After ALTER TABLE which changed only table's metadata, row-based
binlog sometimes got corrupted since the tablemap was unexpectedly
set to 0 for subsequent updates to the same table.
ALTER TABLE which changed only table's metadata always reset
table_map_id for the table share to 0. Despite the fact that
0 is a valid value for table_map_id, this step caused problems
as it could have created situation in which we had more than
one table share with table_map_id equal 0. If more than one
table with table_map_id are 0 were updated in the same statement,
updates to these different tables were written into the same
rows event. This caused slave server to crash.
This bug happens only on 5.1. It doesn't affect 5.5+.
This patch solves this problem by ensuring that ALTER TABLE
statements which change metadata only never reset table_map_id
to 0. To do this it changes reopen_table() to correctly use
refreshed table_map_id value instead of using the old one/
resetting it.
When slave executes a transaction bigger than slave's max_binlog_cache_size,
slave will crash. It is caused by the assert that server should only roll back
the statement but not the whole transaction if the error ER_TRANS_CACHE_FULL
happens. But slave sql thread always rollbacks the whole transaction when
an error happens.
Ather this patch, we always clear any error set in sql thread(it is different
from the error in 'SHOW SLAVE STATUS') and it is cleared before rolling back
the transaction.
This is a regression from the fix for bug no 38999. A storage engine capable
of reading only a subset of a table's columns updates corresponding bits in
the read buffer to signal that it has read NULL values for the corresponding
columns. It cannot, and should not, update any other bits. Bug no 38999
occurred because the implementation of UPDATE statements compare the NULL bits
using memcmp, inadvertently comparing bits that were never requested from the
storage engine. The regression was caused by the storage engine trying to
alleviate the situation by writing to all NULL bits, even those that it had no
knowledge of. This has devastating effects for the index merge algorithm,
which relies on all NULL bits, except those explicitly requested, being left
unchanged.
The fix reverts the fix for bug no 38999 in both InnoDB and InnoDB plugin and
changes the server's method of comparing records. For engines that always read
entire rows, we proceed as usual. For engines capable of reading only select
columns, the record buffers are now compared on a column by column basis. An
assertion was also added so that non comparable buffers are never read. Some
relevant copy-pasted code was also consolidated in a new function.
LOAD DATA into partitioned MyISAM table
Problem was that both partitioning and myisam
used the same table_share->mutex for different protections
(auto inc and repair).
Solved by adding a specific mutex for the partitioning
auto_increment.
Also adding destroying the ha_data structure in
free_table_share (which is to be propagated
into 5.5).
This is a 5.1 ONLY patch, already fixed in 5.5+.
Bug#57113: ha_partition::extra(ha_extra_function):
Assertion `m_extra_cache' failed
Fix for bug#55458 included DBUG_ASSERTS causing
debug builds of the server to crash on
another multi-table update.
Removed the asserts since they where wrong.
(updated after testing the patch in 5.5).
Trying to run perl fails, just like it does when perl is started but fails
Trap the case that perl was not found/could not be started, and skip test
Also force a restart of servers since test may already have done something
mtr now also appends path of current perl to PATH to aid mysqltest
Added --enable-connect-log, somewhet similar to --enable-query-log
If query log is disabled, disable connect log too
Also some related cleanup in mysqltest.test: removing duplicate test loop
Subselect executes twice, at JOIN::optimize stage
and at JOIN::execute stage. At optimize stage
Innodb prebuilt struct which is used for the
retrieval of column values is initialized in.
ha_innobase::index_read(), prebuilt->sql_stat_start is true.
After QUICK_ROR_INTERSECT_SELECT finished his job it
restores read_set/write_set bitmaps with initial values
and deactivates one of the handlers used by
QUICK_ROR_INTERSECT_SELECT in JOIN::cleanup
(it's the case when we reuse original handler as one of
handlers required by QUICK_ROR_INTERSECT_SELECT object).
On second subselect execution inactive handler is activated
in QUICK_RANGE_SELECT::reset, file->ha_index_init().
In ha_index_init Innodb prebuilt struct is reinitialized
with inappropriate read_set/write_set bitmaps. Further
reinitialization in ha_innobase::index_read() does not
happen as prebuilt->sql_stat_start is false.
