This allows one to run the test suite even if any of the following
options are changed:
- character-set-server
- collation-server
- join-cache-level
- log-basename
- max-allowed-packet
- optimizer-switch
- query-cache-size and query-cache-type
- skip-name-resolve
- table-definition-cache
- table-open-cache
- Some innodb options
etc
Changes:
- Don't print out the value of system variables as one can't depend on
them to being constants.
- Don't set global variables to 'default' as the default may not
be the same as the test was started with if there was an additional
option file. Instead save original value and reset it at end of test.
- Test that depends on the latin1 character set should include
default_charset.inc or set the character set to latin1
- Test that depends on the original optimizer switch, should include
default_optimizer_switch.inc
- Test that depends on the value of a specific system variable should
set it in the test (like optimizer_use_condition_selectivity)
- Split subselect3.test into subselect3.test and subselect3.inc to
make it easier to set and reset system variables.
- Added .opt files for test that required specfic options that could
be changed by external configuration files.
- Fixed result files in rockdsb & tokudb that had not been updated for
a while.
The problem with the InnoDB table attribute encryption_key_id is that it is
not being persisted anywhere in InnoDB except if the table attribute
encryption is specified and is something else than encryption=default.
MDEV-17320 made it a hard error if encryption_key_id is specified to be
anything else than 1 in that case.
Ideally, we would always persist encryption_key_id in InnoDB. But, then we
would have to be prepared for the case that when encryption is being enabled
for a table whose encryption_key_id attribute refers to a non-existing key.
In MariaDB Server 10.1, our best option remains to not store anything
inside InnoDB. But, instead of returning the error that MDEV-17320
introduced, we should merely issue a warning that the specified
encryption_key_id is going to be ignored if encryption=default.
To improve the situation a little more, we will issue a warning if
SET [GLOBAL|SESSION] innodb_default_encryption_key_id is being set
to something that does not refer to an available encryption key.
Starting with MariaDB Server 10.2, thanks to MDEV-5800, we could open the
table definition from InnoDB side when the encryption is being enabled,
and actually fix the root cause of what was reported in MDEV-17320.
Also, apply the MDEV-17957 changes to encrypted page checksums,
and remove error message output from the checksum function,
because these messages would be useless noise when mariabackup
is retrying reads of corrupted-looking pages, and not that
useful during normal server operation either.
The error messages in fil_space_verify_crypt_checksum()
should be refactored separately.
Rewrite the test encryption.innodb-checksum-algorithm not to
require any restarts or re-bootstrapping, and to cover all
innodb_page_size combinations.
Test innodb.101_compatibility with all innodb_page_size combinations.
Problem was that checksum check resulted false positives that page is
both not encrypted and encryted when checksum_algorithm was
strict_none.
Encrypton checksum will use only crc32 regardless of setting.
buf_zip_decompress: If compression fails report a error message
containing the space name if available (not available during import).
And note if space could be encrypted.
buf_page_get_gen: Do not assert if decompression fails,
instead unfix the page and return NULL to upper layer.
fil_crypt_calculate_checksum: Use only crc32 method.
fil_space_verify_crypt_checksum: Here we need to check
crc32, innodb and none method for old datafiles.
fil_space_release_for_io: Allow null space.
encryption.innodb-compressed-blob is now run with crc32 and none
combinations.
Note that with none and strict_none method there is not really
a way to detect page corruptions and page corruptions after
decrypting the page with incorrect key.
New test innodb-checksum-algorithm to test different checksum
algorithms with encrypted, row compressed and page compressed
tables.