1
0
mirror of https://github.com/MariaDB/server.git synced 2025-04-18 21:44:20 +03:00
mariadb/sql/bloom_filters.h
Manjul Mohan 6bb92f98ce MDEV-36184 - mhnsw: support powerpc64 SIMD instructions
This patch optimises the dot_product function by leveraging
vectorisation through SIMD intrinsics. This transformation enables
parallel execution of multiple operations, significantly improving the
performance of dot product computation on supported architectures.

The original dot_product function does undergo auto-vectorisation when
compiled with -O3. However, performance analysis has shown that the
newly optimised implementation performs better on Power10 and achieves
comparable performance on Power9 machines.

Benchmark tests were conducted on both Power9 and Power10 machines,
comparing the time taken by the original (auto-vectorized) code and the
new vectorised code. GCC 11.5.0 on RHEL 9.5 operating system with -O3
were used. The benchmarks were performed using a sample test code with
a vector size of 4096 and 10⁷ loop iterations. Here are the average
execution times (in seconds) over multiple runs:

Power9:
Before change: ~16.364 s
After change: ~16.180 s
Performance gain is modest but measurable.

Power10:
Before change: ~8.989 s
After change: ~6.446 s
Significant improvement, roughly 28–30% faster.

Signed-off-by: Manjul Mohan <manjul.mohan@ibm.com>
2025-04-14 18:01:16 +02:00

434 lines
17 KiB
C++

/*
MIT License
Copyright (c) 2023 Sasha Krassovsky
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
// https://save-buffer.github.io/bloom_filter.html
#pragma once
#include <cmath>
#include <vector>
#include <algorithm>
/*
Use gcc function multiversioning to optimize for a specific CPU with run-time
detection. Works only for x86, for other architectures we provide only one
implementation for now.
*/
#define DEFAULT_IMPLEMENTATION
#if __GNUC__ > 7
#ifdef __x86_64__
#ifdef HAVE_IMMINTRIN_H
#include <immintrin.h>
#undef DEFAULT_IMPLEMENTATION
#define DEFAULT_IMPLEMENTATION __attribute__ ((target ("default")))
#define AVX2_IMPLEMENTATION __attribute__ ((target ("avx2,avx,fma")))
#if __GNUC__ > 9
#define AVX512_IMPLEMENTATION __attribute__ ((target ("avx512f,avx512bw")))
#endif
#endif
#endif
#ifdef __aarch64__
#include <arm_neon.h>
#undef DEFAULT_IMPLEMENTATION
#define NEON_IMPLEMENTATION
#endif
#endif
#if defined __powerpc64__ && defined __VSX__
#include <altivec.h>
#define POWER_IMPLEMENTATION
#endif
template <typename T>
struct PatternedSimdBloomFilter
{
PatternedSimdBloomFilter(int n, float eps) : n(n), epsilon(eps)
{
m = ComputeNumBits();
int log_num_blocks = my_bit_log2_uint32(m) + 1 - rotate_bits;
num_blocks = (1ULL << log_num_blocks);
bv.resize(num_blocks);
}
uint32_t ComputeNumBits()
{
double bits_per_val = -1.44 * std::log2(epsilon);
return std::max<uint32_t>(512, static_cast<uint32_t>(bits_per_val * n + 0.5));
}
#ifdef AVX2_IMPLEMENTATION
AVX2_IMPLEMENTATION
__m256i CalcHash(__m256i vecData)
{
// (almost) xxHash parallel version, 64bit input, 64bit output, seed=0
static constexpr __m256i rotl48={
0x0504030201000706ULL, 0x0D0C0B0A09080F0EULL,
0x1514131211101716ULL, 0x1D1C1B1A19181F1EULL
