row_build_spatial_index_key(): Return early if the column is missing
in the table row tuple.
This is a regression that was introduced by
commit 0e5a4ac253.
The accessor dtuple_get_nth_v_field() was defined differently between
debug and release builds in MySQL 5.7.8 in
mysql/mysql-server@c47e1751b7
and a debug assertion to document or enforce the questionable assumption
tuple->v_fields == &tuple->fields[tuple->n_fields] was missing.
This was apparently no problem until MDEV-11369 introduced instant
ADD COLUMN to MariaDB Server 10.3. With that work present, in one
test case, trx_undo_report_insert_virtual() could in release builds
fetch the wrong value for a virtual column.
We replace many of the dtuple_t accessors with const-preserving
inline functions, and fix missing or misleadingly applied const
qualifiers accordingly.
MySQL 5.7 introduced the class page_size_t and increased the size of
buffer pool page descriptors by introducing this object to them.
Maybe the intention of this exercise was to prepare for a future
where the buffer pool could accommodate multiple page sizes.
But that future never arrived, not even in MySQL 8.0. It is much
easier to manage a pool of a single page size, and typically all
storage devices of an InnoDB instance benefit from using the same
page size.
Let us remove page_size_t from MariaDB Server. This will make it
easier to remove support for ROW_FORMAT=COMPRESSED (or make it a
compile-time option) in the future, just by removing various
occurrences of zip_size.
InnoDB in MySQL 5.7 introduced two new parameters to the function
dict_hdr_get_new_id(), to allow redo logging to be disabled when
assigning identifiers to temporary tables or during the
backup-unfriendly TRUNCATE TABLE that was replaced in MariaDB
by MDEV-13564.
Now that MariaDB 10.4.0 removed the crash recovery code for the
backup-unfriendly TRUNCATE, we can revert dict_hdr_get_new_id()
to be used only for persistent data structures.
dict_table_assign_new_id(): Remove. This was a simple 2-line function
that was called from few places.
dict_table_open_on_id_low(): Declare in the only file where it
is called.
dict_sys_t::temp_id_hash: A separate lookup table for temporary tables.
Table names will be in the common dict_sys_t::table_hash.
dict_sys_t::get_temporary_table_id(): Assign a temporary table ID.
dict_sys_t::get_table(): Look up a persistent table.
dict_sys_t::get_temporary_table(): Look up a temporary table.
dict_sys_t::temp_table_id: The sequence of temporary table identifiers.
Starts from DICT_HDR_FIRST_ID, so that we can continue to simply compare
dict_table_t::id to a few constants for the persistent hard-coded
data dictionary tables.
undo_node_t::state: Distinguish temporary and persistent tables.
lock_check_dict_lock(), lock_get_table_id(): Assert that there cannot
be locks on temporary tables.
row_rec_to_index_entry_impl(): Assert that there cannot be metadata
records on temporary tables.
row_undo_ins_parse_undo_rec(): Distinguish temporary and persistent tables.
Move some assertions from the only caller. Return whether the table was
found.
row_undo_ins(): Add some assertions.
row_undo_mod_clust(), row_undo_mod(): Do not assign node->state.
Let row_undo() do that.
row_undo_mod_parse_undo_rec(): Distinguish temporary and persistent tables.
Move some assertions from the only caller. Return whether the table was
found.
row_undo_try_truncate(): Renamed and simplified from trx_roll_try_truncate().
row_undo_rec_get(): Replaces trx_roll_pop_top_rec_of_trx() and
trx_roll_pop_top_rec(). Fetch an undo log record, and assign undo->state
accordingly.
trx_undo_truncate_end(): Acquire the rseg->mutex only for the minimum
required duration, and release it between mini-transactions.
main.derived_cond_pushdown: Move all 10.3 tests to the end,
trim trailing white space, and add an "End of 10.3 tests" marker.
