Moved LIMIT warning from vers_set_hist_part() to new call
vers_check_limit() at table unlock phase. At that point
read_partitions bitmap is already pruned by DML code (see
prune_partitions(), find_used_partitions()) so we have to set
corresponding bits for working history partition.
Also we don't do my_error(ME_WARNING|ME_ERROR_LOG), because at that
point it doesn't update warnings number, so command reports 0 warnings
(but warning list is still updated). Instead we do
push_warning_printf() and sql_print_warning() separately.
Under LOCK TABLES external_lock(F_UNLCK) is not executed. There is
start_stmt(), but no corresponding "stop_stmt()". So for that mode we
call vers_check_limit() directly from close_thread_tables().
Test result has been changed according to new LIMIT and warning
printing algorithm. For convenience all LIMIT warnings are marked with
"You see warning above ^".
TODO MDEV-20345 fixed. Now vers_history_generating() contains
fine-grained list of DML-commands that can generate history (and TODO
mechanism worked well).
column generated using date_format() and if()
vcol_info->expr is allocated on expr_arena at parsing stage. Since
expr item is allocated on expr_arena all its containee items must be
allocated on expr_arena too. Otherwise fix_session_expr() will
encounter prematurely freed item.
When table is reopened from cache vcol_info contains stale
expression. We refresh expression via TABLE::vcol_fix_exprs() but
first we must prepare a proper context (Vcol_expr_context) which meets
some requirements:
1. As noted above expr update must be done on expr_arena as there may
be new items created. It was a bug in fix_session_expr_for_read() and
was just not reproduced because of no second refix. Now refix is done
for more cases so it does reproduce. Tests affected: vcol.binlog
2. Also name resolution context must be narrowed to the single table.
Tested by: vcol.update main.default vcol.vcol_syntax gcol.gcol_bugfixes
3. sql_mode must be clean and not fail expr update.
sql_mode such as MODE_NO_BACKSLASH_ESCAPES, MODE_NO_ZERO_IN_DATE, etc
must not affect vcol expression update. If the table was created
successfully any further evaluation must not fail. Tests affected:
main.func_like
Reviewed by: Sergei Golubchik <serg@mariadb.org>
1. moved fix_vcol_exprs() call to open_table()
mysql_alter_table() doesn't do lock_tables() so it cannot win from
fix_vcol_exprs() from there. Tests affected: main.default_session
2. Vanilla cleanups and comments.
Re-execution of a query containing subquery in the FROM clause results
in assert failure in case the query is run as part of a stored routine or
as a prepared statement AND derived table merge optimization is off.
As an example, the following test case
CREATE TABLE t1 (a INT) ;
CREATE PROCEDURE sp() SELECT * FROM (SELECT a FROM t1) tb;
CALL sp();
SET optimizer_switch='derived_merge=off';
CALL sp();
results in assert failure on the second invocation of the 'sp' stored routine.
The reason for assertion failure is that the expression
derived->is_excluded()
returns the value true where the value false expected.
The method is_excluded() returns the value true for a derived table
that has been merged to a parent select. Such transformation happens as part
of Derived Table Merge Optimization that is performed on first invocation of
a stored routine or a prepared statement containing a query with subquery
in the FROM clause of the main SELECT.
When the same routine or prepared statement is run the second time and
Derived Table Merge Optimization is OFF the MariaDB server tries to materialize
a derived table specified by the subquery that fails since this subquery
has already been merged to the top-most SELECT. This transformation is permanent
and can't be reverted. That is the reason why the assert
DBUG_ASSERT(!derived->is_excluded());
fails inside the function TABLE_LIST::set_check_materialized().
Similar behaviour can be observed in case a stored routine or prepared statement
containing a SELECT statement with subquery in the FROM clause, first is run
with the optimizer_switch option set to derived_merge=off and re-run after this
option has been switched to derived_merge=on. In this case a derived table for
subquery is materialized on the first execution and marked as merged derived
table on the second execution that results in error with misleading error
message:
MariaDB [test]> CALL sp1();
ERROR 1030 (HY000): Got error 1 "Operation not permitted" from storage engine MEMORY
To fix the issue, a derived table that has been already optimized shouldn't be
re-marked for one more round of optimization.
One significant consequence following from suggested change is that the data
member TABLE_LIST::derived_type is not updated once the table optimization
has been done. This fact should be taken into account when Prepared Statement
being handled since once a table listed in a query has been optimized on
execution of the statement PREPARE FROM it won't be touched anymore on handling
the statement EXECUTE.
One side effect caused by this change could be observed for the following
test case:
CREATE TABLE t1 (s1 INT);
CREATE VIEW v1 AS
SELECT s1,s2 FROM (SELECT s1 as s2 FROM t1 WHERE s1 <100) x, t1 WHERE t1.s1=x.s2;
INSERT INTO v1 (s1) VALUES (-300);
PREPARE stmt FROM "INSERT INTO v1 (s1) VALUES (-300)";
EXECUTE stmt;
Execution of the above EXECUTE statement results in issuing the error
ER_COLUMNACCESS_DENIED_ERROR since table_ref->is_merged_derived() is false
and check_column_grant_in_table_ref() called for a temporary table that
shouldn't be. To fix this issue the function find_field_in_tables has been
modified in such a way that the function check_column_grant_in_table_ref()
is not called for a temporary table.
This patch reverts the fixes of the bugs MDEV-24454 and MDEV-25631 from
the commit 3690c549c6.
It leaves the changes in plugin/feedback/feedback.cc and corresponding
test files introduced in this commit intact.
Proper fixes for the bug MDEV-24454 and MDEV-25631 will follow immediately.
Diagnostics_area::set_error_status (interrupted ALTER TABLE under LOCK)
Analysis: KILL_QUERY is not ignored when local memory used exceeds maximum
session memory. Hence the query proceeds, OK is sent and we end up
reopening tables that are marked for reopen. During this, kill status is
eventually checked and assertion failure happens during trying to send error
message because OK has already been sent.
Fix: Ok is already sent so statement has already executed. It is too
late to give error. So ignore kill.
There are two fill_record() functions (lines 8343 and 8618). First one
is used when there are some explicit values, the second one is used
for all implicit values. First one does update_default_fields(), the
second one did not. Added update_default_fields() call to the implicit
version of fill_record().
Use in_sum_func (and so nest_level) only in LEX to which SELECT lex belong to
Reduce usage of current_select (because it does not always point on the correct
SELECT_LEX, for example with prepare.
Change context for all classes inherited from Item_ident (was only for Item_field) in case of pushing down it to HAVING.
Now name resolution context have to have SELECT_LEX reference if the context is present.
Fixed feedback plugin stack usage.
The problem was that a PREARE followed by a non prepared statement
using DEFAULT NEXT_VALUE() could change table->next_local to point to
a not persitent memory aria. The next EXECUTE would then try to use
the wrong pointer, which could cause a crash.
Fixed by reseting the pointer to it's old value when doing EXECUTE.
Analysis: When we have INSERT/REPLACE returning with qualified asterisk in the
RETURNING clause, '*' is not resolved properly because of wrong context.
context->table_list is NULL or has incorrect table because context->table_list
has tables from the FROM clause. For INSERT/REPLACE...SELECT...RETURNING,
context->table_list has table we are inserting from. While in other
INSERT/REPLACE syntax, context->table_list is NULL because there is no FROM
clause.
Fix: If filling fields instead of '*' for qualified asterisk in RETURNING,
use first_name_resolution_table for correct resolution of item.