};
static constexpr __m256i rotl24={
0x0201000706050403ULL, 0x0A09080F0E0D0C0BULL,
0x1211101716151413ULL, 0x1A19181F1E1D1C1BULL,
};
static constexpr uint64_t prime_mx2= 0x9FB21C651E98DF25ULL;
static constexpr uint64_t bitflip= 0xC73AB174C5ECD5A2ULL;
__m256i step1= _mm256_xor_si256(vecData, _mm256_set1_epi64x(bitflip));
__m256i step2= _mm256_shuffle_epi8(step1, rotl48);
__m256i step3= _mm256_shuffle_epi8(step1, rotl24);
__m256i step4= _mm256_xor_si256(step1, _mm256_xor_si256(step2, step3));
__m256i step5= _mm256_mul_epi32(step4, _mm256_set1_epi64x(prime_mx2));
__m256i step6= _mm256_srli_epi64(step5, 35);
__m256i step7= _mm256_add_epi64(step6, _mm256_set1_epi64x(8));
__m256i step8= _mm256_xor_si256(step5, step7);
__m256i step9= _mm256_mul_epi32(step8, _mm256_set1_epi64x(prime_mx2));
return _mm256_xor_si256(step9, _mm256_srli_epi64(step9, 28));
}
AVX2_IMPLEMENTATION
__m256i GetBlockIdx(__m256i vecHash)
{
__m256i vecNumBlocksMask = _mm256_set1_epi64x(num_blocks - 1);
__m256i vecBlockIdx = _mm256_srli_epi64(vecHash, mask_idx_bits + rotate_bits);
return _mm256_and_si256(vecBlockIdx, vecNumBlocksMask);
}
AVX2_IMPLEMENTATION
__m256i ConstructMask(__m256i vecHash)
{
__m256i vecMaskIdxMask = _mm256_set1_epi64x((1 << mask_idx_bits) - 1);
__m256i vecMaskMask = _mm256_set1_epi64x((1ull << bits_per_mask) - 1);
__m256i vec64 = _mm256_set1_epi64x(64);
__m256i vecMaskIdx = _mm256_and_si256(vecHash, vecMaskIdxMask);
__m256i vecMaskByteIdx = _mm256_srli_epi64(vecMaskIdx, 3);
__m256i vecMaskBitIdx = _mm256_and_si256(vecMaskIdx, _mm256_set1_epi64x(0x7));
__m256i vecRawMasks = _mm256_i64gather_epi64((const longlong *)masks, vecMaskByteIdx, 1);
__m256i vecUnrotated = _mm256_and_si256(_mm256_srlv_epi64(vecRawMasks, vecMaskBitIdx), vecMaskMask);
__m256i vecRotation = _mm256_and_si256(_mm256_srli_epi64(vecHash, mask_idx_bits), _mm256_set1_epi64x((1 << rotate_bits) - 1));
__m256i vecShiftUp = _mm256_sllv_epi64(vecUnrotated, vecRotation);
__m256i vecShiftDown = _mm256_srlv_epi64(vecUnrotated, _mm256_sub_epi64(vec64, vecRotation));
return _mm256_or_si256(vecShiftDown, vecShiftUp);
}
AVX2_IMPLEMENTATION
void Insert(const T **data)
{
__m256i vecDataA = _mm256_loadu_si256(reinterpret_cast<__m256i *>(data + 0));
__m256i vecDataB = _mm256_loadu_si256(reinterpret_cast<__m256i *>(data + 4));
__m256i vecHashA= CalcHash(vecDataA);
__m256i vecHashB= CalcHash(vecDataB);
__m256i vecMaskA = ConstructMask(vecHashA);
__m256i vecMaskB = ConstructMask(vecHashB);
__m256i vecBlockIdxA = GetBlockIdx(vecHashA);
__m256i vecBlockIdxB = GetBlockIdx(vecHashB);
uint64_t block0 = _mm256_extract_epi64(vecBlockIdxA, 0);
uint64_t block1 = _mm256_extract_epi64(vecBlockIdxA, 1);
uint64_t block2 = _mm256_extract_epi64(vecBlockIdxA, 2);
uint64_t block3 = _mm256_extract_epi64(vecBlockIdxA, 3);
uint64_t block4 = _mm256_extract_epi64(vecBlockIdxB, 0);
uint64_t block5 = _mm256_extract_epi64(vecBlockIdxB, 1);
uint64_t block6 = _mm256_extract_epi64(vecBlockIdxB, 2);
uint64_t block7 = _mm256_extract_epi64(vecBlockIdxB, 3);
bv[block0] |= _mm256_extract_epi64(vecMaskA, 0);
bv[block1] |= _mm256_extract_epi64(vecMaskA, 1);
