mirror of
				https://github.com/MariaDB/server.git
				synced 2025-10-30 04:26:45 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			218 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			218 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright (C) 2000 MySQL AB
 | |
| 
 | |
|    This program is free software; you can redistribute it and/or modify
 | |
|    it under the terms of the GNU General Public License as published by
 | |
|    the Free Software Foundation; either version 2 of the License, or
 | |
|    (at your option) any later version.
 | |
| 
 | |
|    This program is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|    GNU General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU General Public License
 | |
|    along with this program; if not, write to the Free Software
 | |
|    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */
 | |
| 
 | |
| /*
 | |
|   qsort implementation optimized for comparison of pointers
 | |
|   Inspired by the qsort implementations by Douglas C. Schmidt,
 | |
|   and Bentley & McIlroy's "Engineering a Sort Function".
 | |
| */
 | |
| 
 | |
| 
 | |
| #include "mysys_priv.h"
 | |
| #ifndef SCO
 | |
| #include <m_string.h>
 | |
| #endif
 | |
| 
 | |
| /* We need to use qsort with 2 different compare functions */
 | |
| #ifdef QSORT_EXTRA_CMP_ARGUMENT
 | |
| #define CMP(A,B) ((*cmp)(cmp_argument,(A),(B)))
 | |
| #else
 | |
| #define CMP(A,B) ((*cmp)((A),(B)))
 | |
| #endif
 | |
| 
 | |
| #define SWAP(A, B, size,swap_ptrs)			\
 | |
| do {							\
 | |
|    if (swap_ptrs)					\
 | |
|    {							\
 | |
|      reg1 char **a = (char**) (A), **b = (char**) (B);  \
 | |
|      char *tmp = *a; *a++ = *b; *b++ = tmp;		\
 | |
|    }							\
 | |
|    else							\
 | |
|    {							\
 | |
|      reg1 char *a = (A), *b = (B);			\
 | |
|      reg3 char *end= a+size;				\
 | |
|      do							\
 | |
|      {							\
 | |
|        char tmp = *a; *a++ = *b; *b++ = tmp;		\
 | |
|      } while (a < end);					\
 | |
|    }							\
 | |
| } while (0)
 | |
| 
 | |
| /* Put the median in the middle argument */
 | |
| #define MEDIAN(low, mid, high)				\
 | |
| {							\
 | |
|     if (CMP(high,low) < 0)				\
 | |
|       SWAP(high, low, size, ptr_cmp);			\
 | |
|     if (CMP(mid, low) < 0)				\
 | |
|       SWAP(mid, low, size, ptr_cmp);			\
 | |
|     else if (CMP(high, mid) < 0)			\
 | |
|       SWAP(mid, high, size, ptr_cmp);			\
 | |
| }
 | |
| 
 | |
| /* The following node is used to store ranges to avoid recursive calls */
 | |
| 
 | |
| typedef struct st_stack
 | |
| {
 | |
|   char *low,*high;
 | |
| } stack_node;
 | |
| 
 | |
| #define PUSH(LOW,HIGH)  {stack_ptr->low = LOW; stack_ptr++->high = HIGH;}
 | |
| #define POP(LOW,HIGH)   {LOW = (--stack_ptr)->low; HIGH = stack_ptr->high;}
 | |
| 
 | |
| /* The following stack size is enough for ulong ~0 elements */
 | |
| #define STACK_SIZE	(8 * sizeof(unsigned long int))
 | |
| #define THRESHOLD_FOR_INSERT_SORT 10
 | |
| #if defined(QSORT_TYPE_IS_VOID)
 | |
| #define SORT_RETURN return
 | |
| #else
 | |
| #define SORT_RETURN return 0
 | |
| #endif
 | |
| 
 | |
| /****************************************************************************
 | |
| ** 'standard' quicksort with the following extensions:
 | |
| **
 | |
| ** Can be compiled with the qsort2_cmp compare function
 | |
| ** Store ranges on stack to avoid recursion
 | |
| ** Use insert sort on small ranges
 | |
| ** Optimize for sorting of pointers (used often by MySQL)
 | |
| ** Use median comparison to find partition element
 | |
| *****************************************************************************/
 | |
| 
 | |
| #ifdef QSORT_EXTRA_CMP_ARGUMENT
 | |
| qsort_t qsort2(void *base_ptr, size_t count, size_t size, qsort2_cmp cmp,
 | |
| 	       void *cmp_argument)
 | |
| #else
 | |
| qsort_t qsort(void *base_ptr, size_t count, size_t size, qsort_cmp cmp)
