For instant ALTER TABLE, we store a hidden metadata record at the
start of the clustered index, to indicate how the format of the
records differs from the latest table definition.
The term 'default row' is too specific, because it applies to
instant ADD COLUMN only, and we will be supporting more classes
of instant ALTER TABLE later on. For instant ADD COLUMN, we
store the initial default values in the metadata record.
This is a merge from 10.2, but the 10.2 version of this will not
be pushed into 10.2 yet, because the 10.2 version would include
backports of MDEV-14717 and MDEV-14585, which would introduce
a crash recovery regression: Tables could be lost on
table-rebuilding DDL operations, such as ALTER TABLE,
OPTIMIZE TABLE or this new backup-friendly TRUNCATE TABLE.
The test innodb.truncate_crash occasionally loses the table due to
the following bug:
MDEV-17158 log_write_up_to() sometimes fails
Implement undo tablespace truncation via normal redo logging.
Implement TRUNCATE TABLE as a combination of RENAME to #sql-ib name,
CREATE, and DROP.
Note: Orphan #sql-ib*.ibd may be left behind if MariaDB Server 10.2
is killed before the DROP operation is committed. If MariaDB Server 10.2
is killed during TRUNCATE, it is also possible that the old table
was renamed to #sql-ib*.ibd but the data dictionary will refer to the
table using the original name.
In MariaDB Server 10.3, RENAME inside InnoDB is transactional,
and #sql-* tables will be dropped on startup. So, this new TRUNCATE
will be fully crash-safe in 10.3.
ha_mroonga::wrapper_truncate(): Pass table options to the underlying
storage engine, now that ha_innobase::truncate() will need them.
rpl_slave_state::truncate_state_table(): Before truncating
mysql.gtid_slave_pos, evict any cached table handles from
the table definition cache, so that there will be no stale
references to the old table after truncating.
== TRUNCATE TABLE ==
WL#6501 in MySQL 5.7 introduced separate log files for implementing
atomic and crash-safe TRUNCATE TABLE, instead of using the InnoDB
undo and redo log. Some convoluted logic was added to the InnoDB
crash recovery, and some extra synchronization (including a redo log
checkpoint) was introduced to make this work. This synchronization
has caused performance problems and race conditions, and the extra
log files cannot be copied or applied by external backup programs.
In order to support crash-upgrade from MariaDB 10.2, we will keep
the logic for parsing and applying the extra log files, but we will
no longer generate those files in TRUNCATE TABLE.
A prerequisite for crash-safe TRUNCATE is a crash-safe RENAME TABLE
(with full redo and undo logging and proper rollback). This will
be implemented in MDEV-14717.
ha_innobase::truncate(): Invoke RENAME, create(), delete_table().
Because RENAME cannot be fully rolled back before MariaDB 10.3
due to missing undo logging, add some explicit rename-back in
case the operation fails.
ha_innobase::delete(): Introduce a variant that takes sqlcom as
a parameter. In TRUNCATE TABLE, we do not want to touch any
FOREIGN KEY constraints.
ha_innobase::create(): Add the parameters file_per_table, trx.
In TRUNCATE, the new table must be created in the same transaction
that renames the old table.
create_table_info_t::create_table_info_t(): Add the parameters
file_per_table, trx.
row_drop_table_for_mysql(): Replace a bool parameter with sqlcom.
row_drop_table_after_create_fail(): New function, wrapping
row_drop_table_for_mysql().
dict_truncate_index_tree_in_mem(), fil_truncate_tablespace(),
fil_prepare_for_truncate(), fil_reinit_space_header_for_table(),
row_truncate_table_for_mysql(), TruncateLogger,
row_truncate_prepare(), row_truncate_rollback(),
row_truncate_complete(), row_truncate_fts(),
row_truncate_update_system_tables(),
row_truncate_foreign_key_checks(), row_truncate_sanity_checks():
Remove.
row_upd_check_references_constraints(): Remove a check for
TRUNCATE, now that the table is no longer truncated in place.
The new test innodb.truncate_foreign uses DEBUG_SYNC to cover some
race-condition like scenarios. The test innodb-innodb.truncate does
not use any synchronization.