Add --sorted_result to tests where the ordering is not deterministic.
main.win_percentile: Add --sorted_result to tests where the
ordering is no longer deterministic.
row_build_index_entry_low(): ext does not contain virtual columns.
row_upd_store_v_row(): Copy virtual column values
This is based on the following fix in MySQL 5.7.24:
commit 4ec2158bec73f1582501c4b3e3de250fed9edc9a
Author: Sachin Agarwal <sachin.z.agarwal@oracle.com>
Date: Fri Aug 24 14:44:13 2018 +0530
Bug #27968952 INNODB CRASH/CORRUPTION WITH TEXT PREFIX INDEXES
Problem:
There are two problems:
1. If there is one secondary index on extenally
stored column and another seconday index on virtual column (whose
base column is not externally stored). then while updating seconday
index on vitrual column, virtual column data is replaced by
externally stoared column.
2. In row update operation, node->row contains
shallow copy of virtual data fields. While building an update vector
containing all the fields to be modified, compute virtual column.
which may causes change in virtual data fields in node->row.
In both the above cases, while updating seconday index on virtual
column, couldn't find the row and hit an explicite assert inside
ROW_NOT_FOUND.
Fix:
1. Added check if column is virtual then its ext flag should be ZERO
and virtual column data will not be replaced by offset column data.
2. Deep copy of virtual data fields for node->row.
RB: #20382
Reviewed by : Jimmy.Yang@oracle.com
Allow ADD COLUMN anywhere in a table, not only adding as the
last column.
Allow instant DROP COLUMN and instant changing the order of columns.
The added columns will always be added last in clustered index records.
In new records, instantly dropped columns will be stored as NULL or
empty when possible.
Information about dropped and reordered columns will be written in
a metadata BLOB (mblob), which is stored before the first 'user' field
in the hidden metadata record at the start of the clustered index.
The presence of mblob is indicated by setting the delete-mark flag in
the metadata record.
The metadata BLOB stores the number of clustered index fields,
followed by an array of column information for each field.
For dropped columns, we store the NOT NULL flag, the fixed length,
and for variable-length columns, whether the maximum length exceeded
255 bytes. For non-dropped columns, we store the column position.
Unlike with MDEV-11369, when a table becomes empty, it cannot
be converted back to the canonical format. The reason for this is
that other threads may hold cached objects such as
row_prebuilt_t::ins_node that could refer to dropped or reordered
index fields.
For instant DROP COLUMN and ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC,
we must store the n_core_null_bytes in the root page, so that the
chain of node pointer records can be followed in order to reach the
leftmost leaf page where the metadata record is located.
If the mblob is present, we will zero-initialize the strings
"infimum" and "supremum" in the root page, and use the last byte of
"supremum" for storing the number of null bytes (which are allocated
but useless on node pointer pages). This is necessary for
btr_cur_instant_init_metadata() to be able to navigate to the mblob.
If the PRIMARY KEY contains any variable-length column and some
nullable columns were instantly dropped, the dict_index_t::n_nullable
in the data dictionary could be smaller than it actually is in the
non-leaf pages. Because of this, the non-leaf pages could use more
bytes for the null flags than the data dictionary expects, and we
could be reading the lengths of the variable-length columns from the
wrong offset, and thus reading the child page number from wrong place.
This is the result of two design mistakes that involve unnecessary
storage of data: First, it is nonsense to store any data fields for
the leftmost node pointer records, because the comparisons would be
resolved by the MIN_REC_FLAG alone. Second, there cannot be any null
fields in the clustered index node pointer fields, but we nevertheless
reserve space for all the null flags.
Limitations (future work):
MDEV-17459 Allow instant ALTER TABLE even if FULLTEXT INDEX exists
MDEV-17468 Avoid table rebuild on operations on generated columns
MDEV-17494 Refuse ALGORITHM=INSTANT when the row size is too large
btr_page_reorganize_low(): Preserve any metadata in the root page.
Call lock_move_reorganize_page() only after restoring the "infimum"
and "supremum" records, to avoid a memcmp() assertion failure.
dict_col_t::DROPPED: Magic value for dict_col_t::ind.
dict_col_t::clear_instant(): Renamed from dict_col_t::remove_instant().
Do not assert that the column was instantly added, because we
sometimes call this unconditionally for all columns.