bv[block2] |= _mm256_extract_epi64(vecMaskA, 2);
bv[block3] |= _mm256_extract_epi64(vecMaskA, 3);
bv[block4] |= _mm256_extract_epi64(vecMaskB, 0);
bv[block5] |= _mm256_extract_epi64(vecMaskB, 1);
bv[block6] |= _mm256_extract_epi64(vecMaskB, 2);
bv[block7] |= _mm256_extract_epi64(vecMaskB, 3);
}
AVX2_IMPLEMENTATION
uint8_t Query(T **data)
{
__m256i vecDataA = _mm256_loadu_si256(reinterpret_cast<__m256i *>(data + 0));
__m256i vecDataB = _mm256_loadu_si256(reinterpret_cast<__m256i *>(data + 4));
__m256i vecHashA= CalcHash(vecDataA);
__m256i vecHashB= CalcHash(vecDataB);
__m256i vecMaskA = ConstructMask(vecHashA);
__m256i vecMaskB = ConstructMask(vecHashB);
__m256i vecBlockIdxA = GetBlockIdx(vecHashA);
__m256i vecBlockIdxB = GetBlockIdx(vecHashB);
__m256i vecBloomA = _mm256_i64gather_epi64(bv.data(), vecBlockIdxA, sizeof(longlong));
__m256i vecBloomB = _mm256_i64gather_epi64(bv.data(), vecBlockIdxB, sizeof(longlong));
__m256i vecCmpA = _mm256_cmpeq_epi64(_mm256_and_si256(vecMaskA, vecBloomA), vecMaskA);
__m256i vecCmpB = _mm256_cmpeq_epi64(_mm256_and_si256(vecMaskB, vecBloomB), vecMaskB);
uint32_t res_a = static_cast<uint32_t>(_mm256_movemask_epi8(vecCmpA));
uint32_t res_b = static_cast<uint32_t>(_mm256_movemask_epi8(vecCmpB));
uint64_t res_bytes = res_a | (static_cast<uint64_t>(res_b) << 32);
uint8_t res_bits = static_cast<uint8_t>(_mm256_movemask_epi8(_mm256_set1_epi64x(res_bytes)) & 0xff);
return res_bits;
}
/* AVX-512 version can be (and was) implemented, but the speedup is,
basically, unnoticeable, well below the noise level */
#endif
#ifdef NEON_IMPLEMENTATION
uint64x2_t CalcHash(uint64x2_t vecData)
{
static constexpr uint64_t prime_mx2= 0x9FB21C651E98DF25ULL;
static constexpr uint64_t bitflip= 0xC73AB174C5ECD5A2ULL;
uint64x2_t step1= veorq_u64(vecData, vdupq_n_u64(bitflip));
uint64x2_t step2= veorq_u64(vshrq_n_u64(step1, 48), vshlq_n_u64(step1, 16));
uint64x2_t step3= veorq_u64(vshrq_n_u64(step1, 24), vshlq_n_u64(step1, 40));
uint64x2_t step4= veorq_u64(step1, veorq_u64(step2, step3));
uint64x2_t step5;
step5= vsetq_lane_u64(vgetq_lane_u64(step4, 0) * prime_mx2, step4, 0);
step5= vsetq_lane_u64(vgetq_lane_u64(step4, 1) * prime_mx2, step5, 1);
uint64x2_t step6= vshrq_n_u64(step5, 35);
uint64x2_t step7= vaddq_u64(step6, vdupq_n_u64(8));
uint64x2_t step8= veorq_u64(step5, step7);
uint64x2_t step9;
step9= vsetq_lane_u64(vgetq_lane_u64(step8, 0) * prime_mx2, step8, 0);
step9= vsetq_lane_u64(vgetq_lane_u64(step8, 1) * prime_mx2, step9, 1);
return veorq_u64(step9, vshrq_n_u64(step9, 28));
}
uint64x2_t GetBlockIdx(uint64x2_t vecHash)
{
uint64x2_t vecNumBlocksMask= vdupq_n_u64(num_blocks - 1);
uint64x2_t vecBlockIdx= vshrq_n_u64(vecHash, mask_idx_bits + rotate_bits);
return vandq_u64(vecBlockIdx, vecNumBlocksMask);
}
uint64x2_t ConstructMask(uint64x2_t vecHash)
{
uint64x2_t vecMaskIdxMask= vdupq_n_u64((1 << mask_idx_bits) - 1);
uint64x2_t vecMaskMask= vdupq_n_u64((1ull << bits_per_mask) - 1);
uint64x2_t vecMaskIdx= vandq_u64(vecHash, vecMaskIdxMask);
uint64x2_t vecMaskByteIdx= vshrq_n_u64(vecMaskIdx, 3);
/*
Shift right in NEON is implemented as shift left by a negative value.