It leads to partial retrieval of required field values
and we get a mix of field values from different records
in the record buffer.
The fix is to reset
read_set/write_set bitmaps as these values
are required for proper intialization of
internal InnoDB struct which is used for
the retrieval of column values
(see build_template(), ha_innodb.cc)
adding new indexes
A fast alter table requires that the existing (old) table
and indices are unchanged (i.e only new indices can be
added). To verify this, the layout and flags of the old
table/indices are compared for equality with the new.
The PACK_KEYS option is a no-op in InnoDB, but the flag
exists, and is used in the table compare. We need to
check this (table) option flag before deciding whether an
index should be packed or not. If the table has
explicitly set PACK_KEYS to 0, the created indices should
not be marked as packed/packable.
ORDER BY computed col
GROUP BY implies ORDER BY in the MySQL dialect of SQL. Therefore, when an
index on the first table in the query is used, and that index satisfies
ordering according to the GROUP BY clause, the query optimizer estimates the
number of tuples that need to be read from this index. If there is a LIMIT
clause, table statistics on tables following this 'sort table' are employed.
There may be a separate ORDER BY clause however, which mandates reading the
whole 'sort table' anyway. But the previous estimate was left untouched.
Fixed by removing the estimate from EXPLAIN output if GROUP BY is used in
conjunction with an ORDER BY clause that mandates using a temporary table.
Version "5.1.42 SUSE MySQL RPM"
When a query was using a DATE or DATETIME value formatted
using different formatting than "yyyy-mm-dd HH:MM:SS", a
query with a greater-or-equal '>=' condition matched only
greater values in an indexed TIMESTAMP column.
The problem was introduced by the fix for the bug 46362
and partially solved (for DATE and DATETIME columns only)
by the fix for the bug 47925.
The stored_field_cmp_to_item function has been modified
to take into account TIMESTAMP columns like we do for
DATE and DATETIME columns.
result
Row subqueries producing no rows were not handled as UNKNOWN
values in row comparison expressions.
That was a result of the following two problems:
1. Item_singlerow_subselect did not mark the resulting row
value as NULL/UNKNOWN when no rows were produced.
2. Arg_comparator::compare_row() did not take into account that
a whole argument may be NULL rather than just individual scalar
values.
Before bug#34384 was fixed, the above problems were hidden
because an uninitialized (i.e. without any stored value) cached
object would appear as NULL for scalar values in a row subquery
returning an empty result. After the fix
Arg_comparator::compare_row() would try to evaluate
uninitialized cached objects.
Fixed by removing the aforementioned problems.
Convertion from a floating point number to a string caused a
crash.
During rare circumstances a String object could crash when
it was requested to allocate new memory.
A crash could occcur in Field_double::val_str() because of
a pointer referencing memory inside a String object which was
of unknown size.
And finally, the geometric collection should not accept
arguments which are non geometric.
The EXISTS transformation has additional switches to catch the known corner
cases that appear when transforming an IN predicate into EXISTS. Guarded
conditions are used which are deactivated when a NULL value is seen in the
outer expression's row. When the inner query block supplies NULL values,
however, they are filtered out because no distinction is made between the
guarded conditions; guarded NOT x IS NULL conditions in the HAVING clause that
filter out NULL values cannot be de-activated in isolation from those that
match values or from the outer expression or NULL's.
The above problem is handled by making the guarded conditions remember whether
they have rejected a NULL value or not, and index access methods are taking
this into account as well.
The bug consisted of
1) Not resetting the property for every nested loop iteration on the inner
query's result.
2) Not propagating the NULL result properly from inner query to IN optimizer.
3) A hack that may or may not have been needed at some point. According to a
comment it was aimed to fix#2 by returning NULL when FALSE was actually
the result. This caused failures when #2 was properly fixed. The hack is
now removed.
The fix resolves all three points.
multi-table UPDATE IGNORE.
The problem was that if there was an active SELECT statement
during trigger execution, an error risen during the execution
may cause a crash. The fix is to temporary reset LEX::current_select
before trigger execution and restore it afterwards. This way
errors risen during the trigger execution are processed as
if there was no active SELECT.