We add a redo log subformat to indicate backup-friendly format.
MariaDB 10.4 will remove support for the old TRUNCATE logging,
so crash-upgrade from old 10.2 or 10.3 to 10.4 will involve
limitations.
== Undo tablespace truncation ==
MySQL 5.7 implements undo tablespace truncation. It is only
possible when innodb_undo_tablespaces is set to at least 2.
The logging is implemented similar to the WL#6501 TRUNCATE,
that is, using separate log files and a redo log checkpoint.
We can simply implement undo tablespace truncation within
a single mini-transaction that reinitializes the undo log
tablespace file. Unfortunately, due to the redo log format
of some operations, currently, the total redo log written by
undo tablespace truncation will be more than the combined size
of the truncated undo tablespace. It should be acceptable
to have a little more than 1 megabyte of log in a single
mini-transaction. This will be fixed in MDEV-17138 in
MariaDB Server 10.4.
recv_sys_t: Add truncated_undo_spaces[] to remember for which undo
tablespaces a MLOG_FILE_CREATE2 record was seen.
namespace undo: Remove some unnecessary declarations.
fil_space_t::is_being_truncated: Document that this flag now
only applies to undo tablespaces. Remove some references.
fil_space_t::is_stopping(): Do not refer to is_being_truncated.
This check is for tablespaces of tables. Potentially used
tablespaces are never truncated any more.
buf_dblwr_process(): Suppress the out-of-bounds warning
for undo tablespaces.
fil_truncate_log(): Write a MLOG_FILE_CREATE2 with a nonzero
page number (new size of the tablespace in pages) to inform
crash recovery that the undo tablespace size has been reduced.
fil_op_write_log(): Relax assertions, so that MLOG_FILE_CREATE2
can be written for undo tablespaces (without .ibd file suffix)
for a nonzero page number.
os_file_truncate(): Add the parameter allow_shrink=false
so that undo tablespaces can actually be shrunk using this function.
fil_name_parse(): For undo tablespace truncation,
buffer MLOG_FILE_CREATE2 in truncated_undo_spaces[].
recv_read_in_area(): Avoid reading pages for which no redo log
records remain buffered, after recv_addr_trim() removed them.
trx_rseg_header_create(): Add a FIXME comment that we could write
much less redo log.
trx_undo_truncate_tablespace(): Reinitialize the undo tablespace
in a single mini-transaction, which will be flushed to the redo log
before the file size is trimmed.
recv_addr_trim(): Discard any redo logs for pages that were
logged after the new end of a file, before the truncation LSN.
If the rec_list becomes empty, reduce n_addrs. After removing
any affected records, actually truncate the file.
recv_apply_hashed_log_recs(): Invoke recv_addr_trim() right before
applying any log records. The undo tablespace files must be open
at this point.
buf_flush_or_remove_pages(), buf_flush_dirty_pages(),
buf_LRU_flush_or_remove_pages(): Add a parameter for specifying
the number of the first page to flush or remove (default 0).
trx_purge_initiate_truncate(): Remove the log checkpoints, the
extra logging, and some unnecessary crash points. Merge the code
from trx_undo_truncate_tablespace(). First, flush all to-be-discarded
pages (beyond the new end of the file), then trim the space->size
to make the page allocation deterministic. At the only remaining
crash injection point, flush the redo log, so that the recovery
can be tested.
This is a port of an Oracle fix.
No test case was provided by Oracle. It seems that to exploit this
bug, one would have to SET foreign_key_checks=0 before TRUNCATE,
and to concurrently run some DML statement that causes a foreign key
constraint to be checked.
commit 1f24c5aa2843fa548aa5c4b29c00f955e03e9f5b
Author: Aditya A <aditya.a@oracle.com>
Date: Fri May 18 12:32:37 2018 +0530
Bug #27208858 CONCURRENT DDL/DML ON FOREIGN KEYS CRASH IN
PAGE_CUR_SEARCH_WITH_MATCH_BYTES
The bug was that innobase_get_computed_value() trashed record[0] and data
in Field_blob::value
Fixed by using a record on the heap for innobase_get_computed_value()
Reviewer: Marko Mäkelä
If creating a secondary index fails (typically, ADD UNIQUE INDEX fails
due to duplicate key), it is possible that concurrently running UPDATE
or DELETE will access the index stub and hit the debug assertion.