Do the negation here.
*/
int64x2_t vecMaskBitIdx=
vsubq_s64(vdupq_n_s64(0),
vreinterpretq_s64_u64(vandq_u64(vecMaskIdx, vdupq_n_u64(0x7))));
uint64x2_t vecRawMasks= vdupq_n_u64(*reinterpret_cast<const uint64_t*>
(masks + vgetq_lane_u64(vecMaskByteIdx, 0)));
vecRawMasks= vsetq_lane_u64(*reinterpret_cast<const uint64_t*>
(masks + vgetq_lane_u64(vecMaskByteIdx, 1)), vecRawMasks, 1);
uint64x2_t vecUnrotated=
vandq_u64(vshlq_u64(vecRawMasks, vecMaskBitIdx), vecMaskMask);
int64x2_t vecRotation=
vreinterpretq_s64_u64(vandq_u64(vshrq_n_u64(vecHash, mask_idx_bits),
vdupq_n_u64((1 << rotate_bits) - 1)));
uint64x2_t vecShiftUp= vshlq_u64(vecUnrotated, vecRotation);
uint64x2_t vecShiftDown=
vshlq_u64(vecUnrotated, vsubq_s64(vecRotation, vdupq_n_s64(64)));
return vorrq_u64(vecShiftDown, vecShiftUp);
}
void Insert(const T **data)
{
uint64x2_t vecDataA= vld1q_u64(reinterpret_cast<uint64_t *>(data + 0));
uint64x2_t vecDataB= vld1q_u64(reinterpret_cast<uint64_t *>(data + 2));
uint64x2_t vecDataC= vld1q_u64(reinterpret_cast<uint64_t *>(data + 4));
uint64x2_t vecDataD= vld1q_u64(reinterpret_cast<uint64_t *>(data + 6));
uint64x2_t vecHashA= CalcHash(vecDataA);
uint64x2_t vecHashB= CalcHash(vecDataB);
uint64x2_t vecHashC= CalcHash(vecDataC);
uint64x2_t vecHashD= CalcHash(vecDataD);
uint64x2_t vecMaskA= ConstructMask(vecHashA);
uint64x2_t vecMaskB= ConstructMask(vecHashB);
uint64x2_t vecMaskC= ConstructMask(vecHashC);
uint64x2_t vecMaskD= ConstructMask(vecHashD);
uint64x2_t vecBlockIdxA= GetBlockIdx(vecHashA);
uint64x2_t vecBlockIdxB= GetBlockIdx(vecHashB);
uint64x2_t vecBlockIdxC= GetBlockIdx(vecHashC);
uint64x2_t vecBlockIdxD= GetBlockIdx(vecHashD);
uint64_t block0= vgetq_lane_u64(vecBlockIdxA, 0);
uint64_t block1= vgetq_lane_u64(vecBlockIdxA, 1);
uint64_t block2= vgetq_lane_u64(vecBlockIdxB, 0);
uint64_t block3= vgetq_lane_u64(vecBlockIdxB, 1);
uint64_t block4= vgetq_lane_u64(vecBlockIdxC, 0);
uint64_t block5= vgetq_lane_u64(vecBlockIdxC, 1);
uint64_t block6= vgetq_lane_u64(vecBlockIdxD, 0);
uint64_t block7= vgetq_lane_u64(vecBlockIdxD, 1);
bv[block0]|= vgetq_lane_u64(vecMaskA, 0);
bv[block1]|= vgetq_lane_u64(vecMaskA, 1);
bv[block2]|= vgetq_lane_u64(vecMaskB, 0);
bv[block3]|= vgetq_lane_u64(vecMaskB, 1);
bv[block4]|= vgetq_lane_u64(vecMaskC, 0);
bv[block5]|= vgetq_lane_u64(vecMaskC, 1);
bv[block6]|= vgetq_lane_u64(vecMaskD, 0);
bv[block7]|= vgetq_lane_u64(vecMaskD, 1);
}
uint8_t Query(T **data)
{
uint64x2_t vecDataA= vld1q_u64(reinterpret_cast<uint64_t *>(data + 0));
