(Initial patch by Varun Gupta. Amended and added comments).
When the query has both
1. Aggregate functions that require sorting data by group, and
2. Window functions
we need to use two temporary tables. The first temp.table will hold the
join output. Then it is passed to filesort(). Reading it in sorted
order allows to compute the aggregate functions.
Then, we need to write their values into the second temp. table. Then,
Window Function computation step can pass that to filesort() and read
them in the order it needs.
Failure to create the second temp. table would cause an assertion
failure: window function could would not find where to get the values
of the aggregate functions.
(Edits by SergeiP: fix encryption.tempfiles_encrypted, re-word comment)
Global ORDER BY clause of a UNION may not refer to 1) aggregate functions
or 2) window functions. setup_order() checked for #1 but not for #2.
(Backport Varun Gupta's patch + edit the commit comment)
Name resolution code produced errors for valid queries with window
functions (but not for queries which used aggregate functions as
window functions).
Name resolution code worked incorrectly, because window function
objects had is_window_func_sum_expr()=false. This was so, because
mark_as_window_func_sum_expr() was only called for aggregate functions
used as window functions.
The fix is to call it for any window function.
* Make Item_in_optimizer::fix_fields inherit the with_window_func
attribute of the subquery's left expression (the subquery itself
cannot have window functions that are aggregated in this select)
* Make Item_cache_wrapper::Item_cache_wrapper() inherit
with_window_func attribute of the item it is caching.
row_number() over () window function can be used without any column in the OVER
clause. Additionally, the item doesn't reference any tables, as it's not
effectively referencing any table. Rather it is specifically built based
on the end temporary table used for window function computation.
This caused remove_const function to wrongly drop it from the ORDER
list. Effectively, we shouldn't be dropping any window function from the
ORDER clause, so adjust remove_const to account for that.
Reviewed by: Sergei Petrunia sergey@mariadb.com
There are 2 issues here:
Issue #1: memory allocation.
An IO_CACHE that uses encryption uses a larger buffer (it needs space for the encrypted data,
decrypted data, IO_CACHE_CRYPT struct to describe encryption parameters etc).
Issue #2: IO_CACHE::seek_not_done
When IO_CACHE objects are cloned, they still share the file descriptor.
This means, operation on one IO_CACHE may change the file read position
which will confuse other IO_CACHEs using it.
The fix of these issues would be:
Allocate the buffer to also include the extra size needed for encryption.
Perform seek again after one IO_CACHE reads the file.
The issue here is that end_of_file for encrypted temporary IO_CACHE (used by filesort) is updated
using lseek.
Encryption adds storage overhead and hides it from the caller by recalculating offsets and lengths.
Two different IO_CACHE cannot possibly modify the same file
because the encryption key is randomly generated and stored in the IO_CACHE.
So when the tempfiles are encrypted DO NOT use lseek to change end_of_file.
Further observations about updating end_of_file using lseek
1) The end_of_file update is only used for binlog index files
2) The whole point is to update file length when the file was modified via a different file descriptor.
3) The temporary IO_CACHE files can never be modified via a different file descriptor.
4) For encrypted temporary IO_CACHE, end_of_file should not be updated with lseek