It does not make any sense to keep updating an uncommitted index whose
creation has failed.
dict_index_t::is_corrupted(): Replaces dict_index_is_corrupted().
Also take online_status into account.
Replace some calls to dict_index_is_clust() with calls to
dict_index_t::is_primary().
Remove unused InnoDB function parameters and functions.
i_s_sys_virtual_fill_table(): Do not allocate heap memory.
mtr_is_block_fix(): Replace with mtr_memo_contains().
mtr_is_page_fix(): Replace with mtr_memo_contains_page().
row_ins_sec_index_entry(): Compare a pointer to fil_system.sys_space,
not to a numeric constant. This code was recently changed in MDEV-13637,
and the condition was essentially disabled, potentially causing the
change buffer to grow uncontrollably when something is inserted into
a table that has secondary indexes and resides in the system tablespace.
Thanks to Daniel Black for pointing out that clang 7 flagged a warning
for the comparison of a pointer to an integer.
row_import_for_mysql(): Fix a possible compiler warning.
We can rely on the dict_table_t::space. All indexes of a table object
are always in the same tablespace. (For fulltext indexes, the data is
located in auxiliary tables, and these will continue to have their own
table objects, separate from the main table.)
Make foreign system versioning tables work in CASCADE UPDATE/SET NULL.
In that case basically row update is performed. This patch makes insert
of a historical row performed too.
row_update_versioned_insert(): restores btr_pcur_t, reads row from it, makes
row historical and inserts to table.
row_ins_check_foreign_constraint(): disable constraint check for historical
rows because it has no sense. Also check will fail always, because referenced
table is updated at that point.
row_update_cascade_for_mysql(): insert historical row for system versioning
tables before updating current row.
revert DATA_VERSIONED -> DATA_UNVERSIONED
Revert the dead code for MySQL 5.7 multi-master replication (GCS),
also known as
WL#6835: InnoDB: GCS Replication: Deterministic Deadlock Handling
(High Prio Transactions in InnoDB).
Also, make innodb_lock_schedule_algorithm=vats skip SPATIAL INDEX,
because the code does not seem to be compatible with them.
Add FIXME comments to some SPATIAL INDEX locking code. It looks
like Galera write-set replication might not work with SPATIAL INDEX.
Rollback attempted to dereference DB_ROLL_PTR=0, which cannot possibly
be a valid undo log pointer. A safe canonical value would be
roll_ptr_t(1) << ROLL_PTR_INSERT_FLAG_POS
which is what was chosen in MDEV-12288.
This bug was reproduced in 10.3 only. Potentially, the problem could
have been introduced by MDEV-11415, which suppresses undo logging for
ALGORITHM=COPY operations. In those operations, we should actually
have written the safe value of DB_ROLL_PTR instead of writing 0.
However, the test in commit 5421e3aee7
demonstrates that access to the rebuilt table by earlier-started
transactions should actually have been refused with ER_TABLE_DEF_CHANGED.
btr_cur_ins_lock_and_undo(): When undo logging is disabled, use the
safe value of DB_ROLL_PTR.
btr_cur_optimistic_insert(): Validate the DB_TRX_ID,DB_ROLL_PTR before
inserting into a clustered index leaf page.
ins_node_t::sys_buf[]: Replaces row_id_buf and trx_id_buf and some
heap usage.
row_ins_alloc_sys_fields(): Initialize ins_node_t::sys_buf[].
trx_undo_page_report_modify(): Assert that the DB_ROLL_PTR is not 0.
trx_undo_get_undo_rec_low(): Assert that the roll_ptr is valid before
trying to dereference it.
dict_index_t::is_primary(): Check if the index is the primary key.
Replace all occurrences of the is_clust() method with is_primary(),
because that is what is actually meant. (Also the change buffer
tree would count as a clustered index.)
Rollback attempted to dereference DB_ROLL_PTR=0, which cannot possibly
be a valid undo log pointer. A safer canonical value would be
roll_ptr_t(1) << ROLL_PTR_INSERT_FLAG_POS
which is what was chosen in MDEV-12288, corresponding to reset_trx_id.