uint64x2_t vecDataB= vld1q_u64(reinterpret_cast<uint64_t *>(data + 2));
uint64x2_t vecDataC= vld1q_u64(reinterpret_cast<uint64_t *>(data + 4));
uint64x2_t vecDataD= vld1q_u64(reinterpret_cast<uint64_t *>(data + 6));
uint64x2_t vecHashA= CalcHash(vecDataA);
uint64x2_t vecHashB= CalcHash(vecDataB);
uint64x2_t vecHashC= CalcHash(vecDataC);
uint64x2_t vecHashD= CalcHash(vecDataD);
uint64x2_t vecMaskA= ConstructMask(vecHashA);
uint64x2_t vecMaskB= ConstructMask(vecHashB);
uint64x2_t vecMaskC= ConstructMask(vecHashC);
uint64x2_t vecMaskD= ConstructMask(vecHashD);
uint64x2_t vecBlockIdxA= GetBlockIdx(vecHashA);
uint64x2_t vecBlockIdxB= GetBlockIdx(vecHashB);
uint64x2_t vecBlockIdxC= GetBlockIdx(vecHashC);
uint64x2_t vecBlockIdxD= GetBlockIdx(vecHashD);
uint64x2_t vecBloomA= vdupq_n_u64(bv[vgetq_lane_u64(vecBlockIdxA, 0)]);
vecBloomA= vsetq_lane_u64(bv[vgetq_lane_u64(vecBlockIdxA, 1)], vecBloomA, 1);
uint64x2_t vecBloomB= vdupq_n_u64(bv[vgetq_lane_u64(vecBlockIdxB, 0)]);
vecBloomB= vsetq_lane_u64(bv[vgetq_lane_u64(vecBlockIdxB, 1)], vecBloomB, 1);
uint64x2_t vecBloomC= vdupq_n_u64(bv[vgetq_lane_u64(vecBlockIdxC, 0)]);
vecBloomC= vsetq_lane_u64(bv[vgetq_lane_u64(vecBlockIdxC, 1)], vecBloomC, 1);
uint64x2_t vecBloomD= vdupq_n_u64(bv[vgetq_lane_u64(vecBlockIdxD, 0)]);
vecBloomD= vsetq_lane_u64(bv[vgetq_lane_u64(vecBlockIdxD, 1)], vecBloomD, 1);
uint64x2_t vecCmpA= vceqq_u64(vandq_u64(vecMaskA, vecBloomA), vecMaskA);
uint64x2_t vecCmpB= vceqq_u64(vandq_u64(vecMaskB, vecBloomB), vecMaskB);
uint64x2_t vecCmpC= vceqq_u64(vandq_u64(vecMaskC, vecBloomC), vecMaskC);
uint64x2_t vecCmpD= vceqq_u64(vandq_u64(vecMaskD, vecBloomD), vecMaskD);
return
(vgetq_lane_u64(vecCmpA, 0) & 0x01) |
(vgetq_lane_u64(vecCmpA, 1) & 0x02) |
(vgetq_lane_u64(vecCmpB, 0) & 0x04) |
(vgetq_lane_u64(vecCmpB, 1) & 0x08) |
(vgetq_lane_u64(vecCmpC, 0) & 0x10) |
(vgetq_lane_u64(vecCmpC, 1) & 0x20) |
(vgetq_lane_u64(vecCmpD, 0) & 0x40) |
(vgetq_lane_u64(vecCmpD, 1) & 0x80);
}
#endif
/********************************************************
********* non-SIMD fallback version ********************/
#ifdef DEFAULT_IMPLEMENTATION
uint64_t CalcHash_1(const T* data)
{
static constexpr uint64_t prime_mx2= 0x9FB21C651E98DF25ULL;
static constexpr uint64_t bitflip= 0xC73AB174C5ECD5A2ULL;
uint64_t step1= ((intptr)data) ^ bitflip;
uint64_t step2= (step1 >> 48) ^ (step1 << 16);
uint64_t step3= (step1 >> 24) ^ (step1 << 40);
uint64_t step4= step1 ^ step2 ^ step3;
uint64_t step5= step4 * prime_mx2;