Convert an instantly added column to a "core column". The old name
remove_instant() could be mistaken to refer to "instant DROP COLUMN".
dict_col_t::is_added(): Rename from dict_col_t::is_instant().
dtype_t::metadata_blob_init(): Initialize the mblob data type.
dtuple_t::is_metadata(), dtuple_t::is_alter_metadata(),
upd_t::is_metadata(), upd_t::is_alter_metadata(): Check if info_bits
refer to a metadata record.
dict_table_t::instant: Metadata about dropped or reordered columns.
dict_table_t::prepare_instant(): Prepare
ha_innobase_inplace_ctx::instant_table for instant ALTER TABLE.
innobase_instant_try() will pass this to dict_table_t::instant_column().
On rollback, dict_table_t::rollback_instant() will be called.
dict_table_t::instant_column(): Renamed from instant_add_column().
Add the parameter col_map so that columns can be reordered.
Copy and adjust v_cols[] as well.
dict_table_t::find(): Find an old column based on a new column number.
dict_table_t::serialise_columns(), dict_table_t::deserialise_columns():
Convert the mblob.
dict_index_t::instant_metadata(): Create the metadata record
for instant ALTER TABLE. Invoke dict_table_t::serialise_columns().
dict_index_t::reconstruct_fields(): Invoked by
dict_table_t::deserialise_columns().
dict_index_t::clear_instant_alter(): Move the fields for the
dropped columns to the end, and sort the surviving index fields
in ascending order of column position.
ha_innobase::check_if_supported_inplace_alter(): Do not allow
adding a FTS_DOC_ID column if a hidden FTS_DOC_ID column exists
due to FULLTEXT INDEX. (This always required ALGORITHM=COPY.)
instant_alter_column_possible(): Add a parameter for InnoDB table,
to check for additional conditions, such as the maximum number of
index fields.
ha_innobase_inplace_ctx::first_alter_pos: The first column whose position
is affected by instant ADD, DROP, or changing the order of columns.
innobase_build_col_map(): Skip added virtual columns.
prepare_inplace_add_virtual(): Correctly compute num_to_add_vcol.
Remove some unnecessary code. Note that the call to
innodb_base_col_setup() should be executed later.
commit_try_norebuild(): If ctx->is_instant(), let the virtual
columns be added or dropped by innobase_instant_try().
innobase_instant_try(): Fill in a zero default value for the
hidden column FTS_DOC_ID (to reduce the work needed in MDEV-17459).
If any columns were dropped or reordered (or added not last),
delete any SYS_COLUMNS records for the following columns, and
insert SYS_COLUMNS records for all subsequent stored columns as well
as for all virtual columns. If any virtual column is dropped, rewrite
all virtual column metadata. Use a shortcut only for adding
virtual columns. This is because innobase_drop_virtual_try()
assumes that the dropped virtual columns still exist in ctx->old_table.
innodb_update_cols(): Renamed from innodb_update_n_cols().
innobase_add_one_virtual(), innobase_insert_sys_virtual(): Change
the return type to bool, and invoke my_error() when detecting an error.
innodb_insert_sys_columns(): Insert a record into SYS_COLUMNS.
Refactored from innobase_add_one_virtual() and innobase_instant_add_col().
innobase_instant_add_col(): Replace the parameter dfield with type.
innobase_instant_drop_cols(): Drop matching columns from SYS_COLUMNS
and all columns from SYS_VIRTUAL.
innobase_add_virtual_try(), innobase_drop_virtual_try(): Let
the caller invoke innodb_update_cols().
innobase_rename_column_try(): Skip dropped columns.
commit_cache_norebuild(): Update table->fts->doc_col.
dict_mem_table_col_rename_low(): Skip dropped columns.
trx_undo_rec_get_partial_row(): Skip dropped columns.
trx_undo_update_rec_get_update(): Handle the metadata BLOB correctly.
trx_undo_page_report_modify(): Avoid out-of-bounds access to record fields.
Log metadata records consistently.