No deterministic test case for the bug was found. The simplest test
cases may be related to MDEV-11415, which suppresses undo logging for
ALGORITHM=COPY operations. In those operations, in the spirit of
MDEV-12288, we should actually have written reset_trx_id instead of
using the transaction identifier of the current transaction
(and a bogus value of DB_ROLL_PTR=0). However, thanks to MySQL Bug#28432
which I had fixed in MySQL 5.6.8 as part of WL#6255, access to the
rebuilt table by earlier-started transactions should actually have been
refused with ER_TABLE_DEF_CHANGED.
reset_trx_id: Move the definition to data0type.cc and the declaration
to data0type.h.
btr_cur_ins_lock_and_undo(): When undo logging is disabled, use the
safe value that corresponds to reset_trx_id.
btr_cur_optimistic_insert(): Validate the DB_TRX_ID,DB_ROLL_PTR before
inserting into a clustered index leaf page.
ins_node_t::sys_buf[]: Replaces row_id_buf and trx_id_buf and some
heap usage.
row_ins_alloc_sys_fields(): Init ins_node_t::sys_buf[] to reset_trx_id.
row_ins_buf(): Only if undo logging is enabled, copy trx->id
to node->sys_buf. Otherwise, rely on the initialization in
row_ins_alloc_sys_fields().
row_purge_reset_trx_id(): Invoke mlog_write_string() with reset_trx_id
directly. (No functional change.)
trx_undo_page_report_modify(): Assert that the DB_ROLL_PTR is not 0.
trx_undo_get_undo_rec_low(): Assert that the roll_ptr is valid before
trying to dereference it.
dict_index_t::is_primary(): Check if the index is the primary key.
PageConverter::adjust_cluster_record(): Fix
MDEV-15249 Crash in MVCC read after IMPORT TABLESPACE
by resetting the system fields to reset_trx_id instead of writing
the current transaction ID (which will be committed at the
end of the IMPORT TABLESPACE) and DB_ROLL_PTR=0.
This can partially be viewed as a follow-up fix of MDEV-12288,
because IMPORT should already then have written
DB_TRX_ID=0 and DB_ROLL_PTR=1<<55 to prevent unnecessary
DB_TRX_ID lookups in subsequent accesses to the table.
MDEV-14222 Unnecessary 'cascade' memory allocation for every updated row
when there is no FOREIGN KEY
This reverts the MySQL 5.7.2 change
377774689b
which introduced these problems. MariaDB 10.2.2 inherited these problems
in commit 2e814d4702.
The FOREIGN KEY CASCADE and SET NULL operations implemented as
procedural recursion are consuming more than 8 kilobytes of stack
(9 stack frames) per iteration in a non-debug GNU/Linux AMD64 build.
This is why we need to limit the maximum recursion depth to 15 steps
instead of the 255 that it used to be in MySQL 5.7 and MariaDB 10.2.
A corresponding change was made in MySQL 5.7.21 in
7b26dc98a6
This corruption was introduced in MDEV-13331. It would have been caught
by the MySQL 5.7 test innodb.update-cascade which MariaDB was missing
until now.
row_ins_check_foreign_constraint(): Never replace err == DB_LOCK_WAIT
with other values than DB_LOCK_WAIT_TIMEOUT.
row_ins_cascade_calc_update_vec(): Remove the output parameter
fts_col_affected, and instead return whether any fulltext index
is affected by the cascade operation.
row_ins_foreign_check_on_constraint(): Narrow the scope of some
variables.
ib_dec_in_dtor: Remove.
Problem was that wrong error message was returned when insert
returned FK-error and there was no duplicate key to process.
row_ins
If error from insert was DB_NO_REFERENCED_ROW and there was
no duplicate key we should ignore ON DUPLICATE KEY UPDATE
and return original error message.
MDEV-11415 Remove excessive undo logging during ALTER TABLE…ALGORITHM=COPY
Move a test from innodb.rename_table_debug to innodb.alter_copy.
ha_innobase::extra(HA_EXTRA_BEGIN_ALTER_COPY): Register id-versioned
tables so that mysql.transaction_registry will be updated, even for
empty tables that are subjected to ALTER TABLE…ALGORITHM=COPY.
