The warning comes from copying POSITION objects where 'type' is not
initialized. This does not affect any production code as when 'type'
was compared/used, it was always initialized.
Removed by initializing the type variable in the constructor
- In best_extension_by_limited_search(), do not check for
"(remaining_tables & real_table_bit)", it is guaranteed to be true.
Make it an assert.
- In (!idx || check_interleaving_with_nj())", remove the !idx part.
This check made sense only in the original version of this function.
- "micro optimization" in check_interleaving_with_nj().
The issue was that best_extension_by_limited_search() had to go through
too many plans with the same cost as there where many EQ_REF tables.
Fixed by shortcutting EQ_REF (AND REF) when the result only contains one
row. This got the optimization time down from hours to sub seconds.
The only known downside with this patch is that in some cases a table
with ref and 1 record may be used before on EQ_REF table. The faster
optimzation phase should compensate for this.
Fixed failing main.default on Windows
(to trigger an assert the test needed a debug build without
safemalloc, as 0xa5 happened to have the important bit set "correctly")
(This is the assert that was added in fix for MDEV-26047)
Table elimination may remove an ON expression from an outer join.
However SELECT_LEX::update_used_tables() will still call
item->walk(&Item::eval_not_null_tables)
for eliminated expressions. If the subquery is constant and cheap
Item_cond_and will attempt to evaluate it, which will trigger an
assert.
The fix is not to call update_used_tables() or eval_not_null_tables()
for ON expressions that were eliminated.
This reverts commit 5ba77222e9
but keeps the test. A different fix for
MDEV-21028 Server crashes in Query_arena::set_query_arena upon SELECT from view
internal temporary tables should use THD as expr_area
The cause of the bug is overflow of uint16 KEY_PART_INFO::length and/or
uint16 KEY_PART_INFO::store_length. The solution is to increase the size
of those variables to the 'uint' type (which is 32-bit long)
If JOIN::create_postjoin_aggr_table encounters errors during execution
then free_tmp_table() is then called twice for JOIN_TAB::aggr.
The solution is to initialize JOIN_TAB::aggr only on successful completion
of JOIN::create_postjoin_aggr_table
Second execution of a prepared statement for a query containing a constant
subquery with union that can be optimized away, could result in server abnormal
termination for debug build or incorrect result set output for release build.
For example, the following test case crashes a server built with debug on second
run of the statement EXECUTE stmt
CREATE TABLE t1 (a INT);
PREPARE stmt FROM 'EXPLAIN SELECT * FROM t1 HAVING 6 IN ( SELECT 6 UNION SELECT 5 )';
EXECUTE stmt;
EXECUTE stmt;
The reason for incorrect result set output or abnormal server termination
is careless working with the data member fake_select_lex->options inside
the function mysql_explain_union(). Once the flag SELECT_DESCRIBE is set in
the data member fake_select_lex->option before calling the methods
SELECT_LEX_UNIT::prepare/SELECT_LEX_UNIT::execute
the original value of the option is no longer restored.
As a consequence, next time the prepared statement is re-executed we have
the fake_select_lex with the flag SELECT_DESCRIBE set in the data member
fake_select_lex->option, that is incorrect. In result, the method
Item_subselect::assigned()
is not invoked during evaluation of a constant condition (constant subquery
with union) that being performed on OPTIMIZE phase of query handling.
This leads to the fact that records in the temporary table are not deleted
before calling
table->file->ha_enable_indexes(HA_KEY_SWITCH_ALL)
in the method st_select_lex_unit::optimize().
In result table->file->ha_enable_indexes(HA_KEY_SWITCH_ALL) returns error
and DBUG_ASSERT(0) is fired.
Stack trace to the line where the error generated on re-enabling indexes
for next subselect iteration is below:
st_select_lex_unit::optimize (at sql_union.cc:954)
handler::ha_enable_indexes (at handler.cc:4338)
ha_heap::enable_indexes (at ha_heap.cc:519)
heap_enable_indexes (at hp_clear.c:164)
The code snippet to clarify raising the error is also listed:
int heap_enable_indexes(HP_INFO *info)
{
int error= 0;
HP_SHARE *share= info->s;
if (share->data_length || share->index_length)
error= HA_ERR_CRASHED; <<== set error the value HA_ERR_CRASHED
since share->data_length != 0
To fix this issue the original value of unit->fake_select_lex->options
has to be saved before setting the flag SELECT_DESCRIBE and restored
on return from invocation of SELECT_LEX_UNIT::prepare/SELECT_LEX_UNIT::execute
The problem was that "group_min_max optimization" does not work if
some aggregate functions, like COUNT(*), is used.
The function get_best_group_min_max() is using the join->sum_funcs
array to check which aggregate functions are used.
The bug was that aggregates in HAVING where not yet added to
join->sum_funcs at the time get_best_group_min_max() was called.
Fixed by populate join->sum_funcs already in prepare, which means that
all sum functions will be in join->sum_funcs in get_best_group_min_max().
A benefit of this approach is that we can remove several calls to
make_sum_func_list() from the code and simplify the function.
I removed some wrong setting of 'sort_and_group'.
This variable is set when alloc_group_fields() is called, as part
of allocating the cache needed by end_send_group() and does not need
to be set by other functions.
One problematic thing was that Spider is using *join->sum_funcs to detect
at which stage the optimizer is and do internal calculations of aggregate
functions. Updating join->sum_funcs early caused Spider to fail when trying
to find min/max values in opt_sum_query().
Fixed by temporarily resetting sum_funcs during opt_sum_query().
Reviewer: Sergei Petrunia
This bug may affect the queries that uses a grouping derived table with
grouping list containing references to columns from different tables if
the optimizer decides to employ the split optimization for the derived
table. In some very specific cases it may affect queries with a grouping
derived table that refers only one base table.
This bug was caused by an improper fix for the bug MDEV-25128. The fix
tried to get rid of the equality conditions pushed into the where clause
of the grouping derived table T to which the split optimization had been
applied. The fix erroneously assumed that only those pushed equalities
that were used for ref access of the tables referenced by T were needed.
In fact the function remove_const() that figures out what columns from the
group list can be removed if the split optimization is applied can uses
other pushed equalities as well.
This patch actually provides a proper fix for MDEV-25128. Rather than
trying to remove invalid pushed equalities referencing the fields of SJM
tables with a look-up access the patch attempts not to push such equalities.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
The 10.5 version of the patch.
Removing DEFAULT from INFORMATION_SCHEMA columns.
DEFAULT in read-only tables is rather meaningless.
Upgrade should go smoothly.
Also fixes:
MDEV-20254 Problems with EMPTY_STRING_IS_NULL and I_S tables
Removing DEFAULT from INFORMATION_SCHEMA columns.
DEFAULT in read-only tables is rather meaningless.
Upgrade should go smoothly.
Also fixes:
MDEV-20254 Problems with EMPTY_STRING_IS_NULL and I_S tables
The problem affected queries in form:
SELECT FROM (SELECT where Split Materialized is applicable) WHERE 1=0
The problem was caused by this:
- The select in derived table uses two-phase optimization (due to a
possible Split Materialized).
- The primary select has "Impossible where" and so it short-cuts its
optimization.
- The optimization for the SELECT in the derived table is never finished,
and EXPLAIN data structure has a dangling pointer to select #2.
Fixed with this: make JOIN::optimize_stage2() invoke optimization of
derived tables when it is handing a degenerate JOIN with zero tables.
We will not execute the derived tables but we need their query plans
for [SHOW]EXPLAIN.