Apparently, the first fields of a clustered index may be updated
in an update_undo vector when the index is ID_IND of SYS_FOREIGN,
as part of renaming the table during ALTER TABLE. Normally, updates of
the PRIMARY KEY should be logged as delete-mark and an insert.
row_undo_mod_parse_undo_rec(), row_purge_parse_undo_rec():
Use trx_undo_metadata.
row_undo_mod_clust_low(): On metadata rollback, roll back the root page too.
row_undo_mod_clust(): Relax an assertion. The delete-mark flag was
repurposed for ALTER TABLE metadata records.
row_rec_to_index_entry_impl(): Add the template parameter mblob
and the optional parameter info_bits for specifying the desired new
info bits. For the metadata tuple, allow conversion between the original
format (ADD COLUMN only) and the generic format (with hidden BLOB).
Add the optional parameter "pad" to determine whether the tuple should
be padded to the index fields (on ALTER TABLE it should), or whether
it should remain at its original size (on rollback).
row_build_index_entry_low(): Clean up the code, removing
redundant variables and conditions. For instantly dropped columns,
generate a dummy value that is NULL, the empty string, or a
fixed length of NUL bytes, depending on the type of the dropped column.
row_upd_clust_rec_by_insert_inherit_func(): On the update of PRIMARY KEY
of a record that contained a dropped column whose value was stored
externally, we will be inserting a dummy NULL or empty string value
to the field of the dropped column. The externally stored column would
eventually be dropped when purge removes the delete-marked record for
the old PRIMARY KEY value.
btr_index_rec_validate(): Recognize the metadata record.
btr_discard_only_page_on_level(): Preserve the generic instant
ALTER TABLE metadata.
btr_set_instant(): Replaces page_set_instant(). This sets a clustered
index root page to the appropriate format, or upgrades from
the MDEV-11369 instant ADD COLUMN to generic ALTER TABLE format.
btr_cur_instant_init_low(): Read and validate the metadata BLOB page
before reconstructing the dictionary information based on it.
btr_cur_instant_init_metadata(): Do not read any lengths from the
metadata record header before reading the BLOB. At this point, we
would not actually know how many nullable fields the metadata record
contains.
btr_cur_instant_root_init(): Initialize n_core_null_bytes in one
of two possible ways.
btr_cur_trim(): Handle the mblob record.
row_metadata_to_tuple(): Convert a metadata record to a data tuple,
based on the new info_bits of the metadata record.
btr_cur_pessimistic_update(): Invoke row_metadata_to_tuple() if needed.
Invoke dtuple_convert_big_rec() for metadata records if the record is
too large, or if the mblob is not yet marked as externally stored.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
When the last user record is deleted, do not delete the
generic instant ALTER TABLE metadata record. Only delete
MDEV-11369 instant ADD COLUMN metadata records.
btr_cur_optimistic_insert(): Avoid unnecessary computation of rec_size.
btr_pcur_store_position(): Allow a logically empty page to contain
a metadata record for generic ALTER TABLE.
REC_INFO_DEFAULT_ROW_ADD: Renamed from REC_INFO_DEFAULT_ROW.
This is for the old instant ADD COLUMN (MDEV-11369) only.
REC_INFO_DEFAULT_ROW_ALTER: The more generic metadata record,
with additional information for dropped or reordered columns.
rec_info_bits_valid(): Remove. The only case when this would fail
is when the record is the generic ALTER TABLE metadata record.
rec_is_alter_metadata(): Check if a record is the metadata record
for instant ALTER TABLE (other than ADD COLUMN). NOTE: This function
must not be invoked on node pointer records, because the delete-mark
flag in those records may be set (it is garbage), and then a debug
assertion could fail because index->is_instant() does not necessarily
hold.
rec_is_add_metadata(): Check if a record is MDEV-11369 ADD COLUMN metadata
record (not more generic instant ALTER TABLE).
rec_get_converted_size_comp_prefix_low(): Assume that the metadata
field will be stored externally. In dtuple_convert_big_rec() during
the rec_get_converted_size() call, it would not be there yet.
rec_get_converted_size_comp(): Replace status,fields,n_fields with tuple.
rec_init_offsets_comp_ordinary(), rec_get_converted_size_comp_prefix_low(),
rec_convert_dtuple_to_rec_comp(): Add template<bool mblob = false>.