 | |
| #endif
 | |
| {
 | |
|   char *low, *high, *pivot;
 | |
|   stack_node stack[STACK_SIZE], *stack_ptr;
 | |
|   my_bool ptr_cmp;
 | |
|   /* Handle the simple case first */
 | |
|   /* This will also make the rest of the code simpler */
 | |
|   if (count <= 1)
 | |
|     SORT_RETURN;
 | |
| 
 | |
|   low  = (char*) base_ptr;
 | |
|   high = low+ size * (count - 1);
 | |
|   stack_ptr = stack + 1;
 | |
| #ifdef HAVE_purify
 | |
|   /* The first element in the stack will be accessed for the last POP */
 | |
|   stack[0].low=stack[0].high=0;
 | |
| #endif
 | |
|   pivot = (char *) my_alloca((int) size);
 | |
|   ptr_cmp= size == sizeof(char*) && !((low - (char*) 0)& (sizeof(char*)-1));
 | |
| 
 | |
|   /* The following loop sorts elements between high and low */
 | |
|   do
 | |
|   {
 | |
|     char *low_ptr, *high_ptr, *mid;
 | |
| 
 | |
|     count=((size_t) (high - low) / size)+1;
 | |
|     /* If count is small, then an insert sort is faster than qsort */
 | |
|     if (count < THRESHOLD_FOR_INSERT_SORT)
 | |
|     {
 | |
|       for (low_ptr = low + size; low_ptr <= high; low_ptr += size)
 | |
|       {
 | |
| 	char *ptr;
 | |
| 	for (ptr = low_ptr; ptr > low && CMP(ptr - size, ptr) > 0;
 | |
| 	     ptr -= size)
 | |
| 	  SWAP(ptr, ptr - size, size, ptr_cmp);
 | |
|       }
 | |
|       POP(low, high);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* Try to find a good middle element */
 | |
|     mid= low + size * (count >> 1);
 | |
|     if (count > 40)				/* Must be bigger than 24 */
 | |
|     {
 | |
|       size_t step = size* (count / 8);
 | |
|       MEDIAN(low, low + step, low+step*2);
 | |
|       MEDIAN(mid - step, mid, mid+step);
 | |
|       MEDIAN(high - 2 * step, high-step, high);
 | |
|       /* Put best median in 'mid' */
 | |
|       MEDIAN(low+step, mid, high-step);
 | |
|       low_ptr  = low;
 | |
|       high_ptr = high;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       MEDIAN(low, mid, high);
 | |
|       /* The low and high argument are already in sorted against 'pivot' */
 | |
|       low_ptr  = low + size;
 | |
|       high_ptr = high - size;
 | |
|     }
 | |
|     memcpy(pivot, mid, size);
 | |
| 
 | |
|     do
 | |
|     {
 | |
|       while (CMP(low_ptr, pivot) < 0)
 | |
| 	low_ptr += size;
 | |
|       while (CMP(pivot, high_ptr) < 0)
 | |
| 	high_ptr -= size;
 | |
| 
 | |
|       if (low_ptr < high_ptr)
 | |
|       {
 | |
| 	SWAP(low_ptr, high_ptr, size, ptr_cmp);
 | |
| 	low_ptr += size;
 | |
| 	high_ptr -= size;
 | |
|       }
 | |
|       else 
 | |
|       {
 | |
| 	if (low_ptr == high_ptr)
 | |
| 	{
 | |
| 	  low_ptr += size;
 | |
| 	  high_ptr -= size;
 | |
| 	}
 | |
| 	break;
 | |
|       }
 | |
|     }
 | |
|     while (low_ptr <= high_ptr);
 | |
| 
 | |
|     /*
 | |
|       Prepare for next iteration.
 | |
|        Skip partitions of size 1 as these doesn't have to be sorted
 | |
|        Push the larger partition and sort the smaller one first.
 | |
|        This ensures that the stack is keept small.
 | |
|     */
 | |
| 
 | |
|     if ((int) (high_ptr - low) <= 0)
 | |
|     {
 | |
|       if ((int) (high - low_ptr) <= 0)
 | |
|       {
 | |
| 	POP(low, high);			/* Nothing more to sort */
 | |
|       }
 | |
|       else
 | |
| 	low = low_ptr;			/* Ignore small left part. */
 | |
|     }
 | |
|     else if ((int) (high - low_ptr) <= 0)
 | |
|       high = high_ptr;			/* Ignore small right part. */
 | |
|     else if ((high_ptr - low) > (high - low_ptr))
 | |
|     {
 | |
|       PUSH(low, high_ptr);		/* Push larger left part */
 | |
|       low = low_ptr;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       PUSH(low_ptr, high);		/* Push larger right part */
 | |
|       high = high_ptr;
 | |
|     }
 | |
|   } while (stack_ptr > stack);
 | |
|   my_afree(pivot);
 | |
|   SORT_RETURN;
 | |
| }
 | 
