
						|
        !part_iter->part_info->get_part_partition_id(part_iter->part_info,
 | 
						|
                                                     &part_id, &dummy)) ||
 | 
						|
        !part_iter->part_info->get_partition_id(part_iter->part_info,
 | 
						|
                                                &part_id, &dummy))
 | 
						|
      return part_id;
 | 
						|
  }
 | 
						|
  part_iter->field_vals.cur= part_iter->field_vals.start;
 | 
						|
  return NOT_A_PARTITION_ID;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Same as get_next_partition_via_walking, but for subpartitions */
 | 
						|
 | 
						|
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR *part_iter)
 | 
						|
{
 | 
						|
  Field *field= part_iter->part_info->subpart_field_array[0];
 | 
						|
  uint32 res;
 | 
						|
  if (part_iter->field_vals.cur == part_iter->field_vals.end)
 | 
						|
  {
 | 
						|
    part_iter->field_vals.cur= part_iter->field_vals.start;
 | 
						|
    return NOT_A_PARTITION_ID;
 | 
						|
  }
 | 
						|
  field->store(part_iter->field_vals.cur++, FALSE);
 | 
						|
  if (part_iter->part_info->get_subpartition_id(part_iter->part_info,
 | 
						|
                                                &res))
 | 
						|
    return NOT_A_PARTITION_ID;
 | 
						|
  return res;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Create partition names
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    create_partition_name()
 | 
						|
    out:out                   Created partition name string
 | 
						|
    in1                       First part
 | 
						|
    in2                       Second part
 | 
						|
    name_variant              Normal, temporary or renamed partition name
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    NONE
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    This method is used to calculate the partition name, service routine to
 | 
						|
    the del_ren_cre_table method.
 | 
						|
*/
 | 
						|
 | 
						|
void create_partition_name(char *out, const char *in1,
 | 
						|
                           const char *in2, uint name_variant,
 | 
						|
                           bool translate)
 | 
						|
{
 | 
						|
  char transl_part_name[FN_REFLEN];
 | 
						|
  const char *transl_part;
 | 
						|
 | 
						|
  if (translate)
 | 
						|
  {
 | 
						|
    tablename_to_filename(in2, transl_part_name, FN_REFLEN);
 | 
						|
    transl_part= transl_part_name;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    transl_part= in2;
 | 
						|
  if (name_variant == NORMAL_PART_NAME)
 | 
						|
    strxmov(out, in1, "#P#", transl_part, NullS);
 | 
						|
  else if (name_variant == TEMP_PART_NAME)
 | 
						|
    strxmov(out, in1, "#P#", transl_part, "#TMP#", NullS);
 | 
						|
  else if (name_variant == RENAMED_PART_NAME)
 | 
						|
    strxmov(out, in1, "#P#", transl_part, "#REN#", NullS);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Create subpartition name
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    create_subpartition_name()
 | 
						|
    out:out                   Created partition name string
 | 
						|
    in1                       First part
 | 
						|
    in2                       Second part
 | 
						|
    in3                       Third part
 | 
						|
    name_variant              Normal, temporary or renamed partition name
 | 
						|
 | 
						|
  RETURN VALUE
 | 
						|
    NONE
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
  This method is used to calculate the subpartition name, service routine to
 | 
						|
  the del_ren_cre_table method.
 | 
						|
*/
 | 
						|
 | 
						|
void create_subpartition_name(char *out, const char *in1,
 | 
						|
                              const char *in2, const char *in3,
 | 
						|
                              uint name_variant)
 | 
						|
{
 | 
						|
  char transl_part_name[FN_REFLEN], transl_subpart_name[FN_REFLEN];
 | 
						|
 | 
						|
  tablename_to_filename(in2, transl_part_name, FN_REFLEN);
 | 
						|
  tablename_to_filename(in3, transl_subpart_name, FN_REFLEN);
 | 
						|
  if (name_variant == NORMAL_PART_NAME)
 | 
						|
    strxmov(out, in1, "#P#", transl_part_name,
 | 
						|
            "#SP#", transl_subpart_name, NullS);
 | 
						|
  else if (name_variant == TEMP_PART_NAME)
 | 
						|
    strxmov(out, in1, "#P#", transl_part_name,
 | 
						|
            "#SP#", transl_subpart_name, "#TMP#", NullS);
 | 
						|
  else if (name_variant == RENAMED_PART_NAME)
 | 
						|
    strxmov(out, in1, "#P#", transl_part_name,
 | 
						|
            "#SP#", transl_subpart_name, "#REN#", NullS);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 |