With mblob=true, process a record with a metadata BLOB.
rec_copy_prefix_to_buf(): Assert that no fields beyond the key and
system columns are being copied. Exclude the metadata BLOB field.
rec_convert_dtuple_to_metadata_comp(): Convert an alter metadata tuple
into a record.
row_upd_index_replace_metadata(): Apply an update vector to an
alter_metadata tuple.
row_log_allocate(): Replace dict_index_t::is_instant()
with a more appropriate condition that ignores dict_table_t::instant.
Only a table on which the MDEV-11369 ADD COLUMN was performed
can "lose its instantness" when it becomes empty. After
instant DROP COLUMN or reordering columns, we cannot simply
convert the table to the canonical format, because the data
dictionary cache and all possibly existing references to it
from other client connection threads would have to be adjusted.
row_quiesce_write_index_fields(): Do not crash when the table contains
an instantly dropped column.
Thanks to Thirunarayanan Balathandayuthapani for discussing the design
and implementing an initial prototype of this.
Thanks to Matthias Leich for testing.
This reverts commit 2d4075e1d9
where the debug assertion was added. There seems to be a potential
problem in the purge of indexes that depend on virtual columns.
Ultimately, we should change the InnoDB undo log format so that
all actual secondary index keys are stored there, also for
virtual or spatial indexes. In that way, purge and rollback would
be more straightforward.
row_build_index_entry_low(): Assert that when the value of a
virtual column is not available, this can only happen when
the index creation was completed but not committed yet.
This change is not fixing any bug, making a debug assertion
stricter, so that bugs can be caught in the future.
Ultimately, we should change the InnoDB undo log format so that
all actual secondary index keys are stored there, also for
virtual or spatial indexes. In that way, purge and rollback would
be more straightforward.
Clarify some comments about accessing an externally stored column
on which a spatial index has been defined. Add a TODO comment that
we should actually write the minimum bounding rectangle (MBR) to
the undo log record, so that we can avoid fetching BLOBs and recomputing
MBR.
row_build_spatial_index_key(): Split from row_build_index_entry_low().
For instant ALTER TABLE, we store a hidden metadata record at the
start of the clustered index, to indicate how the format of the
records differs from the latest table definition.
The term 'default row' is too specific, because it applies to
instant ADD COLUMN only, and we will be supporting more classes
of instant ALTER TABLE later on. For instant ADD COLUMN, we
store the initial default values in the metadata record.
Remove unused InnoDB function parameters and functions.
i_s_sys_virtual_fill_table(): Do not allocate heap memory.
mtr_is_block_fix(): Replace with mtr_memo_contains().
mtr_is_page_fix(): Replace with mtr_memo_contains_page().
- Allow NOT NULL constraint to replace the NULL value in the row with
explicit or implicit default value.
- If the default value is non-const value then inplace alter won't
support it.
- ALTER IGNORE will ignore the error if the concurrent DML contains
NULL value.
With trx_sys_t::rw_trx_ids removal, MVCC snapshot overhead became
slightly higher. That is instead of copying an array we now have to
iterate LF_HASH. All this done under trx_sys.mutex protection.
This patch moves MVCC snapshot out of trx_sys.mutex.
Clean-ups:
Removed MVCC: doesn't make too much sense to keep it in a separate class
anymore.
Refactored ReadView so that it now calls register()/deregister() routines
(it was vice versa before).
ReadView doesn't have friends anymore. :(
Even less trx_sys.mutex references.
There is only one transaction system object in InnoDB.
Allocate the storage for it at link time, not at runtime.
lock_rec_fetch_page(): Use the correct fetch mode BUF_GET.
Pages may never be deallocated from a tablespace while
record locks are pointing to them.
trx_sys_t::rw_trx_set is implemented as std::set, which does a few quite
expensive operations under trx_sys_t::mutex protection: e.g. malloc/free
when adding/removing elements. Traversing b-tree is not that cheap either.
This has negative scalability impact, which is especially visible when running
oltp_update_index.lua benchmark on a ramdisk.