uint64_t step6= step5 >> 35;
uint64_t step7= step6 + 8;
uint64_t step8= step5 ^ step7;
uint64_t step9= step8 * prime_mx2;
return step9 ^ (step9 >> 28);
}
uint64_t GetBlockIdx_1(uint64_t hash)
{
uint64_t blockIdx = hash >> (mask_idx_bits + rotate_bits);
return blockIdx & (num_blocks - 1);
}
uint64_t ConstructMask_1(uint64_t hash)
{
uint64_t maskIdxMask = (1 << mask_idx_bits) - 1;
uint64_t maskMask = (1ULL << bits_per_mask) - 1;
uint64_t maskIdx = hash & maskIdxMask;
uint64_t maskByteIdx = maskIdx >> 3;
uint64_t maskBitIdx = maskIdx & 7;
uint64_t rawMask = *(uint64_t *)(masks + maskByteIdx);
uint64_t unrotated = (rawMask >> maskBitIdx) & maskMask;
uint64_t rotation = (hash >> mask_idx_bits) & ((1 << rotate_bits) - 1);
return rotation ? (unrotated << rotation) | (unrotated >> (64 - rotation))
: unrotated;
}
DEFAULT_IMPLEMENTATION
void Insert(const T **data)
{
for (size_t i = 0; i < 8; i++)
{
uint64_t hash = CalcHash_1(data[i]);
uint64_t mask = ConstructMask_1(hash);
bv[GetBlockIdx_1(hash)] |= mask;
}
}
DEFAULT_IMPLEMENTATION
uint8_t Query(T **data)
{
uint8_t res_bits = 0;
for (size_t i = 0; i < 8; i++)
{
uint64_t hash = CalcHash_1(data[i]);
uint64_t mask = ConstructMask_1(hash);
if ((bv[GetBlockIdx_1(hash)] & mask) == mask)
res_bits |= 1 << i;
}
return res_bits;
}
#endif
int n;
float epsilon;
uint64_t num_blocks;
uint32_t m;
// calculated from the upstream MaskTable and hard-coded
static constexpr int log_num_masks = 10;
static constexpr int bits_per_mask = 57;
const uint8_t masks[136]= {0x00, 0x04, 0x01, 0x04, 0x00, 0x20, 0x01, 0x00,
0x00, 0x02, 0x08, 0x00, 0x02, 0x42, 0x00, 0x00, 0x04, 0x00, 0x00, 0x84,
0x80, 0x00, 0x04, 0x00, 0x02, 0x00, 0x00, 0x21, 0x00, 0x08, 0x00, 0x14,
0x00, 0x00, 0x40, 0x00, 0x10, 0x00, 0xa8, 0x00, 0x00, 0x00, 0x00, 0x10,
0x04, 0x40, 0x01, 0x00, 0x40, 0x00, 0x00, 0x08, 0x01, 0x02, 0x80, 0x00,
0x00, 0x01, 0x00, 0x06, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x0c, 0x10,
0x00, 0x10, 0x00, 0x00, 0x10, 0x08, 0x01, 0x10, 0x00, 0x00, 0x10, 0x20,
0x00, 0x01, 0x20, 0x00, 0x02, 0x40, 0x00, 0x00, 0x02, 0x40, 0x01, 0x00,
0x40, 0x00, 0x00, 0x0a, 0x00, 0x02, 0x01, 0x80, 0x00, 0x00, 0x10, 0x08,
0x00, 0x06, 0x00, 0x04, 0x00, 0x00, 0x50, 0x00, 0x08, 0x10, 0x20, 0x00,
0x00, 0x80, 0x00, 0x10, 0x10, 0x04, 0x04, 0x00, 0x00, 0x00, 0x20, 0x20,
0x08, 0x08, 0x02, 0x00, 0x00, 0x00, 0x40, 0x00};
std::vector<longlong> bv;
static constexpr int mask_idx_bits = log_num_masks;
static constexpr int rotate_bits = 6;
};