This patch corrects the fix for MDEV-26412.
Note that when parsing an ON expression the pointer to the current select
is always in select_stack[select_stack_top - 1]. So the pointer to the
outer select (if any) is in select_stack[select_stack_top - 2].
The query manifesting this bug is added to the test case of MDEV-26412.
Moved LIMIT warning from vers_set_hist_part() to new call
vers_check_limit() at table unlock phase. At that point
read_partitions bitmap is already pruned by DML code (see
prune_partitions(), find_used_partitions()) so we have to set
corresponding bits for working history partition.
Also we don't do my_error(ME_WARNING|ME_ERROR_LOG), because at that
point it doesn't update warnings number, so command reports 0 warnings
(but warning list is still updated). Instead we do
push_warning_printf() and sql_print_warning() separately.
Under LOCK TABLES external_lock(F_UNLCK) is not executed. There is
start_stmt(), but no corresponding "stop_stmt()". So for that mode we
call vers_check_limit() directly from close_thread_tables().
Test result has been changed according to new LIMIT and warning
printing algorithm. For convenience all LIMIT warnings are marked with
"You see warning above ^".
TODO MDEV-20345 fixed. Now vers_history_generating() contains
fine-grained list of DML-commands that can generate history (and TODO
mechanism worked well).
IF an INSERT/REPLACE SELECT statement contained an ON expression in the top
level select and this expression used a subquery with a column reference
that could not be resolved then an attempt to resolve this reference as
an outer reference caused a crash of the server. This happened because the
outer context field in the Name_resolution_context structure was not set
to NULL for such references. Rather it pointed to the first element in
the select_stack.
Note that starting from 10.4 we cannot use the SELECT_LEX::outer_select()
method when parsing a SELECT construct.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
The first step for deprecating innodb_autoinc_lock_mode(see MDEV-27844) is:
- to switch statement binlog format to ROW if binlog format is MIXED and
the statement changes autoincremented fields
- issue warnings if innodb_autoinc_lock_mode == 2 and binlog format is
STATEMENT
failed in Diagnostics_area::set_ok_status in my_ok from
mysql_sql_stmt_prepare
Analysis: Before PREPARE is executed, binlog_format is STATEMENT.
This PREPARE had SET STATEMENT which sets binlog_format to ROW. Now after
PREPARE is done we reset the binlog_format (back to STATEMENT). But we have
temporary table, it doesn't let changing binlog_format=ROW to
binlog_format=STATEMENT and gives error which goes unreported. This
unreported error eventually causes assertion failure.
Fix: Change return type for LEX::restore_set_statement_var() to bool and
make it return error state.
If the first token of the body of a stored procedure was 'WITH' then
the beginning of the body was determined incorrectly and that token was
missing in the string representing the body of the SP in mysql.proc. As a
resultnany call of such procedure failed as the string representing the
body could not be parsed.
The patch corrects the code of the functions get_tok_start() and
get_cpp_tok_start() of the class Lex_input_stream to make them take into
account look ahead tokens. The patch is needed only for 10.2 as this
problem has neen resolved in 10.3+.
Withing this task the following changes were made:
- Added sending of metadata info in prepare phase for the admin related
command (check table, checksum table, repair, optimize, analyze).
- Refactored implmentation of HELP command to support its execution in
PS mode
- Added support for execution of LOAD INTO and XA- related statements
in PS mode
- Modified mysqltest.cc to run statements in PS mode unconditionally
in case the option --ps-protocol is set. Formerly, only those statements
were executed using PS protocol that matched the hard-coded regular expression
- Fixed the following issues:
The statement
explain select (select 2)
executed in regular and PS mode produces different results:
MariaDB [test]> prepare stmt from "explain select (select 2)";
Query OK, 0 rows affected (0,000 sec)
Statement prepared
MariaDB [test]> execute stmt;
+------+-------------+-------+------+---------------+------+---------+------+------+----------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+------+-------------+-------+------+---------------+------+---------+------+------+----------------+
| 1 | PRIMARY | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used |
| 2 | SUBQUERY | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used |
+------+-------------+-------+------+---------------+------+---------+------+------+----------------+
2 rows in set (0,000 sec)
MariaDB [test]> explain select (select 2);
+------+-------------+-------+------+---------------+------+---------+------+------+----------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+------+-------------+-------+------+---------------+------+---------+------+------+----------------+
| 1 | SIMPLE | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used |
+------+-------------+-------+------+---------------+------+---------+------+------+----------------+
1 row in set, 1 warning (0,000 sec)
In case the statement
CREATE TABLE t1 SELECT * FROM (SELECT 1 AS a, (SELECT a+0)) a
is run in PS mode it fails with the error
ERROR 1054 (42S22): Unknown column 'a' in 'field list'.
- Uniform handling of read-only variables both in case the SET var=val
statement is executed as regular or prepared statememt.