To reduce trx_sys_t::mutex contention std::set is replaced with LF_HASH. None
of LF_HASH operations require trx_sys_t::mutex (nor any other global mutex)
protection.
Another interesting issue observed with std::set is reproducible ~2% performance
decline after benchmark is ran for ~60 seconds. With LF_HASH results are stable.
All in all this patch optimises away one of three trx_sys->mutex locks per
oltp_update_index.lua query. The other two critical sections became smaller.
Relevant clean-ups:
Replaced rw_trx_set iteration at startup with local set. The latter is needed
because values inserted to rw_trx_list must be ordered by trx->id.
Removed redundant conditions from trx_reference(): it is (and even was) never
called with transactions that have trx->state == TRX_STATE_COMMITTED_IN_MEMORY.
do_ref_count doesn't (and probably even didn't) make any sense: now it is called
only when reference counter increment is actually requested.
Moved condition out of mutex in trx_erase_lists().
trx_rw_is_active(), trx_rw_is_active_low() and trx_get_rw_trx_by_id() were
greatly simplified and replaced by appropriate trx_rw_hash_t methods.
Compared to rw_trx_set, rw_trx_hash holds transactions only in PREPARED or
ACTIVE states. Transactions in COMMITTED state were required to be found
at InnoDB startup only. They are now looked up in the local set.
Removed unused trx_assert_recovered().
Removed unused innobase_get_trx() declaration.
Removed rather semantically incorrect trx_sys_rw_trx_add().
Moved information printout from trx_sys_init_at_db_start() to
trx_lists_init_at_db_start().
trx_undo_page_report_modify(): For SPATIAL INDEX, keep logging
updated off-page columns twice, so that
the minimum bounding rectangle (MBR) will be logged.
Avoiding the redundant logging would require larger changes
to the undo log format.
row_build_index_entry_low(): Handle SPATIAL_UNKNOWN more robustly,
by refusing to purge the record from the spatial index.
We can get this code when processing old undo log from 10.2.10 or
10.2.11 (the releases affected by MDEV-14799, which was a regression
from MDEV-14051).
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
This should affect debug builds only. Debug builds will check that
the status bits of ROW_FORMAT!=REDUNDANT records match the is_leaf
parameter.
The only observable change to non-debug should be the addition of
the is_leaf parameter to the function rec_copy_prefix_to_dtuple(),
and the removal of some calls to update the adaptive hash index
(it is only built for the leaf pages).
This change should have been made in MySQL 5.0.3, instead of
introducing the status flags in the ROW_FORMAT=COMPACT record header.
The following options will be removed:
innodb_file_format
innodb_file_format_check
innodb_file_format_max
innodb_large_prefix
They have been deprecated in MySQL 5.7.7 (and MariaDB 10.2.2) in WL#7703.
The file_format column in two INFORMATION_SCHEMA tables will be removed:
innodb_sys_tablespaces
innodb_sys_tables
Code to update the file format tag at the end of page 0:5
(TRX_SYS_PAGE in the InnoDB system tablespace) will be removed.
When initializing a new database, the bytes will remain 0.
All references to the Barracuda file format will be removed.
Some references to the Antelope file format (meaning
ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT) will remain.
This basically ports WL#7704 from MySQL 8.0.0 to MariaDB 10.3.1:
commit 4a69dc2a95995501ed92d59a1de74414a38540c6
Author: Marko Mäkelä <marko.makela@oracle.com>
Date: Wed Mar 11 22:19:49 2015 +0200
Also, remove empty .ic files that were not removed by my MySQL commit.
Problem:
InnoDB used to support a compilation mode that allowed to choose
whether the function definitions in .ic files are to be inlined or not.
This stopped making sense when InnoDB moved to C++ in MySQL 5.6
(and ha_innodb.cc started to #include .ic files), and more so in
MySQL 5.7 when inline methods and functions were introduced
in .h files.
Solution:
Remove all references to UNIV_NONINL and UNIV_MUST_NOT_INLINE from
all files, assuming that the symbols are never defined.
Remove the files fut0fut.cc and ut0byte.cc which only mattered when
UNIV_NONINL was defined.