If a crash occurs during ALTER TABLE…ALGORITHM=COPY, InnoDB would spend
a lot of time rolling back writes to the intermediate copy of the table.
To reduce the amount of busy work done, a work-around was introduced in
commit fd069e2bb3 in MySQL 4.1.8 and 5.0.2,
to commit the transaction after every 10,000 inserted rows.
A proper fix would have been to disable the undo logging altogether and
to simply drop the intermediate copy of the table on subsequent server
startup. This is what happens in MariaDB 10.3 with MDEV-14717,MDEV-14585.
In MariaDB 10.2, the intermediate copy of the table would be left behind
with a name starting with the string #sql.
This is a backport of a bug fix from MySQL 8.0.0 to MariaDB,
contributed by jixianliang <271365745@qq.com>.
Unlike recent MySQL, MariaDB supports ALTER IGNORE. For that operation
InnoDB must for now keep the undo logging enabled, so that the latest
row can be rolled back in case of an error.
In Galera cluster, the LOAD DATA statement will retain the existing
behaviour and commit the transaction after every 10,000 rows if
the parameter wsrep_load_data_splitting=ON is set. The logic to do
so (the wsrep_load_data_split() function and the call
handler::extra(HA_EXTRA_FAKE_START_STMT)) are joint work
by Ji Xianliang and Marko Mäkelä.
The original fix:
Author: Thirunarayanan Balathandayuthapani <thirunarayanan.balathandayuth@oracle.com>
Date: Wed Dec 2 16:09:15 2015 +0530
Bug#17479594 AVOID INTERMEDIATE COMMIT WHILE DOING ALTER TABLE ALGORITHM=COPY
Problem:
During ALTER TABLE, we commit and restart the transaction for every
10,000 rows, so that the rollback after recovery would not take so long.
Fix:
Suppress the undo logging during copy alter operation. If fts_index is
present then insert directly into fts auxiliary table rather
than doing at commit time.
ha_innobase::num_write_row: Remove the variable.
ha_innobase::write_row(): Remove the hack for committing every 10000 rows.
row_lock_table_for_mysql(): Remove the extra 2 parameters.
lock_get_src_table(), lock_is_table_exclusive(): Remove.
Reviewed-by: Marko Mäkelä <marko.makela@oracle.com>
Reviewed-by: Shaohua Wang <shaohua.wang@oracle.com>
Reviewed-by: Jon Olav Hauglid <jon.hauglid@oracle.com>
Traditionally, DROP TABLE and TRUNCATE TABLE discarded any locks that
may have been held on the table. This feels like an ACID violation.
Probably most occurrences of it were prevented by meta-data locks (MDL)
which were introduced in MySQL 5.5.
dict_table_t::n_foreign_key_checks_running: Reduce the number of
non-debug checks.
lock_remove_all_on_table(), lock_remove_all_on_table_for_trx(): Remove.
ha_innobase::truncate(): Acquire an exclusive InnoDB table lock
before proceeding. DROP TABLE and DISCARD/IMPORT were already doing
this.
row_truncate_table_for_mysql(): Convert the already started transaction
into a dictionary operation, and do not invoke lock_remove_all_on_table().
row_mysql_table_id_reassign(): Do not call lock_remove_all_on_table().
This function is only used in ALTER TABLE...DISCARD/IMPORT TABLESPACE,
which is already holding an exclusive InnoDB table lock.
TODO: Make n_foreign_key_checks running a debug-only variable.
This would require two fixes:
(1) DROP TABLE: Exclusively lock the table beforehand, to prevent
the possibility of concurrently running foreign key checks (which
would acquire a table IS lock and then record S locks).
(2) RENAME TABLE: Find out if n_foreign_key_checks_running>0 actually
constitutes a potential problem.
Let lock_print_info_all_transactions() iterate rw_trx_hash instead of
rw_trx_list.
When printing info of locks for transactions, InnoDB monitor doesn't
attempt to read relevant page from disk anymore. The code was prone
to race conditions.
Note that TrxListIterator didn't work as advertised: it iterated
rw_trx_list only.