- Fixed assertion firing on handling LOAD DATA statement for temporary tables
- Relaxed assert condition in the function lex_end_stage1() by adding
the commands SQLCOM_ALTER_EVENT, SQLCOM_CREATE_PACKAGE,
SQLCOM_CREATE_PACKAGE_BODY to a list of supported command
- Removed raising of the error ER_UNSUPPORTED_PS in the function
check_prepared_statement() for the ALTER VIEW command
- Added initialization of the data memember st_select_lex_unit::last_procedure
(assign NULL value) in the constructor
Without this change the test case main.ctype_utf8 fails with the following
report in case it is run with the optoin --ps-protocol.
mysqltest: At line 2278: query 'VALUES (_latin1 0xDF) UNION VALUES(_utf8'a' COLLATE utf8_bin)' failed: 2013: Lost connection
- The following bug reports were fixed:
MDEV-24460: Multiple rows result set returned from stored
routine over prepared statement binary protocol is
handled incorrectly
CONC-519: mariadb client library doesn't handle server_status and
warnign_count fields received in the packet
COM_STMT_EXECUTE_RESPONSE.
Reasons for these bug reports have the same nature and caused by
missing loop iteration on results sent by server in response to
COM_STMT_EXECUTE packet.
Enclosing of statements for processing of COM_STMT_EXECUTE response
in the construct like
do
{
...
} while (!mysql_stmt_next_result());
fixes the above mentioned bug reports.
also avoid an oxymoron of using `MYSQL_PLUGIN_IMPORT` under
`#ifdef MYSQL_SERVER`, and empty_clex_str is so trivial that a plugin
can define it if needed.
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.
This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
# Conflicts:
# sql/sql_cte.cc
# sql/sql_cte.h
# sql/sql_lex.cc
# sql/sql_lex.h
# sql/sql_view.cc
# sql/sql_yacc.yy
# sql/sql_yacc_ora.yy
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.
This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.
This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
The ROWNUM() function is for SELECT mapped to JOIN->accepted_rows, which is
incremented for each accepted rows.
For Filesort, update, insert, delete and load data, we map ROWNUM() to
internal variables incremented when the table is changed.
The connection between the row counter and Item_func_rownum is done
in sql_select.cc::fix_items_after_optimize() and
sql_insert.cc::fix_rownum_pointers()
When ROWNUM() is used anywhere in query, the optimization to ignore ORDER
BY in sub queries are disabled. This was done to get the following common
Oracle query to work:
select * from (select * from t1 order by a desc) as t where rownum() <= 2;
MDEV-3926 "Wrong result with GROUP BY ... WITH ROLLUP" contains a discussion
about this topic.
LIMIT optimization is enabled when in a top level WHERE clause comparing
ROWNUM() with a numerical constant using any of the following expressions:
- ROWNUM() < #
- ROWNUM() <= #
- ROWNUM() = 1
ROWNUM() can be also be the right argument to the comparison function.
LIMIT optimization is done in two cases:
- For the current sub query when the ROWNUM comparison is done on the top
level:
SELECT * from t1 WHERE rownum() <= 2 AND t1.a > 0
- For an inner sub query, when the upper level has only a ROWNUM comparison
in the WHERE clause:
SELECT * from (select * from t1) as t WHERE rownum() <= 2
In Oracle mode, one can also use ROWNUM without parentheses.
Other things:
- Fixed bug where the optimizer tries to optimize away sub queries
with RAND_TABLE_BIT set (non-deterministic queries). Now these
sub queries will not be converted to joins. This bug fix was also
needed to get rownum() working inside subqueries.
- In remove_const() remove setting simple_order to FALSE if ROLLUP is
USED. This code was disable a long time ago because of wrong assignment
in the following code. Instead we set simple_order to false if
RAND_TABLE_BIT was used in the SELECT list. This ensures that
we don't delete ORDER BY if the result set is not deterministic, like
in 'SELECT RAND() AS 'r' FROM t1 ORDER BY r';
- Updated parameters for Sort_param::init_for_filesort() to be able
to provide filesort with information where the number of accepted
rows should be stored
- Reordered fields in class Filesort to optimize storage layout
- Added new error messsage to tell that a function can't be used in HAVING
- Added field 'with_rownum' to THD to mark that ROWNUM() is used in the
query.
Co-author: Oleksandr Byelkin <sanja@mariadb.com>
LIMIT optimization for sub query
LEX, st_select_lex, st_select_unit optimized for space:
- Use bit fields for bool variables
- Ensure that all bit fields are initialized (improves
performance for init functions as all bit fields can be
initalized with one memory access)
- Move members around in above structures to remove alignment
gaps
Some savings:
LEX: 7032 -> 6880
THD: 25608 -> 25456
st_select_lex_unit: 2048 -> 2008
LEX::start(): 1321 -> 1245 instructions
st_select_lex_unit::init_query() 284 -> 214 instructions
st_select_lex::init_query(): 766 -> 692 instructions
st_select_lex::init_select(): 563 -> 540 instructions
Other things:
- Removed not used LEX::select_allow_into
- Fixed MDEV-25510 Assertion `sel->select_lock ==
st_select_lex::select_lock_type::NONE' which was caused by this commit.
plugin variables in SET only locked the plugin till the end of the
statement. If SET with a plugin variable was prepared, it was possible
to uninstall the plugin before EXECUTE. Then EXECUTE would crash,
trying to resolve a now-invalid pointer to a disappeared variable.
Fix: keep plugins locked until the prepared statement is closed.